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Abstract: The problem of algorithmic bias in machine learning has recently gained a lot of attention
due to its potentially strong impact on our societies. In much the same manner, algorithmic biases can
alter industrial and safety-critical machine learning applications, where high-dimensional inputs are
used. This issue has, however, been mostly left out of the spotlight in the machine learning literature.
Contrary to societal applications, where a set of potentially sensitive variables, such as gender or
race, can be defined by common sense or by regulations to draw attention to potential risks, the
sensitive variables are often unsuspected in industrial and safety-critical applications. In addition,
these unsuspected sensitive variables may be indirectly represented as a latent feature of the input
data. For instance, the predictions of an image classifier may be altered by reconstruction artefacts
in a small subset of the training images. This raises serious and well-founded concerns about the
commercial deployment of AI-based solutions, especially in a context where new regulations address
bias issues in AI. The purpose of our paper is, then, to first give a large overview of recent advances
in robust machine learning. Then, we propose a new procedure to detect and to treat such unknown
biases. As far as we know, no equivalent procedure has been proposed in the literature so far. The
procedure is also generic enough to be used in a wide variety of industrial contexts. Its relevance is
demonstrated on a set of satellite images used to train a classifier. In this illustration, our technique
detects that a subset of the training images has reconstruction faults, leading to systematic prediction
errors that would have been unsuspected using conventional cross-validation techniques.

Keywords: machine learning; trustworthy AI; robustness; unknown bias detection; bias mitigation;
computer vision

1. Introduction

The ubiquity of machine learning (ML) models, and more specifically of deep neural
network (NN) models, in all sorts of applications, has become undeniable in recent
years [1,2]. From classifying images [3–5], detecting objects [3,6], performing semantic
segmentation [6,7], to automatic language translation [8] or sentiment analysis [9], the
advances in different subfields of ML can be attributed to the explosion of the computing
power and the ability of NNs to treat complex and high-dimensional data. Most famously,
AlexNet [10] allowed for an impressive jump in performance in the challenging ILSVRC2012
image classification dataset [3], also known as ImageNet, permanently cementing deep
convolutional NN (CNN) architectures in the field of computer vision. Since then, architectures
have been refined [11,12] and the training procedures have become increasingly complex [13],
leading to an increased performance.

One challenge, however, became increasingly critical as neural networks became more
complex: how to decipher the reasons behind the model’s predictions? For instance, typical
NN architectures for classification or regression problems incrementally transform the
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representation of the input data in the so-called latent space (or feature space) and then use
this transformed representation to make their predictions, as summarised in Figure 1. Each
step of this incremental data processing pipeline (or feature extraction chain) is carried out
by a so-called layer, which is mathematically a non-linear function (see the blue rectangle in
Figure 1). It is typically made of a linear transformation followed by a non-linear activation
function [11,14], but more complex alternatives exist—e.g., the residual block layers of
ResNet models [12] or the self-attention layers [15] in transformer models. These first stages
of the model (Figure 1) often rely on the bottlenecking of the information that is passing
through it by sequentially decreasing the size of the feature maps and applying non-linear
transformations, as, for instance, in the widely used ReLU activation function [16]. To
summarise, these first stages project the input data into a latent space. Therefore, the neural
network’s data extraction pipeline is driven by the training data that were used to optimise
its parameters. The second part of the network (Figure 1), which is standard for classifiers
or regressors, is generally simpler to understand than the first, as it is often composed
of matrix-vector products (often denoted as dense or fully-connected layers) followed by
ReLU activation functions. Consequently, it is mathematically equivalent to a piece-wise
linear transformation [17]. More importantly, these non-linear transformations depend
on parameters that are optimised to make accurate predictions for a particular task when
training the NN.

Input Image

... ...

N.N. – part 1: Change 
data representation

Latent 
space

N.N. – part 2 Prediction

Figure 1. General architecture of a neural network designed for classification or regression tasks on
images. It first projects the input image information non-linearly into a latent space, and then uses
this transformed information for its prediction.

Finally, it is worth emphasising that the data transformation from the latent space to
the NN’s output can be as complex as in the first part of the network Figure 1 in models that
are not designed for regression or classification, such as, e.g., the unsupervised auto-encoder
models [18] or U-Nets [19]. This makes their analysis and control even more complex than
in models following the general structure of Figure 1.

Neural networks are, therefore, black-box models, which raises serious concerns for
applications where algorithmic decisions can have life-changing consequences, as, for
instance, in societal applications or high-risk industrial systems. This issue has motivated
a substantial research effort over the last few years to investigate both explainability, and
the creation and propagation of bias in algorithmic decisions. An important part of this
research effort has been made to explain the predictions of black-box ML models [20–24]
or to detect out-of-distribution data [25,26].

In the first sections of our paper, we will leverage the significant work that has
been made in the field of fair machine learning, and study how it can be extrapolated
to industrial computer vision applications. Fairness in machine learning considers the
relationships between an algorithm and a certain input variable that should not play
any role in the model’s decision from an ethical, legal or technical perspective, but has
a considerable influence on the system’s behaviour nonetheless. This variable is usually
called the sensitive variable. Different definitions have been described in the statistical
literature to quantify the impact of a sensitive variable, each of these considering specific
dependencies between the sensitive variable and the decision algorithm. From a more
practical perspective, fairness issues in machine learning manifest themselves in the shape
of undesired algorithmic biases in the model’s predictions, such as according more bank
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mortgages to males than females for similar profiles or hiring males rather than females
for some specific job profiles, due to a majority presence of male individuals with the
corresponding profile in the learning database. Hence, fairness initially gained a lot of
attention, specifically in social applications. We refer, for instance, to the recent review
papers of [27,28] and references therein.

However, we want to emphasise that studies focusing on the presence of bias in more
general industrial applications based on complex data, like images, have mostly been
left out of the spotlight. We intend to raise awareness about these kinds of problems for
safety-critical and/or industrial applications, where trained models may be discriminating
against a certain group (or situation) in the form of a biased decision or diminished
performance. We point out that a team developing an NN-based application might simply
be unaware of this behaviour until the application is deployed. In this case, specific groups
of end-users may observe that it does not work as intended. A typical example of undesired
algorithmic bias in image analysis applications is the one that was made popular by the
paper presenting the LIME explainability technique [22]. Indeed, the authors trained a
neural network to discriminate images representing wolves and huskies. Despite the NN’s
reasonable accuracy, it was still basing itself off of spurious correlations, i.e., the presence
or not of snow in the background, to detect whether the image contained a wolf or a husky.
Another example that will be at the heart of this paper is a blue veil effect in satellite images,
which will be discussed in Section 7. When present, these biases provide a shortcut for the
models to achieve a higher accuracy score both in the training and test datasets, although
the logic behind the decision rules is generally false. This phenomenon is often modelled
by the use of confounding variables in statistics, which hinder the models’ performance
when predicting a sample from the disadvantaged group. This makes it completely clear
that all harmful biases must be addressed in industrial and safety-critical applications, as
algorithmic biases might render the general performance guarantees useless in specific
or uncommon situations. In order to address these concerns, our paper is structured
as follows:

• In Section 2, we rigorously define which types of algorithmic biases are commonly
observed in machine learning applications based on images, and what their causes are.

• In Sections 3–5, we then give a comprehensive overview of various methods to measure,
to detect and to mitigate algorithmic biases. Note that Section 4 distinguishes the cases
where the potential algorithmic biases are either due to suspected or to unsuspected
sensitive variables, the second case being of particular interest in our paper.

• In Sections 6 and 7, we finally propose and illustrate a generic pipeline to detect and
to mitigate the algorithmic biases observed on unsuspected sensitive variables.

2. Algorithmic Biases in Machine Learning

In this section, we briefly introduce the different definitions of algorithmic biases
considered in this paper. In particular, we focus on statistical (or global) notions of
algorithmic bias, which are by far the most popular among ML practitioners. Note that
although we often use the generic term algorithmic bias in our paper, the same concepts
are referred to as fairness in the machine learning literature related to social implications
of A.I. We remark that there also exist other definitions based on causal mechanisms that
provide a local measure of discrimination [29,30], and that play an important role in social
applications, where discrimination can be assessed individually. They are, however, beyond
the scope of this paper.

2.1. Definitions

Let X be the observed input data, Y are the corresponding outputs to forecast and A
is the sensitive variable that induces an undesirable bias in the predictions (introduced in
Section 1), which can be explicitly known or deduced from (X, Y). In a supervised
framework, the prediction model fθ is optimised so that its parameters θ minimise an
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empirical risk R(Y, Ŷ), which measures the error of forecasting Y, with Ŷ := fθ(X). We
will denote L(Z) as the distribution of a random variable Z.

An image is defined as an application X : K1 × K2 7→ Rd, where K1 and K2 are two
compact sets representing the pixel domain (K3 and k4 can also be considered for 3D or
3D+t images) and d is the number of image channels (e.g., d = 3 for RGB images). We will
consider 2D images with d = 1 in the remainder of this section to keep the notations simple.
An image can, thus, be interpreted as an application mapping each of its coordinates (i, j)
to a pixel intensity value X(i, j). Metadata, denoted here by meta, can also be associated
with this image. They represent its characteristics or extra information such as the image
caption, its location or even details on the sensor(s) used to acquire or to register it. In an
ML setting, the variable to forecast is the output observation Y. Algorithmic biases are
usually assessed with respect to a variable called the sensitive variable, A, which may be
either a discrete variable or a continuous variable. In the discrete case, a fairness objective
is to measure dissimilarities in the data and/or to discover differences in the algorithm’s
behaviour between samples having different sensitive variable values—i.e., corresponding
to different subgroups. Thus, a complete dataset contains the images X, their corresponding
target variables Y, image metadata meta and the sensitive variable A.

Bias can manifest itself in multiple ways, depending on how the variable which causes
the bias influences the different distributions of the data and the algorithm.

Bias can originate from the mismatch between the different data distributions in
the sense that small subgroups of individuals have different distributions, i.e.,
L(Y, X|A) 6= L(Y, X). This is the most common example that we can encounter in image
datasets. The first consequence can be a sampling bias, and can discourage the model from
learning the particularities of the under-represented groups or classes. As a consequence,
despite achieving a good average accuracy on the test samples, the prediction algorithm
may exhibit poor generalisation properties when deployed on real-life applications with
different subsets of distributions.

Another case emerges when external conditions, which are not relevant for the
experiment, induce a difference in the observed data’s labels in the sense that
L(Y|X, A) 6= L(Y|X). This, therefore, inadvertently encourages ML models to learn
biased decisions, as in the wolves versus huskies example in [22]. This is the case when the
data are collected with labels that are influenced by a third unknown variable leading to
confounding bias, or when the observation setting favours one class over the other leading
to selection bias. The sources of this bias may be related to observation tools, methods or
external factors, as it will be pointed out later.

A third interesting case concerns the bias induced by the model itself, which is often
referred to as inductive bias: L(Ŷ|X, Y, A) 6= L(Ŷ|X, Y). This opposes the world created by
the algorithm—i.e., the distribution of the algorithm outputs—to the original data. From a
different point of view, bias can also arise when the different categories of the algorithm
outputs differ from the categories as originally labelled in the dataset—i.e., L(Y|Ŷ, X, A) 6=
L(Y|Ŷ, X)—a condition that is often referred to as lack of sufficiency.

Finally, the two previous conditions can also be formulated by considering the
distribution of the algorithm prediction errors and their variability with respect to the
sensitive variable L(`(Y, Ŷ)|X, A) 6= L(`(Y, Ŷ)|X), where Ŷ × Y 7→ `(Ŷ, Y) is the loss
function measuring the error incurred by the algorithm by forecasting Ŷ in place of Y.

2.2. Potential Causes of Bias in Computer Vision

In practice, the above-mentioned situations may have different causes in image datasets.

2.2.1. Improperly Sampled Training Data

First, the bias may come from the data themselves, in the sense that the distribution of
the training data is not the ideal distribution that would reflect the desired behaviour that
we want to learn. Compared with tabular data, image datasets can be difficult to collect,
store and manipulate due to their considerable size and the memory storage they require.
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Hence, many of them have proven to lack diversity—e.g., because not all regions are studied
(geographic diversity), or not all subpopulation samples are uniformly collected (gender
or racial diversity). The growing use of facial recognition algorithms in a wide range of
areas affecting our society is currently debated. Indeed, they have been demonstrated to
be a source of racial [31,32] or gender [33] discrimination. Moreover, well-known datasets
such as CelebA [34], Open Images [35] or ImageNet [3] lack of diversity—as shown in [36]
or [37]—have resulted in imbalanced samples. Thus, state-of-the-art algorithms are unable
to yield uniform performance over all sub. A similar lack of diversity appear in the newly
created Metaverse, as pointed out in [38], creating racial bias. This encouraged several
researchers to design datasets that do not suffer from these drawbacks—i.e., preserving
diversity—as illustrated by the Pilot Parliament Benchmark (PPB) dataset [39], in [40] or in
the Fairface dataset [41].

Combining diverse databases to obtain a sufficient accuracy in all subpopulations is
even more critical for high-stakes systems, like those commonly used in Medicine. The
fact that medical cohorts and longitudinal databases suffer from biases was acknowledged
long ago in medical studies. The situation is even more complex in medical image analysis
for specialities such as radiology (National Lung Screening Trial, MIMIC-CXR-JPG [42],
CheXpert [43]) or dermatology (Melanoma detection for skin cancer, HAM10000
database [44]), where biased datasets are provided for medical applications. Indeed,
under-represented populations in some datasets lead to a critical drop in accuracy, for
instance in skin cancer detection, as in [45,46], or for general research in medicine [47] and
references therein.

The captioning of images is a relevant example of where the shortcoming of diversity
hampers the quality of the algorithms’ predictions, and may result in biased forecasts,
as pointed out in [48]. Therefore, it is of utmost importance to include diversity (e.g.,
geographic, social) when building image datasets that will be used as reference benchmarks
to build and test the efficiency of computer vision algorithms.

2.2.2. Spurious Correlations and External Factors

The context in which the data are collected can also create spurious correlations
between groups of images. Different acquisition situations may provide different contextual
information that can generate systematic artefacts in specific kinds of images. For instance,
confounding variables such as the snowy background in the wolves versus huskies example
of [22] (see Section 1) may add bias in algorithmic decisions. In this case, different objects
in images may have similar features due to the presence of a similar context, such as
the colour background, which can play an important role in the classification task due
to spurious correlations. We refer to [49] for more references. This phenomenon is also
well-known in biology where spectroscopy data are highly influenced by the fluorescence
methods as highlighted in [50], which makes machine learning difficult to use without
correcting the bias. Different biases related to different instruments of measures are also
described for medical data in [51]. An external factor can also induce biases and shift
the distributions. It is important to note that all images are acquired using sensors and
pre-processed afterwards, potentially introducing defects to the images. In addition, their
storage may require the compression of the information they contain in many different ways.
All of this makes for a type of data with considerable variability depending on the quality
of the sensors, pre-processing pipeline and compression method. This will be illustrated in
the application of Section 7, where an automatic pre-processing scheme induces a bias in
pseudocolour satellite images. In medical image analysis, external factors such as age affect
the size of the organs, but this is also a causal factor in some diseases, as analysed in [52],
for instance.

2.2.3. Unreliable Labels

We can finally note that wrong or noisy labels, bad captioning (due to stereotyping,
for instance) or the use of labelling algorithms that already contain bias (such as Natural
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Language Processing image interpreters) are also potential sources of bias. An example of
this phenomenon can be the subjective and socially biased choice of the attractive labels
in the CelebA [34] dataset. When image datasets include captioning as an additional
variable, the bias inherent to the learned language model used to provide the caption is
automatically included. For instance, one of the main pre-trained algorithms in Natural
Language Processing, Generative Pre-Trained Transformer 3 (GPT-3) [53], is well-known to
be biased and, thus, generalised its bias to the image datasets, as described, for instance,
in [54] for gender bias.

2.3. From Determined Bias to Unknown Bias in Image Analysis

Keeping in mind the potential sources of bias, different situations may also occur in
image analysis applications, depending on the availability of the information:

• Full information: images, targets, metadata and sensitive variables, i.e., (X, Y) ∪
{meta} ∪ A. are available. The bias may then come from the meta-observations
{meta}, the image itself, the labels or all three.

• Partial information: the sensitive variable is not observed, so we only observe (X, Y) ∪
{meta}. The sensitive variable may be included in the meta variables A ⊂ {meta}, or
may be estimated using the meta-variables {meta}.

• Scarce information: only the images are observed along with their target, i.e., we only
observe (X, Y). The sensitive variable A is, therefore, hidden. The bias it induces is
contained inside the images and has to be inferred from the available data X and used
to estimate A.

For societal applications, the sensitive variable is defined following regulations as
presented in Section 2.4. The variable A is known since it is chosen by the regulator, and,
hence, is either directly available in the data or proxies can be found to estimate it. The main
difficulty when working with high-dimensional inputs such as images (but also natural
language data, time series or graphs) is that the bias may not be explicitly present in a
particular input dimension or variable, but is rather hidden in a latent representation of the
input data. For instance, an image-based classifier would not naturally have a different
rate of positive decisions for males and females because of the intensity of a specific pixel.
It would instead detect specific patterns or features in the input images and potentially use
this information, leading to unfair decisions with respect to a gender-sensitive variable. As
discussed in Section 1, neural network classifiers or regressors change by construction of
the representation of the input data into a lower-dimensional latent (or feature) space before
making their predictions based on this latent information. Illustrations of how a network
can project the input information in a latent space can be found in the VGG and ResNet
papers [11,12]. It would then be tempting to believe that the hidden variables explaining
the undesirable biases would be found in the latent space, but this is not necessarily the
case. This information can still be distilled in different latent variables unless a specific
process is used to isolate it [55]. Hence, bias detection is an essential, potentially arduous
task when dealing with images.

2.4. Current Regulation of AI

It is interesting to remark that the social concerns related to a massive use of AI systems
in modern societies has led to the definition of various ethical and human rights-based
declarations intending to guide the development and the use of these technologies. Some
of these were defined by governments or inter-governmental organisations, while other
ones were raised within civil society, private companies or multi-stakeholders. In 2020, the
particularly interesting work of [56] compared the contents of 36 prominent AI principal
documents side-by-side. This made clear the similarities and differences in interpretation
across these frameworks. This also emphasised the fact that an AI system can be considered
as unfair with respect to the ethical principles of one of these documents but fair for another
one, which can be particularly confusing for end-users. In order to ensure the trust of
the users in AI systems and to properly regulate the use of AI, different states or unions
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now define specific laws for the use of AI. For instance, the so-called AI act (proposal for a
regulation of the European Parliament and of the council laying down harmonized rules on
Artificial Intelligence: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%
3A52021PC0206, accessed on 30 October 2023) of the European Commission will require
AI systems sold or developed in the European Union to have proper statistical properties
with regard to potential discrimination which they could engender (see articles 9.7, 10.2,
10.3 and 71.3). It is also worth mentioning that the article 13.1 of this proposal suggests that
the decisions of the AI systems that are likely to pose high risks to fundamental rights and
safety (see Annex III of the proposal) may be sufficiently transparent to enable users to interpret
the system’s output. Making sure that each individual decision can be interpreted by the user
is a central question addressed by explainable AI, and is the key to understanding whether a
specific decision is made by only exploiting pertinent and insensitive information in the
input data, or not. As a direct consequence, the user can assess whether an individual
decision is fair or not. The sanctions for non-respect of these rules should have a deterrent
effect in the E.U. as they can be as high as EUR 30 million or 6% of a company annual
turnover (see Article 71).

These regulations directly involve various applications of image analysis as they might
fall into the category of high-risks systems such as medical imaging [57–60] or even facial
recognition algorithms [61–63] as they might relate to people in daily life.

3. Measuring Algorithmic Biases

A wide variety of algorithmic bias, or fairness, metrics have been introduced to
quantify unfair decisions, as presented in [28,64–66] and references therein. They quantify
different levels of relationships between a given sensitive variable A and outputs of the
algorithm. Yet, as fairness is a polysemous word, there exist multiple metrics, each one
focusing on a particular definition of bias and, unfortunately, all of them are not necessarily
compatible with each other, as recently discussed in [27,67]. Therefore, it is essential for
someone evaluating the bias of a model to understand what the algorithmic bias metrics
really capture. They conform to different definitions of biases given in the previous section
and can be decomposed as follows.
- Statistical Parity One of the most standard measures of algorithmic bias is the so-called

Statistical Parity. Balanced decisions in the sense of Statistical Parity are then reached
when the model outputs are not influenced by the sensitive variable value—i.e.,
L(Ŷ|A) = L(Ŷ). For a binary decision, it is often quantified using the Disparate
Impact (DI) metric. Introduced in the US legislation in 1971 (https://www.govinfo.gov/
content/pkg/CFR-2017-title29-vol4/xml/CFR-2017-title29-vol4-part1607.xml, accessed
on 30 October 2023) it measures how the outcome of the algorithm Ŷ = fθ(X) depends
on A.
It is computed for a binary decision as

DI( f ) =
P( fθ(X) = 1|A = 0)
P( fθ(X) = 1|A = 1)

,

where A = 0 represents the group which may be discriminated (also called minority
group) with respect to the algorithm. Thus, the smaller the value, the stronger the
discrimination against the minority group; while a DI( f ) = 1 score means that Statistical
Parity is reached. A threshold τ0 = 0.8 is commonly used to judge whether the
discrimination level of an algorithm is acceptable [68–70].

- Equal performance metrics family
Taking into account the input observations X or the prediction errors can be more
proper in various applications than imposing the same decisions for all. To address this,
the notions of equal performance, status-quo preserving, or error parity measure whether a
model is equally accurate for individuals in the sensitive and non-sensitive groups. As
discussed in [27], it is often measured by using three common metrics: equal sensitivity
or equal opportunity [64], equal sensitivity and specificity or equalised odds, and equal positive

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://www.govinfo.gov/content/pkg/CFR-2017-title29-vol4/xml/CFR-2017-title29-vol4-part1607.xml
https://www.govinfo.gov/content/pkg/CFR-2017-title29-vol4/xml/CFR-2017-title29-vol4-part1607.xml
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predictive value or predictive parity [71]. In the case of a binary decision, common metrics
usually compute the difference between True Positive Rate and/or False Positive Rate
for majority and minority groups. Therefore, algorithmically unbiased decisions in the
sense of equal performance are reached when this difference is zero. Specifically, an equal
opportunity metric is given by

|P(Ŷ = 1|A = 0, Y = 1)− P(Ŷ = 1|A = 1, Y = 1)| ,

while an equality of odds metric is provided by

|P(Ŷ = 1|A = 0, Y = 0)− P(Ŷ = 1|A = 1, Y = 0)|.

Note finally that, predictive parity refers to Equal accuracy (or error) in the two groups
also corresponds to refered by.

- Calibration Previous notions can be written using the notion of calibration in fair
machine learning. When the algorithm’s decision is based on a score s(X), as in [72], a
calibration metric is defined as

|P(Y = 1|A = 0, s(X))− P(Y = 1|A = 1, s(X))|.

Calibration measures the proportion of individuals that experience a situation compared
to the proportion of individuals forecast to experience this outcome. It is a measure
of efficiency of the algorithm and of the validity of its outcome. Yet, studying the
difference between the groups enables one to point out a difference in behaviours that
would let the user trust the outcome of an algorithm less for one group than another.
This definition extends in this sense previous notions to the multivalued settings as
pointed in [73]. Calibration is similar to the definition of fairness using quantiles, as
shown in in [74]. Note that previous definitions can also easily be extended to the case
where the variables are not binary but discrete.

- Advanced metrics First, for algorithms with continuous values, previous metrics can be
understood as quantification of the variability of a mean characteristic of the algorithm,
with respect to the sensitive value. So natural metrics as in [75,76] are given by

VarE[ fθ(X)|A] or VarE[`( fθ(X), Y)|A]

Note that, as pointed out in [75], these two metrics are not normalised Sobol indices.
Hence, sensitivity analysis metrics can also be used to measure bias of algorithmic
decisions. As a natural extension, sensitivity analysis tools provide new ways to
describe the dependency relationships between a well-chosen function of the algorithm,
focusing on particular features of the algorithm. They are well-adapted to studying
bias in image analysis.
Previous measures focus on computing a measure of dependency. Yet, many authors
used different ways to compute covariance-like operators, directly as in [69], or based
on information theory [77], or using more advanced notions of covariance based on
embedding, possibly with kernels. We refer, for instance, to [66] for a review. Each
method chooses a measure of dependency and computes an algorithmic bias measure
of either the outcome of the algorithmic model or its residuals (or any appropriate
transformation) with the sensitive parameter.
Other measures of algorithmic biases do not focus on the mean behaviour of the algorithm,
but other properties that may be the quantiles or the whole distribution. Hence, algorithmic
bias measures can compare the distance between the conditional distribution for two
different values of the sensitive attribute a 6= a′ of either the decisions

d(L( fθ(X)|A = a),L( fθ(X)|A = a′))
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or their loss
d(L(`( fθ(X), Y)|A = a),L(`( fθ(X), Y)|A = a′)).

Different distances between probability distributions can be used. We refer for instance
to [78] and references therein, where Monge–Kantorovich distance (or Wasserstein
distance) is used. Embedding of distributions using kernels can also be used, as
pointed out in [79], together with well adapted notions of dependency in this setting.

4. Detecting Algorithmic Biases

We now present different methods to detect unknown bias, or more precisely, algorithmic
bias with respect to sensitive variables that have to be estimated. In essence, there are
two veins in the bias detection literature: testing for the presence of a suspected bias in
the model, and the discovery of sources of bias without supervision. For the former, the
emphasis will be put on the structure of the trained model, whereas notions of statistical and
counterfactual fairness—with the help of generative models—and explainability techniques
will be the centre point for the latter. Although fairly new and not yet popularised
in the algorithmic bias literature, the topic of bias detection is of particular interest for
image-based applications, as discussed in Sections 2.2 and 2.3. The combinatorial problem
itself of identifying groups of samples without any domain knowledge or prior about what
constitutes an informative representation for a specific use-case is ill-posed. This is why
the techniques presented below leverage semantic information in some way or another to
identify potentially discriminated groups.

4.1. With Suspected Sensitive Variables

In [80], Serna et al. proposed to study the values of the activations in CNNs for a
facial gender recognition task, and discover that when the models have learned a biased
representation, the activations in its filters are not as high when dealing with samples from
the discriminated groups. In [81], the same group of researchers extended this work by
training different groups of NNs, and then used other models to predict the presence of
bias from their weights without looking at their inferences, proving that bias is encoded
in the model’s weights. Other works also interestingly investigate the predictor’s hidden
activations to detect subgroups [82–85].

In [86], Denton et al. used generated counterfactual examples to discover and assess
unknown biases. By supposing that a generative model was available, they generated
counterfactual examples given a set of interpretable attributes, and tested the performance
of a trained classifier. A significant drop in the classifier performance was then considered
as a good indicator that a specific attribute used to generate the counterfactual example was
highly influential, and could therefore reveal an unintended bias. In much the same manner,
Li et al. [87] proposed to discover unknown biased factors in a classifier by generating factor
traversals with generative models and a special hyperplane optimisation. In this method, the
classifier and the generative models have their weights fixed, i.e., they are already trained, so
only the hyperplane is optimised thanks to the model outputs. Thus, images traversals are
generated with more and more relevance with respect to orthogonal dimensions and largest
variations on the classification scores. We can also highlight the work of Paul et al. [88],
which expands the scope of algorithmic bias from focusing solely on demographic factors to
more general factors by using generative models that discover them.

By exploiting the widely known GradCAM method [20], Tong and Kagal [89] recover
the image classification model properties when making a decision. Their intuition is that
the results could expose biases learned by the model. For example, in a dataset where
most of the doctors are males, GradCAM exposed the fact that the model’s predictions
focused mainly on the facial features of the person, while clothes and accessories are
highlighted for female doctors. The same conclusions were drawn for basketball players,
where GradCAM explained that the predictions were mainly based on the players’ faces
and not on basketball-related features. Although the predictions were often accurate,
explanations made indeed clear that they were based on players’ faces because the training
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dataset contained a lot of female volleyball players, and facial features help a lot to predict
a person gender. Finally, Schaaf et al. [90] combined attribution methods with ground truth
masks to help detect biases.

4.2. Without Suspected Sensitive Variables

It is important to note that the models were trained with labels in all above-mentioned
methods, but biases might still be learned when using self-supervised training schemes.
In [91], Sirotkin et al. looked for the presence of bias in representations learned by using
state-of-the-art self-supervised learning (SSL) procedures. In particular, they pre-trained
models on ImageNet [3] using a variety of SSL techniques and showed that there was a
correlation between the type of model and the number of incorporated biases. Thus, they
demonstrated that biases can be learned even without supervision. In a Meta-Learning
fashion, [92] also proposed to learn how to split a dataset such that predictors learned on a
training split which cannot generalise on the test split. Note, finally, that [93] proposed to
use Human interventions to detect unknown biases in complex and high-dimensional data.
Their strategy first consists in using influence functions to determine the importance of
each training observation on a trained model. This allows the detection of the observations
that are maximally important to the model, and without whom the final neural network
would be significantly different. Then, a Human can interpret whether a significant portion
of these observations present a feature that can be assimilated to a sensitive variable.

5. Algorithmic Bias Mitigation

Mitigating algorithmic biases in machine learning-based prediction algorithms has
been studied in numerous applications, most of them dealing with societal problems,
where the bias induces a potential harm for the populations. Hence, mitigating the bias
consists in obtaining algorithms which perform similarly for all groups in a population.
Although similar in some cases to the notions of fairness that are typically used in social
applications—e.g., captioning [94] or predictive policy [95]—, algorithmic bias mitigation
can have slightly different goals in industrial applications.

• Firstly, it is critical to obtain robust algorithms that generalise to the test domain
with a certified level of performance, and that do not depend on specific working
conditions or types of sensors to work as intended. The property which is expected is
the robustness of the algorithm.

• Secondly, the second goal is to learn representations independent of non-informative
variables that can correlate with actual predictive information and play the role of
confounding variables. The link between algorithmic biases and these representations
constitutes an open challenge. In many cases, representations are affected by spurious
correlations between subjects and backgrounds (Waterbirds, Benchmarking Attribution
Methods), or gender and occupation (Athletes and health professionals, political
person) that influence too much the selection of the features, and hence, the algorithmic
decision. One way to study it is through disentangled representations [55], i.e., by
isolating each factor of variation into a specific dimension of the latent space, it is
possible to ensure the independence with respect to sensitive variables.

Once a source of undesirable bias has been identified, a mitigation scheme should be
implemented to avoid unreliable model behaviours in certain regions of the input space. For
example, it has been shown that when generating explanations on discriminated groups, the
standard post-hoc explainability methods score significantly lower than when applied to
samples belonging to non-discriminated groups [96,97]. This means that balanced decisions
can be a requisite to ensure that all the properties verified by our models on majority
groups are still valid for minority groups. This is particularly pertinent in industrial
and safety-critical applications, where some properties can be required for the system’s
certification. In this case, new notions of algorithmic biases can be derived from these
criteria, leading to new definitions of statistical equality implying that the properties are
satisfied for all subsamples of the data.
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Bias correction techniques can be divided into two categories, depending on whether
they are intended to be applied to problems in which the bias is already known or not.
When this is the case, state-of-the-art methods mostly work by erasing the information
related to the sensitive variable present in the latent space, or re-sampling/re-weighting
the training dataset, or generating samples via generative models. Through the former,
the latent space is split into predictive and sensitive information, and only the first part is
used to learn how to predict. In contrast, by working with the training samples, the latter
attempts to give more importance to under-represented groups during the training phase.

All these methods require access to the group’s labels at train time, a condition which
might not be met on certain use-cases. It is also interesting to note that existing group labels
may alternatively not be informative of actual harmful biases. Different methods were
then proposed to treat these more complex cases. They can be based on either proposing
potential confounding variables [98], or on approaches from the field of Distributionally
Robust Optimisation (DRO) [99]. In particular, this latter family of methods has been a focal
point for the emerging field of subpopulation shift, or group shift, whereby the training
distribution can be subdivided into multiple groups (often times without labels) and the
test distribution becomes the one of the group on which the model performs the worst.

When group labels are available at training time, the problem is well-posed and the
algorithmic bias that the studied models have learned can be erased. For instance, in [100],
Zhang et al. proposed to employ an adversarial network to modify the latent space of the
classifier to optimise a given algorithmic bias metric. Similarly, Kim et al. [101] used an
adversary to minimise the mutual information between the latent space and the sensitive
variable. Grari et al. [102] also adversarially optimised the Hirschfeld-Gebelein-Rényi (HGR)
maximal correlation coefficient. Penalty terms were also used in [69,78,103] to ensure a good
balance between model accuracy and fairness properties with respect to a sensitive variable.
In a somewhat different path, other techniques piggyback on the fact that disentangled
representations can be more fair than standard ones, as the important information for the
prediction is separated from the sensitive variable [55]. In particular, this has been applied
in [104,105] to split the latent space into two groups through the use of specific losses, with
the task information on one side and the sensitive variable on the other.

It is also possible to encourage models to learn fair representations by only using the data.
Among the simplest methods, a reweighting factor can be added to the loss to emphasise the
discriminated samples [106]. An alternative is to resample the training dataset in different
manners, by undersampling the dominant groups to encourage the model to learn more
general rules [107], by oversampling the discriminated groups [108], by using a technique
similar to MixUp [109] to interpolate between dominant and minority groups [110], or by
generating more samples of the discriminated groups through generative models [111–113].

When the sensitive variable is not available, previous methods can not be used. The
literature dealing with unknown bias is scarce, yet some solutions can be found in the machine
learning literature. As in previous sections, mitigation of unknown bias amounts to correct the
data or the algorithm from features that influence the algorithm. Yet, from feature detection
to bias mitigation, there is a gap that requires some additional knowledge that allows us to
decide whether a particular direction corresponds to a bias that has to be avoided or not.

When humans are in the loop, or if the data can be described using logical variables,
bias mitigation can be handled by using orthogonality constraints that prevent dependencies
as in [114]. When some causal information is available such as a causal graph for instance,
Variational Auto-Encoders can be trained to infer some proxy for the sensitive variable as
in [115]. The information required is that some part of the variable are independent of the
sensitive variable, while the other part may be highly correlated.

Then, when the groups are unknown, but the training data are known to not be
completely unbiased, there are still different approaches to help improve the worst-case
performance. Namely, it is possible to propose group labels without supervision through
clustering, and then apply a reweighting scheme [98].
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In all previous settings, the bias implies that the algorithm generalises poorly to new
datasets. In particular, this is the case when variations of the sensitive variable produce
changes in the data distributions. Hence, algorithms that are able to achieve a good level of
performance for different testing distributions are, by nature, able to handle this type of
bias. Distribution Robustness of the algorithm can induce algorithmically robust decisions
in this sense. The DRO framework corresponds to solving the minimax problem, i.e.,

min
θ∈Θ

max
Q∈Q

EQ[`(Y, fθ(X)]

where Q is a set of distributions close to the empirical training distribution Pn that we call
the uncertainty set. The choice of this Q establishes how the training distribution can be
perturbed, with most techniques choosing all the distributions such that an
f-divergence [99,116] or a Wasserstein distance [117] is smaller than a certain threshold, or
by modelling it with a generative network [118]. If some causal information is available and
if, so-called interventions on the sensitive variable, can be modelled as distributional shifts
on the distributions, hence distributional robust models with respect to such shifts will
be protected from the bias induced by this variable. Therefore, distributional robustness
extends stability requirements to achieve fairness by controlling the output of the algorithm
in the worst distributional case around the observed empirical distribution.

6. A Generic Pipeline to Detect and to Treat Unsuspected Sensitive Variables

We have given, in the previous sections, an overview of the tools to quantify, detect
and mitigate undesired algorithmic biases in machine learning, with a particular focus on
complex and high-dimensional data such as images. As described in the introduction, we
believe that a widely unexplored issue with strong industrial implication is the detection
of unsuspected sensitive variables with high-dimensional data. We then present in this
section a novel Human-in-the-loop strategy based on Section 4.2 (https://github.com/deel-
ai/influenciae, accessed on 30 October 2023) to address this issue. Our pipeline is designed
for machine learning models that are trained using a gradient-descent approach (stochastic
or not), which is the case for neural network models. It is developed in Algorithm 1, and
illustrated in Section 7.

Algorithm 1 Pipeline to detect unsuspected sensitive variables and to mitigate their biases

Require: A trained machine learning model fθ .
Require: The dataset {xi, yi}i=1,...,n used to train fθ .

1: Use [93] to quantify the influence γi > 0 of each observation {xi, yi} on the decisions of fθ . Since
fθ is already trained, a high value of γi indicates that the decision rules of fθ would be particularly
impacted by (xi, yi) with more training iterations, meaning that the relation between xi and yi is
potentially poorly captured by fθ (see Section 4.2).

2: Select the most influential observations, i.e., those with the highest γi values. The amount of
selected observations must be sufficiently small, so that a human can observe all of them. It also
has to be sufficiently large to detect whether a significant amount of these observations present
similar features.

3: A human then observes the selected observations to define whether a significant amount of them
present a common feature.

4: If a common feature is detected in the selected observations, then a sensitive variable A can be
defined. Note that this requires to quantify this feature from the input observations xi, which will
again be made by using a human intervention.

5: Use the bias metrics of Section 3 with the sensitive variable A to quantify to which extent this
sensitive variable is related to an undesired algorithmic bias.

6: If it turns out that fθ is significantly biased with respect to A, the persons in charge of the model
optimisation can try understanding the causes of this bias, as explained in Section 2.2, in order to
later properly optimise fθ .

7: Alternatively to the previous step, a bias mitigation strategy of Section 5, with A as a sensitive
variable, can be directly used.

https://github.com/deel-ai/influenciae
https://github.com/deel-ai/influenciae
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7. A Use-Case for EuroSAT

We now illustrate the notions and concepts of algorithmic bias that can be encountered
in industrial applications on the RGB version of the EuroSAT dataset (https://madm.dfki.
de/downloads, accessed on 30 October 2023) [5]. It contains 27000 remote sensing images
of 64× 64 pixels with a ground sampling distance of 10 m. The RGB channels were also
reconstructed based on the original 13-band Sentinel-2 satellite images. Each image has a
label indicating the kind of land it covers, as shown in Figure 2 (left).

Industrial Buildings Residencial Buildings Annual Crop Permanent Crop River

ForestPastureHighwayHerbaceous VegetationSea & Lake Bluish patches

Figure 2. (Left) Images out of the 10 classes of the EuroSAT dataset. Illustration taken from [5].
(Right) Images of the EuroSAT dataset for which the reconstruction in the RGB colour space produced
the blue-veil effect.

7.1. The Blue Veil Effect in the EuroSAT Dataset

The blue-veil effect is caused by uncommon atmospheric conditions when acquiring
Sentinel-2 images on the original 13 spectral bands, and becomes particularly noticeable
when they are transformed into the visible spectrum. In essence, the picture acquires a
blueish hue, as depicted in Figure 2 (right), that can trick classification models into thinking
that it contains a mass of water. About 3% of the dataset is corrupted by what we call the
blue-veil effect. Importantly, this blue-veil effect will provide us below a typical example of
algorithmic bias with an unknown sensitive variable in high-dimensional data. As we will
see, blue-veil images indeed tend to be harder to classify than other images.

7.2. Detecting Sensitive Variables without Additional Metadata

We explain hereafter how to detect the blue-veil effect as a potential source of bias.
The first step is to estimate the importance of each observation of the training dataset for a
pre-trained model. This information will then be employed by clustering algorithms on
specific image representations in order to automatically find the discriminated group.

We opted for the technique of [93], where first order approximations of NN influence
functions were used to determine the importance of each training observation in the trained
model. With this objective in mind, a simple and generic 4-layer CNN was trained until
convergence. Then, we observed that among the 25 most influential images, 7 of them
were blue-veiled images, although such images only represent 3% of the whole dataset.
This suggests that training the classifier on blue-veil images is a complex task, or at least
that the image features used to classify these images seem to be different from those of the
other images.

Since the blue-veil pattern has been semi-automatically identified on several images,
we can change the image representation so that a clustering algorithm will straightforwardly
find and isolate all the images with this pattern in the training and test sets. For the
blue-veiled images, we simply transform the RGB (Red, Green, Blue) colour space into an
HSV (Hue, Saturation, Value) space, where the blue-veil images can be characterised by
dominant blue colours in the Value channel and reasonably luminous colours in the Hue
channel. By using a spectral clustering algorithm on HSV images, we distinguish three
image clusters, as shown Figure 3. The first cluster contains normal-looking images, the

https://madm.dfki.de/downloads
https://madm.dfki.de/downloads
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second one mostly has large and dark rivers, and a last one represents the blue-veiled
images we are looking for.

Cluster 0 Cluster 1 Cluster 2
Nb. train im.: 3589 
Nb. test im.: 1169
Error in train: 1%
Error in test: 4%

Nb. train im.: 38 
Nb. test im.: 18
Error in train: 0%
Error in test: 0%

Nb. train im.: 123 
Nb. test im.: 63
Error in train: 2%
Error in test: 17%

... ... ...

Figure 3. Detection of potentially discriminated groups and confirmation of blue-veiled images using
a clustering and group-wise performance evaluation methodology. The generalisation properties
of a ResNet18 classifier in cluster 2, i.e., for blue-veil images, are particularly lower than in the two
other clusters.

7.3. Measuring the Effect of the Sensitive Variable

Let us check different models’ performances for blue-veiled images and other images.
A simple 4-layer CNN, a VGG-16 model, and a ResNet18 model were compared after
being trained for 50 epochs. A total of 10 runs per configuration were used to measure
the models’ and learning algorithm’s stability. We also focused on the binary classification
between Rivers and Highways, which correspond to the two worst performing classes
in the 10 class setting. This additionally forced us to train the classifiers with a more
limited amount of blue-veiled images, making the problem close to what we can encounter
in many industrial applications. The training and test sets indeed contained 3750 and
1250 images, respectively, where only 123 and 63 images were blueish. As shown in
Figures 3 and 4a, we can clearly observe that the error rate is considerably higher on
blue-veiled images than on other images, thus demonstrating that an undesirable algorithmic
bias was learned in the sense of the equality of errors.
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(a) Comparision of different CNN architectures (b) Different treatments on the Resnet model

Resnet
Convergence
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Figure 4. Box-plots of the average errors obtained on the test set with the EuroSat dataset using
different models and different training strategies. For each strategy, the two boxplots distinguish the
average errors on blue-veiled images (green boxplots) and other images (blue boxplots): (a) Baseline
results obtained on different neural network architectures; (b) Effect of different treatments on the
average accuracy of the Resnet architecture.



Algorithms 2023, 16, 510 15 of 21

7.4. Bias Mitigation

Several strategies to mitigate the undesired bias were also tested. They all used the
Resnet18 architecture, as it was the most accurate on blue-veil images (see Figure 4a). Note
that we trained the models for 50 epochs by default, just like in the previous subsection.
The initial parameters of the neural networks were also randomly drawn, except in two
cases that will be mentioned.

We first tested the re-weighting scheme proposed in [106]. The ResNet18 architecture
was trained using a weighted loss, where the weights were chosen so that the disparate
impact was equal to 1 (reweighted strategy). We also loaded the pre-trained ResNet18
architecture of Torchvision (https://pytorch.org/vision/stable/index.html, accessed on 30
October 2023) and trained its last layer on our EuroSAT data to use the generic transformed
image representation of this pre-trained network. It is important to mention that a very large
and generic ImageNet database was used for pre-training (Pre-trained, No fine-tuning strategy).
We alternatively fine-tuned all layers of this pre-trained network to simultaneously optimise
the transformed image representation and the prediction based on this representation, i.e.,
the parts 1 and 2 of the neural network in Figure 1 (Pre-trained, Fine-tuning strategy). It
is important to note that we only trained for 5 epochs instead of 50 when fine-tuning the
pre-trained neural networks in order to avoid overfitting. Finally, we randomly drew the
initial state of the neural network and trained all layers, but thoroughly distinguished
the convergence for all images and for the group of blue-veiled images only. In this case,
we stopped training the ResNet18 parameters when an over-fitting phenomenon started
being observed in the blue-veiled images (Convergence aware strategy). Results are shown
in Figure 4b. A typical detailed convergence of the Convergence aware strategy is also shown
in Figure 5.

Finally, we can discuss the results. We can first notice that the re-weighting technique
of [106] had little effect on the results. It was indeed designed to correct bias that manifests
in the form of disparate impact, so it did not reduce the error rate gap between groups. The
debiasing method must then be specifically chosen to target the bias through the metric
with which it was measured.

Using the pre-trained network of Torchvision had a disastrous effect when only optimising
the last neural network layer, but was particularly efficient when using fine-tuning, i.e.,
when simultaneously optimising the transformation of the data representation and the final
decision rules. Using a relevant initial state, when available, and using fine-tuning then
appears as a very good strategy here. This strategy is often denoted by transfer learning in
the machine learning literature, and it is widely used when the amount of available data
to train a complex neural network is limited. Interestingly, similar results were obtained
with a random initial state, when stopping the training procedure at an iteration where
the trained neural network had good generalisation properties on the blue-veiled images.
Understanding this result requires looking closely at the convergence curves, as illustrated
Figure 5 on a typical run.

In Figure 5, we compare the convergence in the whole train and test sets, as well as
the blue-veil images only. We can then distinguish five phases in the convergence process.
All curves start decreasing in phase A. It can only be remarked that the loss on the blue-veil
images slightly increases during the 4 first epochs before decreasing, as in the average trend.
We believe that this is due to a minor confounding effect. In phase B, i.e., between epochs
12 and 18, the training algorithm has converged when observed on all training images but
not yet on blue-veil images. This is due to the fact that the blue-veil images only represent
a small fraction of the training set. Note that if only measuring the convergence on the
whole training set, it would be tempting to stop the training process at the beginning of
phase B, which would obviously lead to a different treatment of the blue-veiled images
and other images (see δ loss 1 in Figure 5). More interestingly for us, the convergence
curves are stable on the training set in phase C, but it regularly decreases on the test set.
At the end of phase C, the convergence curve is stable on the whole test set, and it is
common practice to stop the training process there (early stopping principle). However, it

https://pytorch.org/vision/stable/index.html
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is important to remark that the generalisation properties of the trained neural network are
still much poorer for blue-veiled images than other images (see δ loss 2 in Figure 5). This
actually explains in Figure 4a the different accuracies observed for the blue-veiled images
with respect to the other images. We indeed stopped the convergence after 50 epochs
there. Although noisy, the convergence curve obtained on blue-veil test images slowly
decreases in phase D until reaching an optimal value at epoch 145 (see δ loss 3 in Figure 5).
Finally, the training algorithm starts over-fitting the blue-veiled images in phase E, so the
training process should be stopped at its very beginning. It is then essential to point out
that obtaining reasonably good generalisation properties on blue-veiled images required
about 3 times more epochs than what is made using what is commonly considered to be
the good practices, and about 12 times more epochs than what would be made using a
naive approach.

Figure 5. Detailed convergence of the BCE-loss on all data and on blue-veil images only. Results
obtained on the training set (left) and on the test set (right) are represented. Note that the convergence
curves obtained on the training set are only represented for the first 40 epochs, and those obtained
on the test set are represented on 250 epochs. Five phases A to E are distinguished to discuss the
convergence behaviour.

8. Conclusions

We have addressed in this paper the issue of algorithmic bias detection and mitigation
in machine learning, with a particular focus on complex and high-dimensional data. While,
in societal applications, the common sense or new regulations can help the data scientists
detecting the sensitive variables related to algorithmic biases, this task can be much more
complex in industrial application. The sensitive variables can indeed be unsuspected in this
case, as illustrated in our remote sensing use-case, where some training images presented a
reconstruction artefact (the blue-veil effect) making the predictions inaccurate.

After stating the various causes of algorithmic bias in machine learning and reviewing
the main strategies for measuring, detecting and correcting bias, we then developed in
Section 6 a new pipeline to deal with the problem of unknown bias on unsuspected
sensitive variables. Interestingly, the application of our pipeline to the use-case of Section 7
additionally pushed us to understand what was the source of the bias on the blue-veil
images. In this case, this was due to an insufficient algorithm convergence on this subgroup
of images, probably because they were particularly different to other images. We then
reframed the problem as an optimizing problem, where we carefully monitored the learning
process in order to learn without creating algorithmic bias. This improved learning
procedure was, however, only made possible because the unsuspected sensitive variable
was identified using our Human-in-the-loop strategy.

To go further than our study, we also believe that an in-depth work is necessary before
deploying an AI-based solution, in particular when it will be used for sensitive applications.
In that sense, we should see the different regulations arising as an opportunity to gain
knowledge on data, deep learning, and optimisation instead of a brake on innovation.
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Future work will deal with the extension of our work to Large Language Models,
where the possible amount of sensitive variables to detect can be larger than when using
conventional industrial training sets. In a sense, this work will require an additional level of
abstraction to efficiently use human intelligence in order to robustify the model decisions.
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