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Abstract: Bottlenecks and imbalance in parallel programs can significantly affect performance of
parallel execution. Finding these bottlenecks is a key issue in performance analysis of MPI programs
especially on a large scale. One of the ways to discover bottlenecks is to analyze the critical path of
the parallel program: the longest execution path in the program activity graph. There are a number
of methods of finding the critical path; however, most of them suffer a performance drop when
scaled. In this paper, we analyze several methods of critical path finding based on classical Dijkstra
and Delta-stepping algorithms along with the proposed algorithm based on topological sorting.
Corresponding algorithms for each approach are presented including additional enhancements for
increasing performance. The implementation of the algorithms and resulting performance for several
benchmark applications (NAS Parallel Benchmarks, CP2K, OpenFOAM, LAMMPS, and MiniFE) are
analyzed and discussed.

Keywords: parallel program; MPI; performance; bottleneck; imbalance; critical path; program activity
graph; topological sorting; Dijkstra; Delta-stepping

1. Introduction

Despite the fact that parallel programming technologies have been studied and im-
proved for many years finding a bottleneck in a parallel MPI program is still difficult. MPI
(Message Passing Interface) [1] offers a parallel programming model that allows for the
sending of messages between any two processes and also conducts collective communica-
tions between an arbitrary number of processes; however, the notion of a task is implicit
in MPI—any code between subsequent MPI calls is considered to be a task. There are
many possible implementations of point-to-point and collective communication. A simple
MPI_Send call can copy the data in the internal buffer and return immediately or block until
the user-supplied data are sent. In MPI_Reduce call, all parallel processes may not wait
for each other but continue execution without blocking after their portion of the data has
been processed. As a result, different implementations may produce different information
dependencies between the tasks. It is not easy to use such dependencies to find a bottleneck,
and we have to resort to a «trial-and-error» approach instead.

One approach that uses explicit dependencies between the tasks (and suffers from
the aforementioned problems) is based on critical path finding [2]. We represent parallel
program execution as a graph in which vertices represent time points and edges represent
either the computation between subsequent MPI calls or communication inside MPI calls.
Then, we find a critical path between the first and the last vertex in this graph. Reducing
the time of any operation (computation or communication) that has the corresponding
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edge on the critical path reduces the total execution time of the program, i.e., the critical
path represents all possible bottlenecks in the program.

In order for this approach to be successful, we have to ensure that the graph is acyclic.
This is especially difficult when a program tries to do collective operation using point-
to-point operations: e.g., each process sends data to the right neighbor and receives data
from the left neighbor simultaneously. Graph cycles make the graph unsuitable for parallel
critical path-finding algorithms and slow down sequential ones. The most robust way of
implementing this approach is to build it in the MPI library itself; then, we do not have to
guess how each MPI call is actually implemented.

The aforementioned complexities led us to believe that there should be a more robust
approach that uses implicit dependencies between the tasks. This approach is based on
topological sorting: sorting the vertices by the lengths of their longest incoming paths
produces a topological ordering. Usually topological sorting is used to determine the
execution order of dependent tasks. Here, we have already executed all of the tasks, and
now we want to find the critical path. To find it, we sort every computation edge by the
start time, then find groups of overlapping edges, and, in each group, choose the largest
edge. In this approach, communication edges are redundant: we can replace these with an
edge that connects the largest computation edges from the previous and the next group. If
we remove communication edges, then our graph will not have cycles. In fact, the graph
will have the form of n lists of computation edges: one list for each process. This means
that the communication is implicit, we infer task dependencies only based on the starting
and ending times of the task.

Why is topological sorting able to find bottlenecks when we do not consider com-
munication between the processes? This is possible for programs that adhere to the Bulk
Synchronous Parallelism (BSP) model [3]. This model assumes that the program consists of
sequential supersteps that are internally parallel. Each superstep consists of a parallel com-
putation stage and global synchronization stage during which the processes exchange and
combine the results of the computations (Figure 1). In particular, in BSP, a parallel program
executes as a series of parallel supersteps separated by barrier synchronizations on a set
of processors. Every superstep consists of three sequential steps: (1) a local computation
phase, where each process can carry out computation using local data values and send
communication requests; (2) a global communication phase, where data are exchanged
between processes in accordance with the requests made during the local computation
phase; and (3) a barrier synchronization, which waits for all data transfers to be finished and
makes the received data available for use in the next superstep. Most iterative programs
adhere to this model: each iteration of such a program is a superstep. For topological
sorting, this means that computations within each superstep overlap, and we can easily
group these overlapping computation edges to find the largest one.

Figure 1. BSP model.

Even if the program does not adhere to the BSP model (i.e., computations overlap
communication) topological sorting still works but shows the actual execution order of the
tasks, not the order in which they are written in the source code and not the order in which
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they are supposed to be executed considering MPI implementation. This is enough to at
least obtain a hint about where the the bottlenecks are.

To summarize, there are two approaches to finding bottlenecks in the MPI program.
One of them is based on finding the critical path in the graph, which represents task
dependencies inferred from the program and the MPI calls it makes. The graph must not
have cycles, and having the graph without cycles is only guaranteed if we implement this
approach directly in the MPI library. Another approach is based on topological sorting,
i.e., finding groups of overlapping computations and choosing the longest one inside the
group. This approach does not use task dependencies inferred from the program but infers
these dependencies from the actual execution order of the tasks. This approach works for
any program but shows only actual bottlenecks related to computation without analyzing
the communication patterns of the program.

In this paper, we analyze these two approaches. We present the corresponding al-
gorithms for each approach; these are the algorithms for time synchronization that are
essential for obtaining the correct MPI program profile in a real-world scenario. Then, we
present the implementation of both approaches for the OpenMPI library and benchmark
results for several real-world applications. We discuss the advantages and disadvantages
of each approach and implementation and conclude with a few examples of bottlenecks
that we found in real-world programs using one of these approaches.

The following parallel MPI-based benchmarks and software packages were selected
to evaluate the proposed approach: NAS Parallel Benchmarks [4], CP2K [5], LAMMPS [6],
OpenFOAM [7], and MiniFE [8]. These packages are well known in the community and
represent examples of real-world applications often used in practical cases. In particular, the
NAS Parallel Benchmarks are derived from computational fluid dynamics (CFD) applica-
tions and consist of five kernels and three pseudo-applications in the original specification,
later extended with unstructured adaptive meshes, parallel I/O, multi-zone applications,
and computational grids. CP2K represents the domain of quantum chemistry and solid-
state physics with atomistic simulations of solid-state, liquid, molecular, periodic, material,
crystal, and biological systems. LAMMPS is a classical molecular dynamics (MD) code
that models ensembles of particles in a liquid, solid, or gaseous state. It can model atomic,
polymeric, biological, solid-state (metals, ceramics, oxides), granular, coarse-grained, or
macroscopic systems using a variety of interatomic potentials (force fields) and boundary
conditions. It can model 2D or 3D systems with sizes ranging from only a few particles
up to billions. OpenFOAM is an open-source CFD software that has an extensive range
of features to solve anything from complex fluid flows involving chemical reactions, tur-
bulence, and heat transfer to acoustics, solid mechanics, and electromagnetics. MiniFE
is an application for unstructured implicit finite element (FE) codes. It executes all FE
phases: generation, assembly, and analysis. The physical domain is a 3D box simulated
by a hexahedral element. More details on each of the packages and details of benchmark
configuration will follow in Section 6.

The paper is structured as follows: Section 2 gives an overview of methods of critical
path finding and approaches to this in the scope of MPI programs; Section 3 presents an
overview of the proposed approach to collect information about MPI program activity and
build the critical path; Section 4 considers several methods that can be used for critical
path finding based on the Dijkstra algorithm, Delta-stepping, and topological sorting along
with some enhancements to the methods’ implementations; Section 5 describes methods
and implementation for collecting information about the MPI program’s execution; and
Section 6 presents the experimental results of using the proposed critical path-finding
method on a set of popular benchmarks (NAS Parallel Benchmarks, CP2K, OpenFOAM,
LAMMPS, and MiniFE). Section 7 concludes the paper.

2. Related Work

Imbalance within the processes of a parallel MPI program is one of the key performance
issues for the MPI workloads. One of the ways to find the root cause of the imbalance is
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the analysis of the critical path of the MPI program, which is the longest execution path
with an important feature: in general, there should be no wait states on the critical path.
Optimizing program activities on the critical path can result in a reduction in the elapsed
time of the overall workload, whereas optimizing activities that are not on the critical path
might lead to an increase in the overall wait time.

In a general case, the critical path is the longest path between the first and the last
milestones (a milestone is a node in the graph). For directed acyclic graphs, the longest
path in the graph is the shortest path with negative weights. So, to find the critical path, we
can use any algorithm for finding the shortest path in the graph.

Since the 1980s, researchers have developed methods for identifying the critical path
on the execution graph of parallel programs in order to identify the underlying causes
of imbalance problems. A Program Activity Graph (PAG) is a graph that represents the
Program Activity while a program is being executed [9]. Program Activity (PA) is a discrete,
time-bound job that does not overlap with other tasks. The PAs are arranged in a hierarchy;
certain PAs must be accomplished before others may begin. A PAG is a directed, weighted,
acyclic graph whose edges reflect the length of the PAs and whose vertices represent
the start and finish of the PAs connected with certain communication events (such as
send/receive) in a program.

Figure 2 shows an example of a typical PAG segment. The vertical axis shows the
MPI rankings, while the horizontal axis is the time (from left to right). The PAG edges
(Program Activities) are shown by green lines. The yellow lines are the communication
edges that provide a precedence connection between the endings and beginnings of PAs
(graph vertices denoted as v#). If there are many outbound communication edges, only the
shortest one is indicated by a solid yellow line; the others are indicated by dotted yellow
lines and are not regarded as graph edges. The PAG runs from right to left (from the point
at which an application’s execution ends to the point at which it starts).

Figure 2. Part of program activity graph.

The critical path is the graph’s longest path. Using shortest path methods with nega-
tive weights is the traditional method for locating the longest path in the directed acyclic
graph [10]. The Dijkstra method, whose complexity increases linearly with the number
of edges, is a well-known sequential algorithm for solving this issue for directed acyclic
networks. It has several adaptations, including the parallel Delta-stepping method [11]
and its variations [12,13] with acceptable performances on huge clusters and supercom-
puters, or the A* algorithm [14], which operates effectively under specific assumptions.
Another method, which compares well to Delta-stepping in parallel implementation and
demonstrates up to a 46% greater performance in single-thread implementation when
compared to the Dijkstra algorithm, is based on the knowledge of incoming edges for
every vertex [15]. With a parallel version of the longest route algorithm, based on [16], a
first attempt to apply critical path analysis approaches to parallel programs was provided
in [9]. Later, a suggested online algorithm for locating the critical path was proposed [17].
Their strategy is based on the notion that instrumentation messages may be combined with
application messages to reduce analysis overhead by about 5% for synthetic benchmarks.

Critical path analysis began to focus on MPI workloads in the 2000s. An approach for
locating the critical path based on MPI call tracking was presented in [2]. The scalability
of this approach is in doubt because it is reliant on combining local subgraphs into a
single graph with additional critical path analysis carried out on a single node, even if
the authors report just 8% of overhead on 64 nodes (ranks) on a specific scenario. In
order to speed up processing, graph reduction steps are introduced. The authors also
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recommend recording the call stacks for the MPI functions connected to each graph node to
make it easier to identify the underlying reasons for the imbalance. The paper lists several
key constraints, one of which is the inability to manage lengthy applications due to the
potentially enormous amount of data captured on every rank and the need to store local
subgraphs. A method to determine the critical path for MPI workloads similar to [17], with
just 1% overhead per 10,000 MPI calls per rank on synthetic benchmark, has been studied
in [18]. While critical path analysis can show good results in certain situations (such as
synthetic benchmarks, small scale, etc.), the outcomes on real-world workloads were less
encouraging. In [19], researchers described a critical path-based analysis used with the
Scalasca toolkit [20]. In order to exchange the data necessary for the performance analysis
at each recorded synchronization point using a communication operation similar to the one
used by the program originally, their method is based on recording all MPI calls and then
replaying pertinent calls in both the backward and forward directions. The report only
mentions one benchmark result, which results in a 148% increase in the overall critical route
analysis overhead. A backward playback could potentially result in stability problems and
hangs. A method for an automatic search of the optimization suggestions developed on
top of GASPI [21] applications with the help of a critical path analysis of the task graph
was presented in [22]. The extended task graph is backward traversed to determine the
critical path, and the parallel version of the critical path analysis algorithm is not taken
into account. It is assumed that the entire graph is present on a single node, but this is
probably the first method in which memory access analysis and critical path data have
been integrated. The concept of critical-path candidates (a collection of paths that could
potentially make up the critical path) was introduced in [23] by using critical path analysis
for performance modeling. However, to perform precise microarchitecture-independent
modeling, instruction, and communication counts are employed instead of execution time
as the key parameter for critical path building. The significance of critical path for the
effective performance analysis of real-world HPC workloads is highlighted in one of the
most recent papers [24]. To describe dispersed workloads, a new metric referred to as
“Workflow Critical Path” is created. The technique, suggested in [13], has been used to
create a cloud-based infrastructure for critical path analysis; however, its implementation’s
performance has not been fully analyzed.

In a recent paper [25], the authors propose a highly scalable MPI call replay-based
solution for constructing the critical path with less than 5% of the collection overhead and
less than 5% of the application’s elapsed time spent on post-processing independently on
the number of ranks. The approach has been tested on various real-world workloads and
stays within performance targets even on a relatively high scale.

Despite the fact that the longest path algorithm is similar to that for the shortest path,
there are specialized algorithms for the longest path:

• The parallel algorithm for undirected weighted graphs [26];
• The heuristic algorithm that uses pseudo-topological order [27];
• The genetic algorithm [28].

Before computing the critical path of the parallel MPI program, we have to record
all MPI calls. The standard MPI distinguishes between point-to-point and collective
calls and blocking and non-blocking calls. Each of the four combinations needs unique
handling [29–32] when the records are read from the log and processed after the program
ends. For example, for collective calls, we do not know the exact implementation of these
calls, and we have to use some mathematical model to analyze these calls and compute the
imbalance ratio.

When converting the log of MPI calls into the graph, we can remove some edges based
on the logic of the calls. In [2], the following rules are used:

• The critical path cannot contain program edges leading to receive nodes that incur a
blocking wait time.

• The critical path cannot contain communication edges, which do not lead to blocking
wait times.
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Applying these rules helps reduce the graph size and speeds up the critical path finding.

3. Approach Overview

Considering the analysis that was conducted in the previous section, we propose a
high-level overview of the implementation of the MPI critical path-finding method which
consists of the following stages:

1. Synchronize timestamps of all MPI processes.

• We use a monotonic clock to save timestamps and synchronize clocks using
MPI_Allreduce at the start of the program (in MPI_init).

2. Log relevant MPI operations with relevant arguments and start–end timestamps. Link
local operations into a linear graph.

• We log every MPI call that involves process communication (e.g., MPI_Send,
MPI_Recv, MPI_Reduce, MPI_Broadcast, etc.) using the MPI profiling interface.

• For each MPI call, we log the start timestamp, end timestamp, function name,
and function arguments (except user data).

• Each MPI process maintains its own log-in memory.
• The log represents a linear graph: an edge connects the log record N to the log

record N + 1. The weight of the edge equals the difference between the start time
N + 1 and the end time N.

3. After MPI_Finalize, link corresponding local and remote operations (send/recv) to
produce the final graph.

• After the previous step, we have the log which is distributed across all MPI
processes, and we now convert it to the graph. The local log contains only the
edges for the vertices of the corresponding MPI process, and we need to create
edges between the different MPI processes. (For each MPI call, we have a starting
and ending vertex that is connected with the edge.)

• To achieve this, each MPI process goes over all log records, and, for each MPI
call, it requests information from the processes that were involved in this call.
(It does not matter whether the receiver or sender obtains the information; we
need to create the edges only in one MPI process not to produce duplicates.) The
information is requested using the appropriate MPI calls (MPI_Send, MPI_Recv,
MPI_Reduce, etc.), and the calls are different for each collective and point-to-point
operation.

• We can optimize the graph during conversion using techniques from [2]. For
example, for MPI_Barrier, we need only one edge that connects the starting
vertex for the last process to reach the barrier with the ending vertex for the
last process to leave the barrier. For other blocking collective operations, the
optimizations are similar.

4. Find the critical path using different algorithms and existing data distribution be-
tween nodes.

• Now, we have the final graph that is composed of local graphs, which are stored
in the corresponding MPI processes. The global graph is partitioned already, and
all we need is to find the critical path.

• For parallel processing, we need to map each vertex and edge of the graph to
the rank of the MPI process that stores this edge or vertex. This is trivial to
implement in the previous step by saving the rank of the target MPI process for
each inter-process edge; all other vertices and edges are local to the node.

• There are several algorithms for parallel graph search. The most common one is
Delta-stepping (see Section 4). We make all weights negative and start the search
from the vertex with the largest timestamp (which can also be determined in the
previous step).

• The algorithm can be optimized using the techniques in [12,33].
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The implementation of the methods and algorithms for each stage is described in the
following sections.

4. Methods and Algorithms for Finding Critical Path
4.1. Sequential Dijkstra

We implemented a sequential Dijkstra algorithm as the baseline for finding the critical
path for the purpose of comparison with a parallel counterpart. Our implementation uses
the classic algorithm described in [34]. In order to run this algorithm, we copy all the graph
nodes and edges to the first MPI process and run the search there.

4.2. Sequential Delta-Stepping

The sequential Delta-stepping algorithm resembles the Dijkstra algorithm but uses
buckets to store nodes. Each bucket stores the nodes for a particular range of tentative
distances. The size of the range equals delta (hence, the name of the algorithm). This delta
is called the “bucket width” or “step width”. In each iteration of the algorithm, we remove
the “light” nodes from the first non-empty bucket, update their distances, and redistribute
them across buckets using the updated distance value. A “light” node is a node’s tentative
distance that is less than the minimum distance of the bucket, and a “heavy” node is a
node’s tentative distance that is greater than the maximum distance of the bucket. This
process repeats until the bucket becomes empty. After that, we update the distances of
heavy nodes and redistribute them across the buckets.

When delta = 1, we obtain the Dijkstra algorithm. When delta = ∞, we obtain the
Bellman–Ford algorithm. The parallel version of Delta-stepping processes nodes in the
bucket in parallel.

4.3. Parallel Dijkstra

We implemented parallel Delta-stepping for delta = 1. This algorithm is equivalent
to the Dijkstra algorithm but processes all nodes and edges in parallel in a distributed
memory and exchanges only a small number of nodes that need to be processed in the
current iteration.

The algorithm works as follows.

1. We start with the nodes and edges distributed across the MPI processes: each process
stores only the nodes that correspond to the MPI calls that were made by this process
and all incoming edges of these nodes. The process that contains a particular node is
determined using its global identifier and simple division.

2. Each process pushes the source node to its own per-process queue and the main
loop begins.

3. For each iteration, each process extracts the next node from the queue and finds all
incoming edges of this node. Then, we group the edges by the rank of the process that
stores the source node of each edge. After that, each process sends each non-empty
group to the corresponding rank.

4. After the communication, each process concatenates all of the groups of edges that
were received from other processes. The resulting edges are scanned, and, if the new
distance is smaller, then the distance is updated, and the source node of the edge
is pushed into the queue with the new distance (distances are stored in the local
hash table).

5. The iterations continue until all per-process queues are empty. If the queue becomes
empty, then the corresponding process takes part in the collective operations but does
not process nodes from the queue.

6. After the last iteration, the hash table that stores the path that was followed by the
algorithm is gathered in the first MPI process. Then, the algorithm terminates.

The parallel Dijkstra algorithm does not give any improvements in the execution time,
but it consumes a smaller amount of memory because we no longer need to gather all
graph nodes and edges in a single MPI process.
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4.4. Parallel Splits

Many MPI programs follow the Bulk Synchronous Model (BSP) of parallel execu-
tion [3], i.e., the program consists of sequential parts that are internally parallel, and after
each such part comes global synchronization. These global synchronization points allow us
to decompose the graph into multiple independent parts (Figure 3). We detect these points
when the graph is generated from the log: we track each asynchronous MPI operation, and,
when we encounter a global collective operation, we complete the following to determine
whether it is a synchronization point:

1. If some asynchronous MPI operations have not been completed yet, then this is not a
synchronization point.

2. If any edges of the collective MPI operation have a negative time, then this is not a
synchronization point.

3. Otherwise, it is a global synchronization point, and we can split the graph at this point.

When the graph is fully generated, we use the source and the target node of each split
to run the critical path-finding algorithm on each split individually. This can be performed
in multiple ways:

1. Run a sequential algorithm on each split sequentially.
2. Run a parallel algorithm on each split sequentially.
3. Run a parallel algorithm on each split in parallel.
4. Run a sequential algorithm on each split in parallel.

We explored the first three options, and the first and the second options have not
given us substantial performance advantages compared to running sequential or parallel
algorithms without splits. The third option was implemented using parallel threads, which
led to an oversubscription of system resources, but this option actually improved the
performance. The proper implementation of the third option is challenging but possible:
on each iteration of the main loop of the parallel Dijkstra algorithm, we can multiplex
processing of multiple splits.

Figure 3. Parallel splits: graph with no splits (left); graph with splits (right).

4.5. Topological Sorting

The main idea of this algorithm is taken from topological sorting: “Sorting the vertices
by the lengths of their longest incoming paths produces a topological ordering” [35].
Topological sorting is used to determine the order of execution of dependent tasks (Figure 4).
Here, we have the inverse problem: we already executed each task and now want to find
the critical path. To find it, we sort each program edge by the start time, then find groups
of overlapping edges, and, in each group, choose the largest edge.

The main idea of inverse topological sorting is to decompose the edges into groups that
come together (overlap). A straightforward implementation of this idea for any realistic
MPI program will produce only one group that consists of all edges of the program run.
The more practical approach is to group computation and communication edges separately
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or even to skip communication edges as they are redundant for deriving a critical path. We
used the latter approach.

Figure 4. Example of topological sorting.

The sequential topological sorting-based algorithm is as follows:

1. Record intervals that denote MPI edges and program edges.
2. Gather all intervals in rank 0.
3. Sort them by start time (actually merge sorted arrays).
4. Find overlapping program edges. In each group, the longest edge belongs to the

critical path (Figure 5).
5. Connect the longest program edges to each other.

Figure 5. Groups of overlapping program edges.

The parallel algorithm is mostly the same, but we have to distribute (shuffle) the data
between the MPI processes (Figure 6), execute the algorithm on each individual part, and
then collect the results from all processes to the root process. The algorithm follows:

1. Record intervals that denote MPI edges and program edges.
2. Shuffle intervals between ranks. Each rank receives its own period of time.
3. Merge shuffled arrays in each rank.
4. Find overlapping program edges. In each group, the longest edge belongs to the

critical path.
5. Connect the longest program edges to each other.
6. Gather all critical path segments in rank 0.
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Figure 6. Shuffle.

The topological sorting algorithm has the following advantages.

• Linear time O(n).
• Reliable: works even without cross-process edges.
• No graph: no graph cycles are possible, nor are infinite program loops.

There are some disadvantages as well.

• Shuffle can be slow: need to transfer (n − 1)/n of the total size of the graph.
• Overlapping is good enough but not perfect: e.g., need to detect non-MPI_COMM_

WORLD communicators.

The main disadvantage of this algorithm is that we have to somehow handle groups
of interleaving intervals that spread two or more parts, i.e., the interval starts in part N and
ends in part >= N + 1. There are two possible algorithms here. First, we can search for the
rank that contains the end of this interval. This would result in exchanging all of the edges
that overlap this interval from the currentrank + 1 up to the rank where the interval ends.
This approach is simple but increases the amount of information sent over the network
enormously: in the worst case, all MPI processes have to send all of their edges to all of the
other processes, and the algorithm is no longer linear in terms of how much data are sent
over the network—it is now quadratic. We call this algorithm ‘topological-sorting-overlap’,
and this is the most accurate algorithm, although it requires sending an enormous amount
of data over the network.

Second, we can search for the last interval that overlaps the interval that spreads
several parts. This algorithm is more efficient than sending all intervals from the next part
but is more sophisticated to implement. It is not clear whether it is faster considering the
difficulty of the implementation. We call this algorithm ‘topological-sorting-master-worker’.
In our benchmarks, we resorted to using a simple algorithm that does not handle overlap
of the intervals across parts. This is due to the inefficiency of the ‘overlap’ algorithm
and the difficulty of the implementation of the ‘master-worker’ algorithm. The technical
implementation is also quite challenging. First of all, we have to sort edges in chronological
order in order to find the groups of overlapping edges in linear time. However, each MPI
process records only its own edges. This means that we have to somehow sort edges that
are spread across the memory of different MPI processes.

This problem is common in big data; hence, we can borrow successful algorithms from
this field. The most common approach here is to “shuffle” the data, i.e., assign each process
an approximately equal chunk of the data and gather these data from whatever processes
hold them. Then, all received data are sorted and groups of overlapping edges are found.

We implemented this algorithm in our program and then applied several performance
optimizations. First of all, we have to balance the number of edges across all processes
(Figure 7). The simplest approach here is to count them and spread them evenly. Initially,
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we counted the time and spread by the time, but this led to a highly unbalanced number
of edges. Second, we noticed that the shuffle performance deteriorates as we increase the
number of MPI processes. We attributed this to the fact that, in our implementation, all
processes send to process 0, then all processes send to process 1, and so on and so forth.
We changed this logic to the following: all processes send to the right neighbor process
(offset), then all processes send to the right neighbor of this neighbor process, and so on
and so forth (Figure 8). This allowed us to decrease the variation in shuffle time when
the number of processes is large (we expect that this optimization on some clusters may
not increase performance at all). Finally, we noticed that waiting even for empty requests
(MPI_REQUEST_NULL) takes a considerable amount of time (three seconds, in our case; see
Figure 9). We believe that this problem can only be solved by substituting the MPI library
with a more performant one (we use OpenMPI 4.1.1).

Figure 7. Unbalanced (initial) and balanced shuffle data distributions.

Figure 8. Shuffle time for unbalanced and balanced data distributions.

This approach is simple and well-known in the big data field and looks efficient;
however, we still have to send all recorded edges over the network in the worst case. In
order to optimize this, we compress the data, and, again, we use successful approaches
from the big data field. The state-of-the-art compression approach is to convert the data
representation into a columnar format (i.e., transpose the data) and then use suitable en-
coders and compressors. Then, we encode each integer column using run-length encoding
(RLE), Delta-encoding, and variable-length integer (variant) encoding. After that, we use
the Zstandard compressor to further compress the binary data. This approach allowed us
to compress the data that we exchange between MPI processes during shuffling by 95% on
average and to speed up shuffling by approximately 50% (Figures 10 and 11).
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Figure 9. Shuffle time for empty and non-empty data requests.

Figure 10. Results of applying compression: shuffle message size.

Figure 11. Results of applying compression: shuffle time.

Compared to graph-based algorithms, topological sorting offers several advantages.
First of all, this algorithm cannot loop in an infinite graph cycle because there is no graph
here. This advantage alone makes it the most robust algorithm that we have tried within
the framework of this research work. Second, this algorithm is easy to parallelize because
it is a well-known and well-studied algorithm in the big data field. Finally, since the data
are sent in batches, we can use a columnar storage format and compression to speed up
the algorithm.
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One disadvantage of topological sorting is the linear dependence of running time
on the number of MPI calls. This can become a problem because the more MPI pro-
cesses your program has, the more MPI calls it will produce (Figure 12). This is clearly a
scalability problem.

We have considered possible scalability issues and overheads related to both the
number of MPI calls and the number of communicating processes in the tunable parameters
of the proposed algorithm. These parameters help to adapt the overheads imposed by
the algorithm and adjust the balance between fidelity and performance. In particular, the
threshold parameter is introduced, which defines the minimal time between subsequent
MPI calls, or the granularity unit size of the inter-communication computational operations.
All of the communications and computations within the granularity unit are treated as a
single composition block; computations of smaller sizes are not considered individually.
This minimizes the overheads on counting data transmissions at the highest precision;
however, it allows us to focus on meaningful parts of the program, neglecting other parts
until they become meaningful, and, at the same time, allows us to establish a balance
between the performance of the algorithms and the scale of the parallel execution. This
solution is approximate, but it is good enough for practical applications and is in line with
how real-world applications are profiled, diagnosed, and modified afterwards.

Figure 12. Topological sorting time dependence on the no. of MPI calls.

From a mathematical point of view, this algorithm finds the longest edge in each group
of overlapping edges. If the program satisfies the BSP model, then groups of computation
edges are interleaved with groups of communication edges (the communication step always
follows the computation step). Therefore, the longest edge in each group of computation
edges will indeed be part of the critical path, and groups of communication edges can be
skipped because we can simply connect the end of the previous computation edge to the
start of the next one. The imbalance can only occur if the parallel processes start/finish
their computations for the current BSP superstep at different points in time. The only way
to affect the topological sorting’s correctness is to have unsynchronized clocks across the
MPI processes. We addressed this shortcoming by implementing our own synchronization
inside the program.

5. Profiling MPI Applications
5.1. Logging MPI Calls

In standard-compliant MPI libraries, every exported MPI_XXX function is in fact a weak
symbol, and each such symbol has a strong counterpart named PMPI_XXX. When the symbol
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is weak, we can replace it with a strong symbol possibly from another library during link
time or during run time by dynamically pre-loading the library. The latter approach is used
to implement MPI profilers—programs that wrap MPI calls and collect statistics from their
arguments. Inside the wrapped MPI function, they usually call its PMPI counterpart but
may perform any other calls when necessary.

We followed this approach to implement the mpi-graph library that is preloaded by
the application using the LD_PRELOAD environment variable. In order to minimize the
impact of our profiler on the execution time of the program, we perform a minimal number
of PMPI calls inside each wrapped MPI function. Usually, it is only one call, but more than
one MPI call is performed when we have a non-MPI_COMM_WORLD communicator and in
some other corner cases.

For each MPI call, we record start time, end time, call number, and other relevant
information, which are unique for each call (tag, source, destination, communicator, etc.).
The log of all MPI calls is stored in the memory of each MPI process. We allocate memory
directly from the operating system kernel using the mmap(2) system call and do not use
pointers inside log record structures. This allows us to gradually move old log records to a
disk if the log consumes too much memory.

When the program calls MPI_Finalize, we collect all of the logs inside the first MPI
process, convert them to the graph, and find a critical path. When we switch to the parallel
path-finding algorithm, we will no longer collect the logs but process them inside each
process in parallel.

5.2. Converting the Log Records to the Graph

In order to transform the log to the graph, we repeat all of the MPI calls from the log,
but, instead of the real data, we send the data that are needed by the receiving process to
construct nodes and edges of the graph. The resulting graph is per process but may contain
outgoing or incoming communication edges from other processes.

Blocking point-to-point call (send and receive) handling is straightforward. For
non-blocking send and receive, we maintain a list of requests, and, when we encounter
MPI_Wait, we find the corresponding request in this list and use it to complete the wait call.
MPI_Waitall is simulated by calling MPI_Wait for each request in the corresponding array.

Blocking collective calls are handled by gathering the start and end times of the call
for each rank in the first MPI process. Then, we compute the maximum start time and
minimum end time for the statistics, broadcast all of the statistics and the start/end time to
all processes in the communicator, and compute the per-rank statistics. Next, we generate
all possible edges between the start and end nodes of each process (from the start of each
process to the end of each process).

The per-rank statistics include the execution time (the time spent actually executing
the collective MPI call), wait-before time (the time the process waited for other processes
before executing the call), and wait-after time (the time the process waited after executing
the call). These data are computed using the following formulas.

t_wait_before = t_start_max - t_start[i]
t_wait_after = t_end[i] - t_end_min
t_execution = t_end[i] - t_start[i] - t_wait_before - t_wait_after =

= t_end_min - t_start_max
imbalance = (t_wait_before + t_wait_after) / t_execution

These formulas work very well if the MPI call has an implicit barrier at the end, but, if
there is no such behavior, then the formulas may produce a negative wait time. Edges with
negative times can be removed from the graph to speed up the critical path finding. The
calls with implicit barriers can be found experimentally: in OpenMPI v4.1.1, we found that
MPI_Bcast, MPI_Barrier, and MPI_Reduceall all have implicit barriers, but MPI_Reduce
does not, for example.
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Using these formulas, we computed the imbalance for each MPI call as the ratio of
the total wait time to the total execution time. For MPI calls, this metric shows how much
time (in percentages of execution time) we would save if the call was made well balanced
(i.e., no wait time). The same metric is computed for each MPI process (but we sum all
the numerators and denominators and add the execution time of the program edges to the
denominator) and for the whole program (but we sum all the numerators and denominators
across processes and divide them by the number of ranks). The corresponding formulas
are presented below.

imbalance_call = (t_wait_before + t_wait_after) / t_execution
imbalance_process = sum(t_wait_before + t_wait_after for each call)

/ (sum(t_execution for each call) + t_program_edges)
imbalance_program =

sum(t_wait_before + t_wait_after for each call and process)
/ (sum(t_execution for each call and process)

+ sum(t_program_edges for each process))

5.3. Synthetic Benchmarks

We used mini-benchmarks to verify that the different MPI calls were properly con-
verted to the graphs. In Figure 13, the left picture shows the graph for the program with
a collective operation. In the right picture, we show the graph for the program—each
process of which sends the data to the right process and receives from the left process using
non-blocking point-to-point operations. The discovered critical path is depicted with the
blue color.

The program output below shows the statistics and the imbalance metric computed
by mpi-graph for the synthetic test program.

Per-process statistics:
rank program_time graph_time total_time total_execution_time
0 1.908003056 0.000988314 1.908991370 0.935452868
1 1.907246658 0.000208261 1.907454919 0.935452868
2 1.905164954 0.000214803 1.905379757 0.935452868
3 1.904170098 0.000349145 1.904519243 0.935452868

rank total_wait_time imbalance num_calls num_nodes num_edges
0 0.018105627 0.019354932 3 8 13
1 1.344099347 1.436843472 3 6 13
2 1.335822343 1.427995347 3 6 13
3 1.332357843 1.424291793 3 6 13

Total statistics:
program_time=1.908642225
graph_time=0.000349145
total_time=1.908991370
total_execution_time=3.741811472
total_wait_time=4.030385160
imbalance=1.077121386
num_calls=12
num_nodes=26
num_edges=52
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Figure 13. Program activity graphs: program with a collective operation (left); program with send-
ing/receiving to/from neighbour processes using non-blocking point-to-point operations (right).

5.4. Time Synchronization

Accurate timestamps are needed for the correct computation of critical paths. Usually,
this is achieved using external NTP servers, but we may not have control over them. We
implemented similar functionality inside the mpi-graph tool. In order to synchronize the
time, we perform a series of barriers and record timestamps before and after the barrier
for each process. Then, we broadcast the timestamps of the first process and subtract
each process’s timestamp from the timestamp of the first process. If the magnitude of the
resulting number is less than the time of the corresponding barrier, we nullify the number.
Finally, we compute the median of all of the timestamp differences to determine the time
offset of the current process.

We tested this algorithm using the lib f aketime library that allowed us to change
the time of one of the MPI processes. In our tests, the barrier time decreased with each
subsequent call until it reached some stable value. The resulting graph and statistics were
the same for the runs with and without the lib f aketime library.

5.5. Visualization

In order to debug mpi-graph on small graphs we developed an interactive visualization
tool. This tool reads the CSV logs produced by mpi-graph and shows the resulting graph in
a web browser. The tool color codes the wait-before, wait-after, and execution time of each
MPI call and computes the imbalance ratio for each collective MPI operation.

Examples of graphs produced by this tool are presented below in Section 6.6. The tool
visualizes each call as a horizontal interval and each MPI process occupies its own row.

5.6. Load Imbalance Estimation

We have found several approaches to estimating the load imbalance of the MPI
application: heuristic, analytic, and pattern-based.

5.6.1. Heuristic

In [36], the authors use a stacked graph approach. They sum the total time each
process spends in a particular MPI call and then present the graph of these sums. The
uneven “landscape” of the graph corresponds to the load imbalance (Figure 7.1 in [36]).
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If we order the processes by the amount of time spent, we can see that the maximum
time is spent by about 10 processes (out of 144), and the rest are waiting for them. Most of
the processes are idle 40% of the time, and some are idle up to 80%.

5.6.2. Analytic

Different authors use various analytic formulas to compute the imbalance based on
the max and average CPU times, number of processors used, distribution of CPU time
across processors, communication time in point-to-point and collective operations, relation
of communication and computing times, etc. [37–41].

5.6.3. Pattern-Based

In [38,39,42–45], the authors analyzed the performance of MPI applications using the
following patterns.

• Late Sender. This property refers to the amount of time lost when the MPI_Recv call is
sent before the corresponding MPI_Send is executed.

• Late Receiver. This property applies to the opposite case. MPI_Send is blocked until
the corresponding receive operation is called. This can happen for several reasons.
Either the default implementation works in synchronous mode, or the size of the
message being sent exceeds the available buffer space, and the operation is blocked
until the data are transmitted to the recipient. The behavior is similar to MPI_SSend
waiting for the message to be delivered. The downtime is measured, and the sum of
all downtime periods is returned as a severity value.

• Messages in Wrong Order. This property concerns the problem of sending messages
out of order. For example, the sender can send messages in a certain order, and the
recipient can expect them to arrive in the reverse order.

• Wait at Barrier. This property corresponds to the downtime caused by the load imbal-
ance when the barrier is called. The idle time is calculated by comparing the execution
time of the process for each MPI_Barrier call. To work correctly, the implementation
of this property requires the participation of all processes in each call of the collective
barrier operation. The final value is simply the sum of all measured downtime periods.

6. Benchmarking
6.1. NAS Parallel Benchmarks

The NAS Parallel Benchmarks [4] is a set of performance tests aimed at testing the
capabilities of highly parallel supercomputers. They were developed in the early 1990s as
part of the NASA Numerical Aerodynamic Simulation Program and are supported by the
NASA Advanced Supercomputing (NAS) Division located at NASA Ames Research Center.

There are several classes for each benchmark that are related to the problem size.

• Class S: small for quick test purposes;
• Class W: workstation size (a 1990s workstation; now likely too small)
• Classes A, B, and C: standard test problems; 4× size increase going from one class to

the next;
• Classes D, E, and F: large test problems; 16× size increase from each of the previous classes.

Different benchmarks have different requirements for the number of processes, as
listed below:

• BT, SP—a square number of processes (1, 4, 9, ...);
• LU—2D (n1 × n2) process grid where n1/2 <= n2 <= n1;
• CG, FT, IS, MG—a power-of-two number of processes (1, 2, 4, ...);
• EP, DT—no special requirement.

The required process count is checked at runtime. By default, a run will abort if the
process count requirement is not met. For IS and DT, there is a minimal process count for a
given class of problem size. Table 1 presents the description of each benchmark including
the problem sizes and parameters of Class C, which were used in the experiments.
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We tested the performance of the mpi-graph tool (applying different versions of the
critical path algorithms) using the NAS Parallel Benchmarks of Class C run on 4, 16, 32,
and 64 processors. We measured the following:

• total run time with MPI call recording;
• total run time with MPI call recording + critical path finding;
• total run time without mpi-graph.

The results for the sequential Dijkstra algorithm are presented in Figure 14.

Figure 14. NAS Parallel Benchmarks test results (sequential Dijkstra).

Figure 14 shows that the mpi-graph tool incurs some overhead, the magnitude of which
depends on the particular benchmark. Further analysis revealed that most of the overhead
is caused by critical path finding rather than log collection.

Figures 15 and 16 present the bar charts of the NAS Benchmarks’ execution time on
various numbers of processors without/with mpi-graph usage (with the parallel Dijkstra
algorithm). Figure 17 shows the relative overhead of using the mpi-graph tool (MPI call
recording + critical path finding with the parallel Dijkstra). In this plot, the overhead is
measured in the number of times the execution of the application with mpi-graph exceeds
the execution of the original program. In particular, we can see that the ep.D benchmark
runtime is more than 2.5 times longer when mpi-graph is used with the parallel Dijkstra
algorithm, which demonstrates that this approach is not scalable enough.

Our experiments with classical algorithms (sequential and parallel Dijkstra, Delta-
stepping) revealed noticeable overheads for some benchmark cases. To deal with this
further, we concentrated on the topological sorting algorithm, which showed much better
results in the same cases. In addition, the compression technique described in the same sec-
tion allowed for further improvement to the results (see Table 2). In this table, the relative
overhead corresponds to the quotient of difference between mpi-graph and non-mpi-graph
runtimes divided by the mpi-graph runtime. In some cases, however, compression can lead
to slowdown (e.g., in the case in which large data volumes are sent over fast communica-
tions and slow computing nodes), so the effect of using compression must be evaluated in
each particular case; compression can be switched on or off in the configuration file.
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Table 1. NAS Parallel Benchmarks description with problem sizes and parameters of Class C.

Benchmark Name Description Problem Sizes and Parameters
(Class C)

MG
Multi-grid on a sequence of meshes,
long- and short-distance communi-
cation, memory intensive

Approximation of the solution of
a three-dimensional discrete Pois-
son equation using the V-cycle
multigrid method.

grid size: 512 × 512 × 512
no. of iterations: 20

CG Conjugate gradient, irregular mem-
ory access and communication

Approximation to the smallest eigen-
value of a large sparse, symmet-
ric positive-definite matrix using in-
verse iteration together with the con-
jugate gradient method as a subrou-
tine for solving linear systems of al-
gebraic equations.

no. of rows: 150,000
no. of nonzeros: 15
no. of iterations: 75
eigenvalue shift: 110

FT Discrete 3D fast Fourier Transform
all-to-all communication

Solving a three-dimensional partial
differential equation using the Fast
Fourier Transform (FFT).

grid size: 512 × 512 × 512
no. of iterations: 20

IS Integer sort, random memory access Sorting small integers using
pocket sorting.

no. of keys: 227

key max. value: 223

EP Embarrassingly Parallel
Generation of independent normally
distributed random variables using
Marsaglia polar method.

no. of random-number pairs: 232

BT Block tri-diagonal solver

Solves a synthetic system of nonlin-
ear diffs. partial differential equa-
tions (a 3-dimensional system of
Navier–Stokes equations for a com-
pressible liquid or gas) using a three-
block tridiagonal scheme with the
method of variable directions (BT), a
scalar five-diagonal scheme (SP), and
a method of symmetric sequential
upper relaxation (SSOR algorithm,
LU problem).

grid size: 162 × 162 × 162
no. of iterations: 200
time step: 0.0001

SP Scalar penta-diagonal solver

Solution of the heat equation tak-
ing into account diffusion and con-
vection in a cube. The heat source
is mobile, the grid is irregular, and
changes every 5 steps.

grid size: 162 × 162 × 162
no. of iterations: 400
time step: 0.00067

LU Lower-upper Gauss–Seidel solver Same problem as SP, but the method
is different.

grid size: 162 × 162 × 162
no. of iterations: 250
time step: 2.0

Figure 15. NAS Benchmarks execution time: real time (no critical path data collection).
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Figure 16. NAS Benchmarks execution time: with mpi-graph (parallel Dijkstra algorithm).

Figure 17. Relative overhead of mpi-graph (parallel Dijkstra).

Table 2. Comparison of versions without/with compression of shuffle data using topological sort-
ing algorithm.

Benchmark Nprocesses Nnodes Tasks-per-Node Rel. Overhead
(No Compression)

Rel. Overhead
(Compression)

ep.C 4 1 4 0.02 0.01
ep.C 16 2 8 0 0.01
ep.C 32 4 8 0.09 0.02
ep.C 64 8 8 0.44 0.05
is.C 4 1 4 0 0
is.C 16 2 8 0.02 0.001
is.C 32 4 8 0.19 0.06
is.C 64 8 8 0.06 0
lu.C 4 1 4 0 0.01
lu.C 16 2 8 0.06 0.02
lu.C 32 4 8 0.10 0.04
lu.C 64 8 8 0.16 0.09
mg.C 4 1 4 0 0.01
mg.C 16 2 8 0.04 0
mg.C 32 4 8 0.14 0.02
mg.C 64 8 8 0.25 0.06

The detailed benchmark results obtained for different NPB cases with the topological
sorting algorithm follow in Tables 3–8 and the benchmark parameters in Table 9:
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Table 3. bt.C.

No. of Nodes No. of Processes
per Node Program Time, s MPI-Graph

Time, s Overhead, %

2 2 432.61 0.024 0.01%
4 4 150.25 0.21 0.14%
8 8 100.78 1.52 1.49%

Table 4. ep.C.

No. of Nodes No. of Processes
per Node Program Time, s MPI-Graph

Time, s Overhead, %

1 8 31.51 0.001 0.00%
2 8 15.89 0.010 0.06%
4 8 8.07 0.069 0.85%
8 8 5.19 0.059 1.14%

Table 5. is.C.

No. of Nodes No. of Processes
per Node Program Time, s MPI-Graph

Time, s Overhead, %

1 8 7.18 0.16 2.23%
2 8 16.96 0.17 1.03%
4 8 18.91 0.11 0.57%
8 8 26.60 0.13 0.48%

Table 6. mg.C.

No. of Nodes No. of Processes
per Node Program Time, s MPI-Graph

Time, s Overhead, %

1 8 21.56 0.03 0.14%
2 8 14.82 0.13 0.89%
4 8 16.81 0.37 2.14%
8 8 8.43 0.83 8.94%

Table 7. ft.C.

No. of Nodes No. of Processes
per Node Program Time, s MPI-Graph

Time, s Overhead, %

2 2 198.51 0.09 0.05%
4 4 113.77 0.38 0.33%
8 8 105.89 0.24 0.23%

Table 8. lu.C.

No. of Nodes No. of Processes
per Node Program Time, s MPI-Graph

Time, s Overhead, %

2 2 260.86 0.51 0.19%
4 4 92.11 1.66 1.77%
8 8 58.76 5.34 8.33%

Table 9. NPB benchmark parameters.

Test Case Compression Threshold, s

bt.C no 0
ep.C no 0
is.C no 0
mg.C no 0
ft.C no 0
lu.C yes (min. level) 0
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6.2. CP2K

CP2K is a quantum chemistry and solid-state physics software package that can per-
form atomistic modeling of solid-state, liquid, molecular, periodic, material, crystalline, and
biological systems [5]. CP2K provides a common framework for various modeling methods,
such as DFT, using mixed Gaussian and plane waves and the GPW and GAPW approaches.
Supported theory levels include DFT, LDA, GS, MP2, RPA, semi-empirical methods (AM1,
PM3, PM6, RM1, MNDO, etc.), and classical force fields (AMBER, CHARMM, etc.). CP2K
can perform molecular dynamics, metadynamics, Monte Carlo, Ehrenfest dynamics, vibra-
tional analysis, spectroscopy at the core level, energy minimization, and transition state
optimization using the NEB or dimer method.

Fayalite-FIST is a short molecular dynamics run for 1000 time steps in an NPT ensemble
at 300 K (in the isothermal–isobaric ensemble, the amount of substance (N), pressure (P),
and temperature (T) are conserved). It consists of 28,000 atoms—a 103 supercell with
28 atoms of iron silicate (Fe2SiO4, also known as Fayalite) per unit cell. The simulation
employs a classical potential with long-range electrostatics using Smoothed Particle Mesh
Ewald (SPME) summation.

CP2K comes with different versions of the executable listed in Table 10.

Table 10. lu.C.

Acronym Meaning

ssmp Single process + symmetric multiprocessor (OpenMP)
sdbg ssmp + debug settings
psmp Parallel (MPI) + symmetric multiprocessor (OpenMP)
popt psmp + optimized
pdbg psmp + debug settings

We used cp2k.popt in our benchmarks. The benchmark results for topological sorting
are shown in Table 11 with benchmark parameters in Table 12.

Table 11. CP2K benchmark results.

No. of Nodes No. of Processes
per Node Program Time, s MPI-Graph

Time, s Overhead, %

2 2 12.24 0.011 0.09%
4 4 24.74 0.027 0.11%
8 8 121.92 0.371 0.30%
10 8 142.55 4.162 2.84%

Table 12. CP2K benchmark parameters.

Test Case No. of Iterations Compression Threshold, s

fayalite 10 yes (min level) 0

6.3. OpenFOAM

OpenFOAM (Open-Source Field Operation And Manipulation CFD ToolBox) is an
open integrated platform for the numerical simulation of continuum mechanics prob-
lems [7]. OpenFOAM is both a C++ library and a set of applications that were built using
the library. The applications are divided into two categories:

• There are solvers, each of which is designed to solve a specific problem of continuum
mechanics. Each solver has at least one tutorial that shows its use.

• There are utilities designed to perform tasks related to data manipulation. OpenFOAM
comes with pre-/post-processing environments, each of which has its own utilities.

We ran the performance benchmarks for the pitzDailyExptInlet case from the Open-
FOAM tutorial based on the simpleFoam solver, which is a steady, incompressible flow
solver based on Spalding and Patankar’s SIMPLE (Semi-Implicit Method for Pressure-
Linked Equations) algorithm. We changed only the number of iterations and the number of
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processors for each benchmark; other parameters were left unchanged. The configuration
of the benchmark can be found in the original repository [46]. The benchmark results are
presented in Table 13.

Table 13. OpenFOAM benchmark results.

No. of Nodes No. of Processes
per Node Program Time, s MPI-Graph

Time, s Overhead, %

2 2 70.56 1.47 2.05%
4 4 104.35 2.98 2.79%
8 8 219.03 9.62 4.21%
10 8 230.47 10.02 4.18%

Common benchmark parameters are shown in Table 14.

Table 14. OpenFOAM benchmark parameters.

Test Case No. of Iterations Compression Threshold, s

pitzDailyExptInlet 1000 yes (min level) 0.001

6.4. LAMMPS

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a free
package for classical molecular dynamics [6]. The package can be used for large calculations
(up to tens of millions of atoms). To work on multiprocessor systems, the MPI interface
is used.

The LAMMPS package has built-in benchmarks that can be used, in particular, for in-
dependent testing. In our benchmarks, we used the LJ case: atomic fluid, the Lennard–Jones
potential with a 2.5 sigma cutoff (55 neighbors per atom), NVE integration, 32,000 atoms,
and 100 timesteps. More details on the LAMMPS benchmarks can be found in [47]. The
results of the benchmarks are shown in Table 15 and the benchmark parameters in Table 16.

Table 15. LAMMPS benchmark results.

No. of Nodes No. of Processes
per Node Program Time, s MPI-Graph

Time, s Overhead, %

2 2 125.92 0.28 0.22%
4 4 63.52 0.49 0.76%
8 8 35.31 1.53 4.16%
10 8 49.33 2.64 5.08%

Table 16. LAMMPS benchmark parameters.

Test Case No. of Iterations Compression Threshold, s

in.lj 10,000 yes (min level) 0.001

6.5. MiniFE

MiniFE is a scientific mini-application developed at Sandia National Laboratory (USA),
which includes algorithms for unstructured implicit finite elements or solvers [8]. The
program simulates the stationary thermal conductivity of the beam. The numerical ap-
proach follows a simple unconditional conjugate gradient (CG) algorithm, which implies
sparse matrix-vector products during the CG iteration. These data are stored in the local
memory of the participating nodes. The implicitness of the numerical method and the
locality of the data lead to a scenario with intensive data exchange as the size of the problem
increases. The size of the physical brick (discretized by a given number of grid cells per
spatial dimension in the problem statement) serves to control the properties of weak scaling
for a given number of participating cores in the simulation.
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The results of the benchmarks are shown in Table 17 and the benchmark parameters
in Table 18.

Table 17. MiniFE benchmark results.

No. of Nodes No. of Processes
per Node Program Time, s MPI-Graph

Time, s Overhead, %

2 2 137.73 0.05 0.03%
4 4 52.43 0.22 0.42%
8 8 39.78 1.00 2.44%
10 8 36.38 2.35 6.06%

Table 18. MiniFE benchmark parameters.

Test Case Compression Threshold, s

nx = 300 ny = 300 nz = 300 yes (max level) 0

6.6. Case Studies

We used our software to find bottlenecks and imbalances in a number of software
packages. We visualized every bottleneck using our software. Figures 18–20 show examples
of found bottlenecks.

Figure 18. OpenFOAM, snappyHexMesh, motorbike test case.

Figure 19. CP2K, Fayalite test case.

Figure 20. LAMMPS, lj test case.
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7. Conclusions

The problem of finding bottlenecks in parallel workloads is important to consider to
provide high performance and efficiency of the execution and becomes more challenging
with the increasing scale of parallelization. One of the ways to discover bottlenecks is to
analyze the critical path of the parallel program: the longest execution path in the program
activity graph. There are a number of methods for finding the critical path; however, most
of them suffer a performance drop on a large scale.

In this paper, we analyzed several methods of critical path finding based on the classi-
cal Dijkstra and Delta-stepping algorithms along with an algorithm based on topological
sorting. While being slightly less generic compared to the classical algorithms, topological
sorting can provide significantly higher performance at the expense of adhering to the Bulk
Synchronous Parallelism (BSP) model and neglecting micro-communications that do not
affect the overall view at the bottlenecks. At the same time, this approach removes some
of the limitations of the classical methods, such as the acyclicity of the directed program
activity graph. Even being designed with the BSP model in mind, this approach works for
any program, showing actual bottlenecks related to computation without analyzing details
of the communication patterns of the program.

We presented the corresponding algorithms for each approach including additional
enhancements for increasing performance (parallel splits, shuffle, load balancing, com-
pression, and thresholding). We presented the implementation of the approaches for the
OpenMPI library and results for several benchmark applications: the NAS Parallel Bench-
marks, CP2K, OpenFOAM, LAMMPS, and MiniFE. We presented the advantages and
disadvantages of each approach and implementation and concluded with a few examples
of bottlenecks that we found in real-world programs using the presented approach.
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30. Pješivac-Grbović, J.; Angskun, T.; Bosilca, G.; Fagg, G.E.; Gabriel, E.; Dongarra, J.J. Performance analysis of MPI collective
operations. Clust. Comput. 2007, 10, 127–143. [CrossRef]

31. Saif, T.; Parashar, M. Understanding the Behavior and Performance of Non-blocking Communications in MPI. In Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; pp. 173–182. [CrossRef]

32. Hoefler, T.; Lumsdaine, A.; Rehm, W. Implementation and performance analysis of non-blocking collective operations for MPI. In
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing—SC’07, Reno, NV, USA, 10–16 November 2007; ACM Press:
New York, NY, USA, 2007. [CrossRef]

https://ftp.cs.wisc.edu/paradyn/papers/CritPath-ICDCS1988.pdf
http://dx.doi.org/10.1016/S0196-6774(03)00076-2
http://dx.doi.org/10.1109/TPDS.2016.2634535
http://dx.doi.org/10.1080/13658810801949850
http://dx.doi.org/10.1109/ispdc51135.2020.00034
http://dx.doi.org/10.1145/358690.358717
http://dx.doi.org/10.1109/71.730530
http://dx.doi.org/10.1002/cpe.1556
http://dx.doi.org/10.1109/IPDPSW.2017.64
http://dx.doi.org/10.1016/j.tbench.2021.100001
http://dx.doi.org/10.1109/ICSMC.2010.5641920
http://dx.doi.org/10.1109/ipdps.2005.335
http://dx.doi.org/10.1007/s10586-007-0012-0
http://dx.doi.org/10.1007/978-3-540-27866-5_22
http://dx.doi.org/10.1145/1362622.1362692


Algorithms 2023, 16, 505 27 of 27

33. Ueno, K.; Suzumura, T. Highly scalable graph search for the Graph500 benchmark. In Proceedings of the 21st International
Symposium on High-Performance Parallel and Distributed Computing—HPDC’12, Online, 21–25 June 2012; ACM Press:
New York, NY, USA, 2012. [CrossRef]

34. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
35. Kahn, A.B. Topological sorting of large networks. Commun. ACM 1962, 5, 558–562. [CrossRef]
36. Aguilar, X. Performance Monitoring, Analysis, and Real-Time Introspection on Large-Scale Parallel Systems. Ph.D. Thesis, KTH

Royal Institute of Technology, Stockholm, Sweden, 2020.
37. Garcia, M.; Corbalan, J.; Labarta, J. LeWI: A runtime balancing algorithm for nested parallelism. In Proceedings of the 2009

International Conference on Parallel Processing, Vienna, Austria, 22–25 September 2009; pp. 526–533.
38. Arzt, P.; Fischler, Y.; Lehr, J.P.; Bischof, C. Automatic low-overhead load-imbalance detection in MPI applications. In European

Conference on Parallel Processing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 19–34.
39. Pearce, O.; Gamblin, T.; De Supinski, B.R.; Schulz, M.; Amato, N.M. Quantifying the effectiveness of load balance algorithms. In

Proceedings of the 26th ACM International Conference on Supercomputing, Venice, Italy, 25–29 June 2012; pp. 185–194.
40. Tallent, N.R.; Adhianto, L.; Mellor-Crummey, J.M. Scalable identification of load imbalance in parallel executions using call path

profiles. In Proceedings of the SC’10: 2010 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, New Orleans, LA, USA, 13–19 November 2010; pp. 1–11.

41. Schmitt, F.; Stolle, J.; Dietrich, R. CASITA: A tool for identifying critical optimization targets in distributed heterogeneous
applications. In Proceedings of the 2014 43rd International Conference on Parallel Processing Workshops, Minneapolis, MN,
USA, 9–12 September 2014; pp. 186–195.

42. Wolf, F.; Mohr, B. Automatic performance analysis of MPI applications based on event traces. In European Conference on Parallel
Processing; Springer: Berlin/Heidelberg, Germany, 2000; pp. 123–132.

43. Wolf, F.; Mohr, B. Automatic performance analysis of hybrid MPI/OpenMP applications. J. Syst. Archit. 2003, 49, 421–439.
[CrossRef]

44. Schmitt, F.; Dietrich, R.; Juckeland, G. Scalable critical path analysis for hybrid MPI-CUDA applications. In Proceedings of
the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, Phoenix, AZ, USA, 19–23 May 2014;
pp. 908–915.

45. Hermanns, M.A.; Miklosch, M.; Böhme, D.; Wolf, F. Understanding the formation of wait states in applications with one-sided
communication. In Proceedings of the 20th European MPI Users’ Group Meeting, Madrid, Spain, 15–18 September 2013;
pp. 73–78.

46. OpenFOAM Tutorial, pitzDailyExptInlet Case Code Repository. Available online: https://github.com/OpenFOAM/OpenFOAM-
9/tree/master/tutorials//incompressible/simpleFoam/pitzDailyExptInlet (accessed on 18 October 2023).

47. LAMMPS Benchmarks. Available online: https://docs.lammps.org/Speed_bench.html (accessed on 18 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/2287076.2287104
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1145/368996.369025
http://dx.doi.org/10.1016/S1383-7621(03)00102-4
https://github.com/OpenFOAM/OpenFOAM-9/tree/master/tutorials//incompressible/simpleFoam/pitzDailyExptInlet
https://github.com/OpenFOAM/OpenFOAM-9/tree/master/tutorials//incompressible/simpleFoam/pitzDailyExptInlet
https://docs.lammps.org/Speed_bench.html

	Introduction
	Related Work
	Approach Overview
	Methods and Algorithms for Finding Critical Path
	Sequential Dijkstra
	Sequential Delta-Stepping
	Parallel Dijkstra
	Parallel Splits
	Topological Sorting

	Profiling MPI Applications
	Logging MPI Calls
	Converting the Log Records to the Graph
	Synthetic Benchmarks
	Time Synchronization
	Visualization
	Load Imbalance Estimation
	Heuristic
	Analytic
	Pattern-Based


	Benchmarking
	NAS Parallel Benchmarks
	CP2K
	OpenFOAM
	LAMMPS
	MiniFE
	Case Studies

	Conclusions
	References

