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Abstract: Dynamic multi-objective optimization problems (DMOPs) are optimization problems
where elements of the problems, such as the objective functions and/or constraints, change with time.
These problems are characterized by two or more objective functions, where at least two objective
functions are in conflict with one another. When solving real-world problems, the incorporation of
human decision-makers (DMs)’ preferences or expert knowledge into the optimization process and
thereby restricting the search to a specific region of the Pareto-optimal Front (POF) may result in
more preferred or suitable solutions. This study proposes approaches that enable DMs to influence
the search process with their preferences by reformulating the optimization problems as constrained
problems. The subsequent constrained problems are solved using various constraint handling
approaches, such as the penalization of infeasible solutions and the restriction of the search to the
feasible region of the search space. The proposed constraint handling approaches are compared
by incorporating the approaches into a differential evolution (DE) algorithm and measuring the
algorithm’s performance using both standard performance measures for dynamic multi-objective
optimization (DMOO), as well as newly proposed measures for constrained DMOPs. The new
measures indicate how well an algorithm was able to find solutions in the objective space that best
reflect the DM’s preferences and the Pareto-optimality goal of dynamic multi-objective optimization
algorithms (DMOAs). The results indicate that the constraint handling approaches are effective in
finding Pareto-optimal solutions that satisfy the preference constraints of a DM.

Keywords: dynamic multi-objective optimization; constrained optimization; decision-maker prefer-
ence; differential evolution; performance measures

1. Introduction

Dynamic multi-objective optimization problems (DMOPs) have multiple goals or
objectives, and the objectives and/or constraints change over time [1–4]. However, the
goals are usually in conflict with one another, thereby making the process of finding a
single optimal solution a very difficult task [5]. Finding a set of optimal trade-off solutions
is therefore the norm, with the Pareto-dominance relation [6] being used to compare the
quality of the trade-off solutions. The set of optimal trade-off solutions in the decision space
is called the Pareto-optimal Set (POS), while in the objective space, the set is referred to as
the Pareto-optimal Front (POF) or Pareto Frontier [7].

DMOPs occur frequently in the real-world in a diverse range of domains, such as
structural engineering [8]; plant control and scheduling [9–13]; and process optimization in
manufacturing, for example material carbonization [14], copper removal in hydrometal-
lurgy [15], and balancing disassembly lines [16].

However, the set of trade-off solutions may be overwhelming in number; a subset
that better reflects the decision-maker (DM)’s preferences, may be required [17,18]. Some
research has been conducted on incorporating a DM’s preferences for static multi-objective
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optimization problems (MOPs) [9,19–27]. Most of these studies used a priori, interactive,
and a posteriori approaches. It is noteworthy to state that to the best of the authors’
knowledge, a priori and interactive preference incorporation methods have not been
applied to DMOPs. Posteriori could have been applied when real-world problems were
solved and a set of solutions were provided to the real-world DM.

Introducing DM preferences, however, leads to a reformulation of DMOPs as con-
strained problems, which are then solved by dynamic multi-objective optimization algo-
rithms (DMOAs) using a variation of a penalty function [28–32]. The constraints imparted
on DMOPs as a result of DM preferences are defined in the objective space; thereby, the
constraints partition the objective space into feasible and infeasible regions.

The contributions of this study are

• A preference incorporation method adapted for DMOPs that is partly a priori and
partly interactive and enables a DM to specify their preferences. The a priori incorpora-
tion of DM preferences occurs through a procedure, named bootstrap. The interactive
incorporation of preferences is employed whenever a change occurs in the dynamic
environment such that the DM preference set may be significantly affected.

• A bounding box approach (refer to Equation (2) in Section 2) to specify a DM’s
preferences in the dynamic multi-objective optimization (DMOO) search process. The
proposed bounding box, unlike the proposal in [33], is employed in the context of
DMOPs, thus making it the first of its kind.

• New approaches that can drive a DMOA’s search constrained by the DM’s preferences,
as well as a comparative analysis of the constraint managing approaches incorporated
into a DMOA. The proposed constraint managing approaches are fundamentally
different from one another in terms of how they penalize solutions that violate a
DM’s preferences.

• New performance measures that measure how well a found solution adheres to
the preferences of a DM. In this article, a solution will henceforth be referred to as
a decision.

The base DMOA used in this study is a hybrid form of differential evolution (DE) [34],
combining non-dominated sorting [35] with vector-evaluation schemes for selecting target
vectors and the vectors that survive to the next generation during the optimization process,
since it has been shown to perform well in solving DMOPs [36]. The proposed constraint
managing approaches are incorporated in the same DMOA (the hybrid DE) to ensure
a fair comparison of their performance. Their performance is measured using current
(traditional) DMOO measures [1,37,38] and the new measures proposed in this article. It
should be noted, however, that the constraint managing approaches and the preferences
incorporation approaches can be incorporated into any DMOA.

The rest of the article is organized as follows: Section 2 presents background concepts
and theories required to understand the rest of the article. The experimental setup, includ-
ing the algorithmic setup, benchmark functions, performance measures, and statistical
analysis employed in the study are discussed in Section 3. Section 4 presents and discusses
the results of the experiments. Finally, conclusions are presented in Section 5 based on the
results obtained from the experiments.

2. Background

This section discusses the key concepts which underlie the proposals in this study.
Section 2.1 discusses the mathematical formulation of DMOPs that are addressed in this
study. It also discusses the mathematics of the proposed bounding box approach and the
limiting behaviors of the penalty function employed in this study. Section 2.2 discusses
the mathematics required for new performance measures proposed in this article. Lastly,
Section 2.3 discusses the core DMOA on which the based DMOA used in this study is based.

2.1. Bounding Box Mathematics

Let a composite function F be defined as follows:
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F : Ωx ×Ωt −→ O (1)

where Ωx = <n, with n ≥ 2, refers to the decision space, Ωt ⊆ R refers to the time space,

t ∈ Ωt is a real-valued time instance and t =
1
nt

⌊ τ

τt

⌋
, with nt referring to the severity of

change, τ referring to the iteration counter, and τt referring to the frequency of change.

Let the objective space, O, be defined as

O =

{
<2 (e.g., FDA1 [10], dMOP2 [39])
<3 (e.g., FDA5 [10])

Then, a decomposition of F follows:

F(x, t) =
{

( f 1, f 2) (e.g., FDA1 [10], dMOP2 [39])
( f 1, f 2, f 3) (e.g., FDA5 [10])

Each objective function fi is defined as

fi :
{

Ωx ×Ωt −→ R}, i = 1, 2, 3

Let a DM’s preference set be defined as

Box(z, p) = {z ∈ O|d(z, p) ≤ r, p ∈ O, r ∈ <} (2)

where d is the Euclidean distance measure, p is the center of the box formed by the points in
this set, Box(z, p), r is the radius of the box, O is the objective space as defined in Equation (1),
and the values of p and r are interactively selected by the DM.
Let a penalty function and its limiting behaviours be defined as

penalty(zk ∈ O, λ) =

{
0, i f d(zk, p) ≤ r
λ(d(zk, p)− r), i f d(zk, p) > r

(3)

lim
λ→c

penalty(zk ∈ O, λ) =

{
0, i f d(zk, p) ≤ r
c(d(zk, p)− r), i f d(zk, p) > r

(4)

lim
λ→realmax

penalty(zk ∈ O, λ) =

{
0, i f d(zk, p) ≤ r
realmax, i f d(zk, p) > r

(5)

lim
λ→realmax

zk + penalty(zk ∈ O, λ) =

{
zk, i f d(zk, p) ≤ r
I1 · realmax, i f d(zk, p) > r

(6)

lim
λ→c

zk + penalty(zk ∈ O, λ) =

{
zk, i f d(zk, p) ≤ r
zk + I1 · c(d(zk, p)− r), i f d(zk, p) > r

(7)

where λ (≥0) is a penalty control parameter whose value is determined by each algorithm,
and p, r, and d are defined as in Equation (2).
Then, a penalized outcome, z∗k ∈ O, is defined as z∗k = zk + I1 · penalty(zk, λ)
where zk is a non-penalized outcome in the objective space, zk = F(xk, t), xk ∈ Ωx, F is as
defined in Equation (1), and I1 is an all-ones vector in the objective space (e.g., (1, 1) ∈ <2).

2.2. Mathematics for Newly Proposed Performance Measures

This section discusses the mathematics required for two newly proposed performance
measures. Section 2.2.1 discusses a measure that calculates the deviation of the violating
decisions. The calculation of the spread of non-violating decisions that are found in the
bounding box is discussed in Section 2.2.2.
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2.2.1. Deviation of Violating Decisions

Solution space vectors whose objective values are outside the preference set are re-
ferred to as violating decisions, since they violate DM preferences. Depending on the
control parameters used in the implementation of the penalty function of the proposed
algorithms, the violating decisions may occasionally find their way into the archive, es-
pecially in situations where all the non-dominated solutions violate DM preferences and
non-violating decisions are not found. However, it is a rare scenario: the non-violating
decisions, if they are found in the archive, are very likely to dominate the violating and
penalized decisions in the Pareto-dominance sense. However, when violating decisions
find their way into the archive, a measure of the proximity of these violating decisions
to the preferred bounding box is required. The smaller the total proximity, the better the
violating decisions are. This section presents the mathematics underlying the calculation of
the total proximity/deviation of the violating decisions.
Let p, r, and the distance measure d(z, p) be as defined in Section 2.1, and let a set of
violating decisions, Z, be defined as follows:

Z = {zk ∈ O|d(z, p) > r}, k = 1, . . . , |Z| (8)

Let the cardinality, N, of Z be defined as
N = |Z| (9)

Let the deviation of zk ∈ Z be defined as
dk = d(zk, p)− r (dk > 0) (10)

Then the total deviation of all elements in Z is

dVD =

√
∑(1 + dk)2

N
(11)

2.2.2. Spread of Non-Violating Decisions

The spread of non-violating decisions is one of the four measures proposed in this
article. This measure estimates how well spread out the preferred decisions are within the
bounding box located in the objective space. The greater the value of this measure, the
better the performance of an algorithm. The calculation of this measure is presented in
Algorithm 1.

Algorithm 1 Spread of Non-violating decisions

1: procedure SPREADESTIMATOR(outcomes)
. outcomes: objective vectors preferred by DM

2: Get count of outcomes, N← count(outcomes)
3: if N ≤ 1 then
4: return 0 . 1 or zero outcomes, spread is zero
5: if N == 2 then . 2 outcomes
6: return norm2(outcomes(2)− outcomes(1)) . return spread between 2 values
7: dtot← 0 . more than 2 outcomes, calculation required - initialize total spread, dtot
8: firstNode← outcomes(1) . get a node
9: currentNode← firstNode . set current node

10: while unProcessedNodes(outcomes) > 1 do . process each outcome
11: MarkNodeAsProcessed(currentNode) . mark outcome as processed
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Algorithm 1 Cont.

12: nearestNode=getNearestNode(currentNode,outcomes) . find nearest node to
outcome being processed

13: dist = norm2(currentNode− nearestNode) . calcuated distance between these
two solutions

14: dtot← dtot + dist . add their distance to total distance
15: currentNode← nearestNode
16: dist = norm2(currentNode− firstNode) . finally calculate distance to first solution
17: dtot← dtot + dist . add last distance to total distance
18: return dtot . return total distance

2.3. Core Dynamic Multi-Objective Optimization Algorithm

The core DMOA used in this study is presented in Algorithm 2. The algorithm starts
with a set of randomly generated solutions, after initializing its run-time parameters, such
as the population size, maximum archive size, maximum number of iterations, etc. The
non-dominated solutions are added to the archive. A loop is performed until the number
of iterations exceeds the maximum number of iterations. The non-dominated solutions,
which are found at the end of the loop’s execution, constitute the final solutions to the
associated optimization problem. The algorithm uses sentry solutions to check whether a
change in the environment has occurred.

Algorithm 2 Dynamic Multi-objective Optimization Algorithm

1: procedure DMOA(freq, severity, maxiteration, dMOP)
2: Set population size, N
3: Set archive max size, SizeArchive
4: Initialize the iteration counter, iteration← 0
5: Initialize time, t← 0
6: Initialize(Pt, freq, severity, dMOP, t) . initialize population of solutions, Pt
7: AssignNonDominatedToArchive(Pt, dMOP, t) . initialize archive
8: while iteration ≤maxiteration do . check if stopping condition has been reached
9: t← 1/severity · biteration/freqc . calculate the current time

10: Optimizer(Pt, dMOP, t) . perform the search optimization
11: Pick sentry solutions . select sentry solutions to check for change
12: if ENV changes(Pt, dMOP, t) then . check for change in environment
13: ProcessChange(Pt, freq, severity, dMOP, t) . respond to change
14: iteration← iteration+1 . increase iteration count

3. Experimental Setup

This section discusses the experimental setup used for this study. Section 3.1 discusses
the algorithm setup. The DM preferences are discussed in Section 3.2. Section 3.3 discusses
the benchmark functions, and the performance measures are highlighted in Section 3.4.
The statistical analysis approach is discussed in Section 3.5.

3.1. Algorithm Setup

The approach that was followed to incorporate the DM’s preference into the search
process of the DMOA is discussed in Section 3.1.1.

3.1.1. Decision-Maker’s Preference Incorporation

The different procedures and how they are used with a DMOA for the preference-
driven search process are presented in Figure 1. Before the normal run of the DMOA
starts, the a priori preference incorporation procedure is used to define the DM’s preference.
During the run of the DMOA, any of the constraint managing approaches can be used. If
a small environment change occurs, the DMOA’s change response approach is executed
during the normal DMOA run. However, if the change is large, requiring a change in
the boundary box placement, the interactive preference incorporation procedure is first



Algorithms 2023, 16, 504 6 of 26

completed before the DMOA’s change response approach is executed during the normal
DMOA run.

Figure 1. Preference-driven search process of a DMOA.

A Priori Preference Incorporation: A single run of the algorithm is executed. A series
of POFs is presented to the DM. The DM selects one of these POFs, and then selects one of
the points on the POF, which will become his xp and p, i.e., the preferred decision/solution
vector and the preferred outcome, respectively. This preference, together with the radius of
the bounding box specified by the DM during the bootstrap procedure (refer to Algorithm 3),
is used to drive the DMOA’s search to optimize the DMOPs under the constraints of the
DM’s preferences. The time complexity of the bootstrap procedure is similar to the time
complexity of the DMOA that is used to produce the POSs.

Algorithm 3 Bootstrap Procedure

1: procedure BOOTSTRAP(freq, severity, iteration, F)
2: Call DMOA(freq, severity, iteration, F)

. DMOA returns {POSk
t }, ∀k = 1, . . . , n

. where k is the kth environment change
3: i← DMChooseIn(1, . . . , n) . DM indicates their preferred POS
4: xp ← DMChooseIn(POSi

t) . DM indicates their preferred solution
5: p← F(xp, t) . DM’s preference is formulated
6: DM Choose box radius, r← random() . DM indicates their preferred boundary box size
7: return (xp : p : r)

Interactive Preference Incorporation: A significant change in the environment may
occur where the resulting POF may shift in such a way that the DM preference, p, is no
longer part of the new POF. In this scenario, the DM interactively redefines the position
of the bounding box ensuring that its preference lies on the new POF. A few scenarios
may emerge when this shift of the POF occurs. The initial preferred outcome, p, may no
longer lie on the new POF, but the functional value of the corresponding decision variable,
xp, may still lie on the new POF. The second possibility is that both p and the functional
value of xp do not lie on the new POF. In both cases, a new bounding box position needs
to be defined. The interactive redefinition of the bounding box position is presented in
Algorithm 4. The time complexity of the interactive preference incorporation procedure is
a constant value, i.e., low time complexity.
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Algorithm 4 Interactive Incorporation of Preferences

1: procedure REPOSITIONBOUNDINGBOX(F, xp, p, r, t)
. F: multi-objective function to be evaluated
. xp: DM preferred decision vector
. p: DM preferred outcome as defined in Equation (2), page 3
. r: DM preferred box radius
. Archive: POSt

2: POFt ← F(POSt, t) . POF is corresponding objective values of POS
3: if p ∈ POFt then . DM preferred outcome still lies on POF
4: return (xp:p:r)

5: if F(xp,t) ∈ POFt then . DM’s preferred decision lies on POF, preferred outcome does not
6: Reposition center of box, p← F(xp, t) . Automatically reposition center of box
7: return (xp:p:r)

8: xp ← DMChooseIn(POSt) . DM selects a new position for xp and p
9: Reposition center of box, p← F(xp, t) . Reposition center of box based on DM’s input

10: return (xp : p : r)

3.1.2. Algorithms

The following three approaches employ a penalty function (refer to Equation (3),
Section 2) to penalize violating decisions which do not satisfy the DM’s preferences. Each
of these approaches were incorporated into the hybrid DE and are the three constraint
managing approaches evaluated in this study:

1. Proportionate Penalty: With this approach, the penalty is proportional to the viola-
tion, and violating decisions are penalized during function evaluation. Algorithm 5
presents this approach, referred to as PPA for the rest of the article.

Algorithm 5 Proportionate Penalty Algorithm

1: procedure FUNCEVALUATE(F, x, t)
. F: multi-objective function to be evaluated
. x: decision vector
. p: as defined in Equation (2), page 3
. r: as defined in Equation (2), page 3
. λ: as defined in Equation (2), page 3
. λ: a random number between 100 and 1000
. I1: as defined in Equation (2), page 3

2: z← F(x,t) . calculate objective value of x
3: d← norm2(z-p) − r . calculate violation of z
4: if d ≤ 0 then
5: return z . x is a non-violating decision, no penalty applied

. x is a preference violating decision, proceed to penalize it for violation
6: penalty← λ· d . calculate penalty
7: penalty← I1· penalty . vectorize penalty
8: z← z + penalty . impose proportionate penalty to objective value of x
9: return z . return new penalized objective value of x

2. Death Penalty: Maximum/death penalty is imposed on violating decisions during
function evaluation. Some penalty, which is death, is administered on a decision
irrespective of the magnitude of the violation of that decision. With maximum penalty,
it becomes very unlikely that violating decisions will find their way into the archive,
because they will be dominated by non-violating decisions. Violating decisions are
computationally eliminated during the search process, and the optimization process
is driven towards a region of the search space dominated by non-violating decisions.
The Death Penalty Algorithm, referred to as DPA in the rest of the article, is presented
in Algorithm 6.
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Algorithm 6 Death Penalty

1: procedure FUNCEVALUATE(F, x, t)
. F: multi-objective function to be evaluated
. x: decision vector
. p: as defined in Equation (2), page 3
. r: as defined in Equation (2), page 3
. I1: as defined in Equation (2), page 3
. realmax: maximum real value on a machine

2: z← F(x,t) . calculate objective value of x
3: d← norm2(z-p) − r . calculate violation of z
4: if d ≤ 0 then
5: return z . x is a non-violating decision, no penalty applied

. x is a preference violating decision, proceed to penalize it for violation
6: penalty← realmax . calculate penalty
7: penalty← I1· penalty . vectorize penalty
8: z← penalty . impose death/max penalty
9: return z . return new penalized objective value of x

3. Restrict Search To Feasible Region: Feasibility is preserved by starting the search
within the preferred bounding box and employing the death penalty to prevent
preference violating decisions from entering the archive. This approach restricts the
search to the feasible region, unlike [40], and it improves the exploring capability
of this algorithm. Preferred decisions start the search during initialization of the
population of decisions. A pool of preferred decisions is aggregated with the DM
preference and the current decisions in the archive. Then, a loop is performed where
nearly identical clones of the pool of preferred decisions are created using polynomial
mutation [41]. These new clones constitute a new population from where the search
will start. Some of the non-dominated decisions in the new population are added to
the archive. Algorithm 7 presents the Restrict Search To Feasible Region Algorithm,
referred to as RSTFRA in the rest of the article.

Algorithm 7 Restrict Search to Feasible Region

1: procedure INITIALIZE(Pt, f req, severity, F, t)
. xp: DM preferred decision vector)
. archive: POS
. F: multi-objective function to be evaluated
. N: population size, fixed for this study

2: pool← [xp ; archive] . pooled preferences
3: i← 1 . initialize counter
4: while i ≤ N do
5: iNumberAttempts← 1
6: while (iNumberAttempts ≤ 100) && (!isPreferredDecision(solution, F, t) ) do .

searching for prefered decision
7: solution← randomlyChooseIn(pool) . randomly select solution from pool
8: solution← polynomial_mutate(solution) . apply mutation to solution
9: iNumberAttempts← iNumberAttempts + 1 . increment number of attempts

10: addSolutionToPopulation(Pt, solution) . add mutated solution to the population
11: i← i + 1
12: AssignNonDominatedToArchive(Pt, F, t ) . add non-dominated decisions to archive

The time complexity of the constraint managing approaches PPA and DP is a constant
value. The time complexity of RSTFRA is O(m) due to adding the non-dominated solution
to the archive with size m.

3.1.3. Differential Evolution Algorithm Control Parameters

The following settings were used for the DE algorithm in this study:

1. The base algorithm (refer to Algorithm 8) is characterized as DE/best/1/bin.
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2. To generate a trial vector from a parent vector during the mutation phase of the
algorithm, the best vector in the adjacent hypercube or sub-population of the parent
vector is selected as the target vector. The number of hypercubes employed by the
algorithm is the same as the number of objective functions in the underlying DMOP.

3. Two randomly selected vectors from the parent vector’s hypercube are used to form a
difference vector.

4. Binary crossover [42] is used due to its viability as a crossover method in DE algo-
rithms.

5. The scaling factor, β, amplifies the effects of the difference vector. It has been shown
that a larger β increases the probably of escaping local minima, but can lead to pre-
mature convergence. On the other hand, a smaller value results in smaller mutation
step sizes slowing down convergence, but facilitating better exploitation of the search
space [43,44]. This leads to a typical choice for β in the range (0.4, 0.95) [43,44].
Therefore, in this study, the algorithm randomly chooses β ∈ (0.4, 1). The recom-
bination probability is pr = 0.8, since DE convergence is insensitive to the control
parameters [42,45] and a large value of pr speeds up convergence [43,45,46].

Algorithm 8 Differential Evolution Algorithm

1: procedure OPTIMIZER(P, F, t)
. β: scaling factor set per algorithm
. pr: recombination prob set per algorithm
. maxgen(≥ 1): number of function evaluations set per algorithm
. P: current population of vectors
. F: multi-objective function to be optimized
. t: current time

2: gen = 1 . set the generation counter
3: Pgen ← P . initialize current population
4: V← Ø . initialize set of vectors
5: while gen ≤maxgen do . check if stopping condition has been reached
6: while moreUnprocessed(v ∈ Pgen) do . process all individuals of population
7: v

′ ← getTrialVector(β, v, Pgen, F, t) . calculate trial vector
8: v

′′ ← getChildVector(pr, v
′
, v, F, t) . produce child vector

9: V← V ∪ {v, v
′′
} . add trial and child vectors to set of vectors

10: markAsProcessed(v ∈ Pgen)

11: Pgen ← getNextGenerationVectors(V) . produce next generation
12: gen← gen+1 . increment counter
13: V← Ø . reset set of vectors
14: AssignNonDominatedToArchive(Pmaxgen, F, t ) . add non-dominated solutions to archive

The time complexity of the static non-dominated sorting genetic algorithm II (NSGA-
II) is O(iN2), where i is the number of objective functions and N is the population size [35].
The non-dominated sorting has a time complexity of O(iN2), the crowding distance cal-
culation has a time complexity of O(iN log N), and elitist sorting has a time complexity of
O(iN2) [35].

The DE algorithm used in this study uses the same non-dominated sorting and elitist
sorting as NSGA-II. In addition, the time complexity of adding a solution to the archive
is O(im), where m is the size of the archive. When a change in the environment occurs,
the re-evaluation of the archive has a time complexity of O(im2). However, it should be
noted that all DMOAs that incorporate a change response would typically re-evaluate
the solutions. Therefore, the time complexity of the DE is O(im2). Furthermore, since the
base algorithm used in this study is only for demonstration purposes, if these approaches
are incorporated into another DMOA, the time complexity will depend on that of the
chosen DMOA.



Algorithms 2023, 16, 504 10 of 26

3.2. Decision-Maker’s Preferences

The DM preferences are correspondingly associated, serially, with each of the eighteen
experimental configurations in Section 3.3. For instance, the first experimental preference
in Table 1 is associated with the first experimental preference in Table 2, while both are
associated with the first experimental configuration in Table 3.

Table 1. Experimental preferences for decision variables.

S/N x1 x2 x3 x4 x5 x6

1 0.47600 0.53000 0.5877 0.59104 0.5324 0.4989
2 0.47700 0.33000 0.1630 0.42817 0.3250 0.2654
3 0.47600 0.19000 0.0912 0.17928 0.1616 0.2331
4 0.81600 0.95000 0.8768 0.86623 0.4892 0.7924
5 0.76100 −0.10000 0.1513 −0.17267 0.0387 0.1229
6 0.16700 0.18000 0.0032 −0.00311 0.1462 −0.0284
7 0.96400 3.5 × 10−6 0.5378 0.51880 0.3188 0.5433
8 0.00000 2.8 × 10−5 0.3660 0.28965 0.4592 0.3918
9 1.00000 0.00030 0.3992 0.39925 0.5292 0.4621

10 0.35700 1.00000 0.5083 0.74667 0.8383 0.7472
11 0.00000 0.00091 0.7330 0.49810 0.8207 0.6616
12 0.00000 0.08000 0.6419 0.87802 0.8485 0.8020
13 0.14600 0.31000 0.2970 0.30878 0.3052 0.3065
14 0.73400 0.16000 0.1657 0.13508 0.1101 0.1729
15 0.31700 0.31000 0.3230 0.32197 0.3290 0.2881
16 0.06100 0.00460 0.0027 0.00225 0.0032 0.0079
17 1.00000 0.04400 0.0391 0.10593 0.0204 0.0658
18 0.00000 0.00280 0.0015 0.00042 0.0016 0.0045

Table 2. Experimental preferences for objective values.

S/N f1 f2 f3

1 0.4800 0.3200 N/A
2 0.4800 0.6200 N/A
3 0.4800 0.9300 N/A
4 0.8200 2.4000 N/A
5 0.7600 0.1700 N/A
6 0.1700 0.6300 N/A
7 0.9300 4.5 × 10−71 1.3843
8 1.8000 2.9 × 10−59 0
9 1.0 × 10−16 4.5 × 10−62 1.6781

10 2.8 × 10−8 2.8 × 10−8 1.6354
11 2.9000 0.0041 0
12 3.5000 0.4400 0
13 0.1500 4.6000 N/A
14 0.7300 9.5000 N/A
15 0.3200 4.3000 N/A
16 0.0610 0.9700 N/A
17 1.0000 0.2100 N/A
18 0.0000 1.0000 N/A

3.3. Benchmark Functions

Three DMOPs with various τt-nt combinations were used in this study. The experi-
mental configurations used for these benchmarks are presented in Table 3.
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Table 3. Benchmark function configurations.

S/N DMOP τt nt Iterations c(f(x)) σ(runs)

1 FDA1 4 10 16 20 30
2 FDA1 5 10 20 20 30
3 FDA1 2 10 8 20 30
4 FDA1 4 1 16 20 30
5 FDA1 5 1 20 20 30
6 FDA1 2 1 8 20 30

7 FDA5 4 10 16 20 30
8 FDA5 5 10 20 20 30
9 FDA5 2 10 8 20 30

10 FDA5 4 1 16 20 30
11 FDA5 5 1 20 20 30
12 FDA5 2 1 8 20 30

13 dMOP2 4 10 16 20 30
14 dMOP2 5 10 20 20 30
15 dMOP2 2 10 8 20 30
16 dMOP2 4 1 16 20 30
17 dMOP2 5 1 20 20 30
18 dMOP2 2 1 8 20 30

The following symbols were used in Table 3: τt: frequency of change; nt: severity of
change; c( f (x)): count of function evaluations per iteration; σ(runs): number of runs per
configuration; FDA1: type I DMOP (POS is dynamic, POF is static), POF = 1−

√
f1 and is

convex, POS is xi = G(t) [10,38]; FDA5: type II DMOP (POS and POF are dynamic), for 3
objectives, POF = f 2

1 + f 2
2 + f 2

3 = (1 + G(t))2 and is non-convex, POS is xi = G(t) [10,38];

dMOP2: POF changes from convex to concave, type II DMOPs, POF = 1− f H(t)
1 , POS is

xi = G(t) [38,39].

3.4. Performance Measures

Each of the performance measures were calculated immediately before a change in the
environment occurred. This was performed for thirty runs. An average of the values of the
thirty runs was then calculated for each measure in each environment.

The following traditional DMOO performance measures were used in this study:

• Accuracy (acc) measures how accurately a DMOA is able to approximate the true
POF of a DMOP [1,37,38]. The lower the value of acc, the better the performance of
the DMOA.

• Stability (stab) quantifies the effect of environment changes on the accuracy mea-
sure value [1,37,38,47]. The lower the value of this measure, the better the DMOA’s
performance.

• Hypervolume Ratio (hvr) [48] measures the proportion of the objective space that is
covered by a non-dominated set without suffering from the bias of a convex region as
seen with the hypervolume measure [49]. The higher the value of this measure, the
better the DMOA’s performance.

• Reactivity (react) [50] measures how long it takes a DMOA to recover after a change
in environment occurred, i.e., the length of time it takes to reach a specified accuracy
threshold after the change occurred [38]. The lower the value of this measure, the
better the DMOA’s performance.

The following newly proposed measures were used in this study:

• Number of Non-Violating Decisions (nNVD) measures the number of decisions that
fall within the DM’s preference set. The higher the value of this measure, the better a
DMOA’s performance.
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• Spread of Non-Violating Decisions (sNVD) measures the spread of decisions within
the preference set. A high value indicates a good DMOA performance.

• Number of Violating Decisions (nVD) measures the number of violating decisions in
the archive. These are decisions that do not lie within the preference set. The lower
the value of this measure, the better the performance of the DMOA.

• Total Deviation of Violating Decisions (dVD) measures the total deviation from the
preference set for all violating decisions in the archive. It is calculated based on the
steps that are highlighted in Section 2.2.1. The lower the value of this measure, the
better the DMOA’s performance.

The four new performance measures proposed in this article specifically measure the
performance of a DMOA with regards to DM preference constraints, and thus facilitate the
comparative analysis of DMOAs in the context of a DM’s preferences.

3.5. Statistical Analysis

A statistical analysis of the performance measure values was conducted in accordance
with the wins-lossesB algorithm proposed in [1]. The wins-lossesB algorithm was imple-
mented in R [51], and the Kruskal–Wallis and Mann–Whitney U statistical functions in
R were used as stipulated in [1]. The calculation of wins and losses by the wins-lossesB
algorithm is presented in Algorithm 9 [52].

A win or loss is only recorded if there was a statistical significant difference in perfor-
mance of the two algorithms that are being compared with the pair-wise Mann–Whitney U
test. Therefore, Di f f > 0 indicates a good performance, since the DMOA obtained more
wins than losses. On the other hand, Di f f < 0 indicates a poor performance, since the
DMOA was awarded more losses than wins.

Algorithm 9 wins-lossesB algorithm for wins and losses calculation [52]

1: for each benchmark do
2: for each nt-τt combination do
3: for each performance measure, pm do
4: for each algorithm alg do
5: Calculate the average value pmavg for each of the 30 runs
6: Perform Kruskal–Wallis test on the average values, pmavg
7: if statistically significant difference then
8: for each pair of algorithms do
9: Perform Mann–Whitney U test

10: if statistically significant difference then
11: for each environment env do
12: Assign a win to algorithm with best average over all
13: pmavg for env
14: Assign a loss to algorithm with worst average over all
15: pmavg for env

16: Calculate Di f f = #wins− #losses
. calculate Di f f for each parameter (benchmark, nt-τt combination, performance measure,
algorithm) as required for analysis

4. Results

This section presents a summary of the results obtained from this study. Detailed
results are, however, presented in Appendix A.

The summarized results are presented in Tables 4–6. For all of these tables, any column
with a bold entry signifies the winning algorithm for the particular measure of performance,
or for the experimental configuration, in the corresponding row.

Figures 2 and 3 present the objective space for a selected DMOP which is constrained
by a bounding box representing a DM’s preferences for two selected experimental configu-
rations. The bounding box in these specific instances is a sphere. The two figures present
the results for a randomly chosen run and a randomly chosen environment among many
environments (changes) that are typical of a single run of a DMOA solving a DMOP.
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Figure 2. Decisions found by DPA (above) and RSTFRA (below) for FDA5 with Sphere Spec =
(1.7808, 2.9185× 10−59, 0.0, 1.5), nt = 10 and τt = 5.

Table 4 presents the results for six experimental configurations, for various nt–τt
combinations, i.e., different types of environment changes. It highlights the total number
of wins and losses obtained by each constraint managing approach (algorithm) over all
benchmarks and measures for each of the environment types. The death-penalty algorithm
(DPA) performed the best for four types of environments (nt–τt combinations), while the
proportionate-penalty algorithm (PPA) outperformed the other DMOAs in the other two
environment types (nt = 10, τ = 2 and nt = 10, τ = 4). In those six nt − τt combinations,
the RSTFRA never outperformed DPA but it performed better than PPA in two types of
environments (nt = 1, τ = 4 and nt = 1, τ = 2). DPA was the only DMOA that obtained
more wins than losses for all environment types. The Restrict-search-to-feasible-region
algorithm (RSTFRA) obtained more losses than wins for all environment types, except for
nt = 10, τ = 2. On the other hand, PPA obtained more wins than losses for all environments,
except nt = 1, τ = 4 and nt = 1, τ = 2.
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Figure 3. Decisions found by DPA (above) and PPA (below) for FDA5 with Sphere Spec = (1.0276×
10−16, 4.4955× 10−62, 1.68781, 1.5), nt = 10 and τt = 2.

Table 5 presents the performance of the proposed algorithms with respect to the
performance measures discussed in Section 3.4. It highlights the total number of wins
and losses obtained by each algorithm for all the benchmarks and environment types for
each of the performance measures. DPA performed the best for five of the eight measures
and second-best for the rest. Two (react and dVD) of its five wins were ties with RSTFRA.
Results for the first four measures in Section 3.4 indicated that DPA performed the best for
three (acc, hvr, react) out of the four measures. It won with the least number of losses for
the accuracy measure, acc, making it the most accurate of the proposed algorithms. For
those four measures, RSTFRA won once (stab), but obtained the same number of losses as
PPA for the win. RSTFRA also obtained the highest number of worst rankings. None of
the algorithms obtained more wins than losses for all of the measures, with all algorithms
obtaining more losses than wins for at least three measures.
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Table 4. Overall wins and losses for various frequency and severity of change combinations using
wins-lossesB [1].

nt τt RESULTS PPA DPA RSTFRA

10 4 Wins 64 59 53
10 4 Losses 54 58 64
10 4 Diff 10 1 −11
10 4 Rank 1 2 3

10 5 Wins 61 67 32
10 5 Losses 45 40 75
10 5 Diff 16 27 −43
10 5 Rank 2 1 3

10 2 Wins 73 60 35
10 2 Losses 40 54 74
10 2 Diff 33 6 −39
10 2 Rank 1 2 3

1 4 Wins 41 67 56
1 4 Losses 66 44 54
1 4 Diff −25 23 2
1 4 Rank 3 1 2

1 5 Wins 56 73 43
1 5 Losses 53 47 72
1 5 Diff 3 26 −29
1 5 Rank 2 1 3

1 2 Wins 51 77 55
1 2 Losses 64 49 70
1 2 Diff −13 28 −15
1 2 Rank 3 1 2

DPA had the highest number of wins for the measures proposed in this study, i.e.,
it performed the best for two out of four measures, making DPA the best performing
algorithm for all the performance measures discussed in Section 3.4. PPA recorded the
highest number of wins for the nNVD measure, while DPA ranked first for the sNVD
measure. Thus, PPA and DPA performed better than RSTFRA in finding non-violating
decisions of a DM’s preferences. Although RSTFRA ranked best for nVD and dVD, the
magnitude of wins recorded by RSTFRA for those two measures were negligible. Despite
RSTFRA ranking first for nVD and dVD, PPA never lost to any of the other algorithms on
those measures. DPA tied with RSTFRA on the dVD measure.

Table 6 presents the overall results, presenting the total number of wins and losses
obtained by each algorithm over all performance measures and all environment types for
all benchmarks. PPA ranked first with 403 wins, DPA recorded 346 wins, while RSTFRA
ranked last with 274 wins. In addition, RSTFRA recorded the highest number of overall
losses (409), resulting in the most negative Di f f value. DPA recorded the least number of
overall losses and the most positive Di f f value. These overall results are consistent with
the earlier results, which indicate that DPA performed the best on most of the performance
measures and nt − τt combinations, while RSTFRA consistently lagged behind the other
two proposed algorithms.

Figures 2 and 3 present the objective space where the preferred objective vectors, or
preferred outcomes, are contained in a DM’s preference set. The preference set, or the
bounding box, in these instances is a sphere whose defining properties are specified by a
DM in the bootstrap procedure described in Algorithm 3. For the sphere specifications in
Figures 2 and 3, the first three numbers represent the location of the center of the sphere,
while the last number represents the radius of the sphere.



Algorithms 2023, 16, 504 16 of 26

Table 5. Overall Wins and Losses for various performance measures, and frequency and severity of
change combinations, using wins-lossesB [1].

PM RESULTS PPA DPA RSTFRA

acc Wins 69 83 63
acc Losses 75 60 80
acc Diff −6 23 −17
acc Rank 2 1 3

stab Wins 23 23 32
stab Losses 22 34 22
stab Diff 1 −11 10
stab Rank 2 2 1

hvr Wins 82 94 40
hvr Losses 62 50 104
hvr Diff 20 44 −64
hvr Rank 2 1 3

react Wins 14 45 45
react Losses 57 25 22
react Diff −43 20 23
react Rank 3 1 1

nNVD Wins 91 65 39
nNVD Losses 38 67 90
nNVD Diff 53 −2 −51
nNVD Rank 1 2 3

sNVD Wins 67 87 47
sNVD Losses 68 48 85
sNVD Diff −1 39 −38
sNVD Rank 2 1 3

nVD Wins 0 2 4
nVD Losses 0 4 2
nVD Diff 0 −2 2
nVD Rank 3 2 1

dVD Wins 0 4 4
dVD Losses 0 4 4
dVD Diff 0 0 0
dVD Rank 3 1 1

Table 6. Overall wins and losses for various DMOA using wins-lossesB [1].

RESULTS PPA DPA RSTFRA

Wins 346 403 274
Losses 322 292 409

Diff 24 111 −135
Rank 2 1 3

Figures 2 and 3 are simply snapshots and are thus incapable of showing the dynamics
of the preference set. They are, however, presented in this section to provide a one-time
view into the state of the objective space during the optimization process.

In all the snapshots presented by Figures 2 and 3, all the decisions in the archive are
preferred by the DM, since all the objective vectors lie within the spheres representing the
DM’s preferences. This is a testament to the fact that the proposed algorithms are effective
in finding optimal trade-off solutions/decisions that reflect a DM’s preferences within the
search space.
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DPA in Figure 2 had the highest number of preferred vectors/outcomes within its
spheres, which is consistent with earlier results in this section, indicating its overall supe-
riority over the other algorithms proposed in this study. As a matter of fact, it is ranked
best for the experimental configuration represented by Figure 2, and RSTFRA is ranked the
worst performing algorithm.

In the experimental configuration represented by Figure 3, PPA ranked best, though
only marginally better than DPA. Both algorithms effectively found the DM’s preferred
decisions, as none of the algorithms produced violating decisions.

5. Conclusions

This article investigated the incorporation of a DM’s preferences when solving DMOPs.
The following contributions were made: an approach that is partly a priori and partly
interactive that enables a decision-maker to indicate its preferences for dynamic problems;
a bounding box approach to incorporate the preferences in the DMOA’s search; constraint
managing approaches to drive the search of a DMOA constrained by the preferences; and
new performance measures measuring how well a DMOA’s found solutions adhere to the
preferences of a DM.

The results show that a DM’s preferences can effectively be specified using the pro-
posed approach which is partly a priori and interactive. The results further indicate that
the proposed bounding box specification is an effective mathematical abstraction of a DM’s
preferences. The three proposed constraint managing approaches showed varying degree
of performance. The DPA performed the best, while RSTFRA lagged behind the other
proposed approaches. Furthermore, the four new performance measures proposed in this
article that specifically evaluate the performances of DMOAs in the context of a DM’s
preferences proved to effectively evaluate the performance of the DMOAs.

Future work will include experimenting with some of the geometric properties of
the bounding box and the impact that these properties have on being able to specify the
preferences of the DM in various ways.

It will not be trivial to compare the performance of different approaches that define a
decision-maker’s preferences in the traditional way that DMOAs’ performance is evaluated.
The way in which a specific approach defines the decision-maker’s preferences will directly
influence the solutions that a DMOA finds. This article took the first step towards this, by
proposing new performance measures for measuring the performance of DMOAs based
on how well their found solutions adhere to the DM’s preferences. However, the question
remains: if you compare two approaches that incorporate decision-maker preferences, how
will you be able to determine whether one will be better than the other? As long as both
approaches find solutions that do adhere to the DM preferences, in the end, the best (or
most preferred) approach will be dependent on the application and the preference of the
real decision-maker. Future work will investigate this further, i.e., in which ways can the
performance of DMOAs incorporating DM preferences be efficiently compared.

In the future, the proposed bounding box approach and constraint managing ap-
proaches will be incorporated into various state-of-the-art DMOAs, evaluating the DMOAs’
performance on a range of DMOPs with varying characteristics [38] and measuring their
performance with the newly proposed measures. Lastly, approaches to incorporate uncer-
tainty in a DM’s preferences and the performance of the proposed approaches in this article
in the presence of uncertainty will also be investigated.
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Appendix A. Detailed Results

Table A1. acc and stab for each DMOA with various frequency and severity of change in different
environments.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

fda1 10 4 acc 0.7100 0.7360 0.6633 stab 0.0000 0.0000 0.0000
fda1 10 4 acc 0.5959 0.6533 0.7089 stab 0.1913 0.2382 0.2055
fda1 10 4 acc 0.6236 0.6581 0.6701 stab 0.1583 0.1845 0.1725
fda1 10 4 acc 0.6355 0.5756 0.6087 stab 0.2044 0.1675 0.1932

fda1 10 5 acc 0.6645 0.6721 0.7355 stab 0.0000 0.0000 0.0000
fda1 10 5 acc 0.6443 0.6303 0.6217 stab 0.1826 0.1801 0.1188
fda1 10 5 acc 0.6204 0.6630 0.6485 stab 0.2073 0.2242 0.1906
fda1 10 5 acc 0.5634 0.5295 0.5401 stab 0.2073 0.2242 0.1906

fda1 10 2 acc 0.6993 0.5643 0.6647 stab 0.0000 0.0000 0.0000
fda1 10 2 acc 0.5952 0.6773 0.6496 stab 0.1347 0.1697 0.1500
fda1 10 2 acc 0.6311 0.6796 0.6332 stab 0.1091 0.1621 0.1531
fda1 10 2 acc 0.5669 0.5971 0.5843 stab 0.2105 0.1919 0.1923

fda1 1 4 acc 0.9975 0.9936 0.9823 stab 0.0000 0.0000 0.0000
fda1 1 4 acc 0.7261 0.6684 0.7465 stab 0.0000 0.0002 0.0000
fda1 1 4 acc 0.9671 0.9961 0.9836 stab 0.0329 0.0039 0.0164
fda1 1 4 acc 0.6606 0.6645 0.7412 stab 0.0004 0.0000 0.0000

fda1 1 5 acc 0.9644 0.7128 0.7965 stab 0.0000 0.0000 0.0000
fda1 1 5 acc 0.7928 0.8884 0.8250 stab 0.0000 0.0000 0.0000
fda1 1 5 acc 0.9139 0.6744 0.8290 stab 0.0845 0.278 0.1030
fda1 1 5 acc 0.7700 0.8612 0.7521 stab 0.0000 0.0000 0.0012

fda1 1 2 acc 0.9580 0.9370 0.8967 stab 0.0000 0.0000 0.0000
fda1 1 2 acc 0.8832 0.9017 0.8840 stab 0.0000 0.0000 0.0000
fda1 1 2 acc 0.9587 0.9519 0.8972 stab 0.0410 0.0252 0.0882
fda1 1 2 acc 0.8834 0.7915 0.8299 stab 0.0000 0.0000 0.0000

Table A2. hvr and react for each DMOA for FDA1 with various frequency and severity of change.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

fda1 10 4 hvr 1.7400 1.7865 1.8379 react 13.0000 13.0000 13.0000
fda1 10 4 hvr 1.5609 1.7001 1.9762 react 9.0000 9.0000 9.0000
fda1 10 4 hvr 1.7016 1.6661 1.5562 react 5.0000 5.0000 5.0000
fda1 10 4 hvr 1.7977 2.0063 1.5598 react 1.0000 1.0000 1.0000

fda1 10 5 hvr 1.6588 1.592 1.9064 react 16.0000 16.0000 16.0000
fda1 10 5 hvr 1.7341 1.7048 1.5894 react 11.0000 11.0000 11.0000
fda1 10 5 hvr 1.6116 1.7846 1.7651 react 6.0000 6.0000 6.0000
fda1 10 5 hvr 1.4383 1.733 1.624 react 1.0000 1.0000 1.0000
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Table A2. Cont.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

fda1 10 2 hvr 1.7493 1.5363 1.7156 react 7.0000 7.0000 7.0000
fda1 10 2 hvr 1.6243 1.5522 1.5465 react 5.0000 5.0000 5.0000
fda1 10 2 hvr 1.5960 1.5437 1.4597 react 3.0000 3.0000 3.0000
fda1 10 2 hvr 1.6373 1.5162 1.4294 react 1.0000 1.0000 1.0000

fda1 1 4 hvr 1.4955 1.5851 1.7424 react 13.0000 13.0000 13.0000
fda1 1 4 hvr 2.9606 2.7286 2.9838 react 8.3000 8.0667 8.4000
fda1 1 4 hvr 1.4713 1.6797 1.7775 react 5.0000 5.0000 5.0000
fda1 1 4 hvr 2.7961 2.7168 2.8980 react 1.0000 1.0000 1.0000

fda1 1 5 hvr 2.0055 1.4014 1.4275 react 12.5000 7.5000 9.5000
fda1 1 5 hvr 3.7040 4.3578 3.6041 react 10.4000 10.6333 10.3667
fda1 1 5 hvr 1.8095 1.2873 1.2637 react 4.8333 3.0000 3.1667
fda1 1 5 hvr 3.6045 4.2051 3.5012 react 1.0000 1.0000 1.0000

fda1 1 2 hvr 2.0333 1.7847 2.0553 react 4.2000 3.5000 2.8000
fda1 1 2 hvr 4.2680 4.2409 4.0464 react 4.6333 4.5667 4.5667
fda1 1 2 hvr 1.9415 1.7069 2.4759 react 2.8000 2.6000 2.3333
fda1 1 2 hvr 3.9993 3.5754 3.7061 react 1.0000 1.0000 1.0000

Table A3. nNVD and sNVD for each DMOA for FDA1 with various frequency and severity of change.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

fda1 10 4 nNVD 99.4333 98.1333 99.8000 sNVD 0.0297 0.0301 0.0296
fda1 10 4 nNVD 99.5000 96.1667 96.0667 sNVD 0.0298 0.0308 0.0308
fda1 10 4 nNVD 99.5000 94.3667 95.6000 sNVD 0.0298 0.0314 0.0310
fda1 10 4 nNVD 99.0333 96.3000 96.8333 sNVD 0.0299 0.0308 0.0306

fda1 10 5 nNVD 100.0000 100.0000 100.0000 sNVD 0.0295 0.0295 0.0295
fda1 10 5 nNVD 100.0000 100.0000 100.0000 sNVD 0.0295 0.0295 0.0295
fda1 10 5 nNVD 100.0000 99.9667 100.0000 sNVD 0.0295 0.0295 0.0296
fda1 10 5 nNVD 100.0000 100.0000 100.0000 sNVD 0.0295 0.0295 0.0295

fda1 10 2 nNVD 64.9667 64.9000 67.1333 sNVD 0.0457 0.0458 0.0441
fda1 10 2 nNVD 67.4333 58.6667 57.6667 sNVD 0.0442 0.0506 0.0514
fda1 10 2 nNVD 67.5667 58.7000 56.0000 sNVD 0.044 0.0505 0.0532
fda1 10 2 nNVD 67.7000 57.4667 57.7333 sNVD 0.0438 0.0518 0.0512

fda1 1 4 nNVD 26.2667 27.6333 25.6333 sNVD 0.0671 0.0648 0.0686
fda1 1 4 nNVD 26.2333 26.5667 21.6333 sNVD 0.0719 0.0777 0.0853
fda1 1 4 nNVD 26.1667 23.1333 22.7000 sNVD 0.0675 0.0773 0.0784
fda1 1 4 nNVD 25.0000 25.3667 25.6000 sNVD 0.0735 0.0756 0.0769

fda1 1 5 nNVD 100.0000 100.0000 100.0000 sNVD 0.0296 0.0295 0.0295
fda1 1 5 nNVD 71.4333 99.0333 100.0000 sNVD 0.0422 0.0301 0.0296
fda1 1 5 nNVD 100.0000 98.9333 99.3000 sNVD 0.0296 0.0299 0.0298
fda1 1 5 nNVD 76.2667 98.1667 95.7667 sNVD 0.0394 0.0303 0.0291

fda1 1 2 nNVD 66.0333 65.7000 66.2000 sNVD 0.0448 0.0453 0.0449
fda1 1 2 nNVD 31.7000 30.2333 40.3000 sNVD 0.0973 0.1029 0.0726
fda1 1 2 nNVD 62.6000 43.2333 43.4333 sNVD 0.04708 0.0690 0.0670
fda1 1 2 nNVD 31.4667 31.3667 28.8667 sNVD 0.0981 0.1001 0.1089
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Table A4. nVD and dVD for each DMOA for FDA1 with various frequency and severity of change.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

fda1 10 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 10 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 10 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 10 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000

fda1 10 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 10 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 10 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 10 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000

fda1 10 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 10 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 10 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 10 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000

fda1 1 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 1 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 1 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 1 4 nVD 0.0667 0.0000 0.0000 dVD 0.0667 0.0000 0.0000

fda1 1 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 1 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 1 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 1 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000

fda1 1 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 1 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 1 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda1 1 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000

Table A5. acc and stab for each DMOA for FDA5 with various frequency and severity of change.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

fda5 10 4 acc 0.6404 0.5962 0.5380 stab 0.0000 0.0000 0.0000
fda5 10 4 acc 0.6751 0.7731 0.7557 stab 0.1793 0.1457 0.0884
fda5 10 4 acc 0.4445 0.4619 0.6266 stab 0.4251 0.4261 0.2747
fda5 10 4 acc 0.2282 0.2270 0.1946 stab 0.4743 0.5300 0.4098

fda5 10 5 acc 0.2683 0.4080 0.8316 stab 0.0000 0.0000 0.0000
fda5 10 5 acc 0.4298 0.6803 0.8570 stab 0.1992 0.1543 0.0168
fda5 10 5 acc 0.5140 0.6998 0.8183 stab 0.2266 0.1100 0.0883
fda5 10 5 acc 0.5382 0.6913 0.7904 stab 0.2461 0.1599 0.1331

fda5 10 2 acc 0.6239 0.6727 0.9835 stab 0.0000 0.0000 0.0000
fda5 10 2 acc 0.8799 0.8925 0.9526 stab 0.0985 0.0860 0.0000
fda5 10 2 acc 0.6285 0.6549 0.9234 stab 0.3367 0.2923 0.0277
fda5 10 2 acc 0.4285 0.4320 0.9186 stab 0.4402 0.4291 0.0455

fda5 1 4 acc 0.9984 1.0000 1.0000 stab 0.0000 0.0000 0.0000
fda5 1 4 acc 0.9986 0.9955 0.9970 stab 0.0014 0.0045 0.0030
fda5 1 4 acc 1.0000 0.9991 0.9991 stab 0.0000 0.0009 0.0009
fda5 1 4 acc 0.9996 0.9945 0.9956 stab 0.0004 0.0055 0.0044

fda5 1 5 acc 1.0000 0.9993 0.9958 stab 0.0000 0.0000 0.0000
fda5 1 5 acc 0.9953 0.9915 0.9746 stab 0.0047 0.0085 0.0254
fda5 1 5 acc 1.0000 0.9971 0.9976 stab 0.0000 0.0029 0.0024
fda5 1 5 acc 0.9963 0.9962 0.9793 stab 0.0037 0.0038 0.0207

fda5 1 2 acc 1.0000 0.9993 0.9948 stab 0.0000 0.0000 0.0000
fda5 1 2 acc 0.9963 0.9990 0.9781 stab 0.0037 0.0010 0.0219
fda5 1 2 acc 1.0000 0.9993 0.9980 stab 0.0000 0.0007 0.0020
fda5 1 2 acc 1.0000 0.9987 0.9853 stab 0.0000 0.0013 0.0147
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Table A6. hvr and react for each DMOA for FDA5 with various frequency and severity of change.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

fda5 10 4 hvr 1.6654 1.3814 1.2592 react 12.9667 12.9667 12.5000
fda5 10 4 hvr 2.4693 1.7110 1.5734 react 8.9333 8.8333 8.8333
fda5 10 4 hvr 3.2302 1.8911 1.6400 react 5.0000 4.9667 5.0000
fda5 10 4 hvr 2.0206 2.0017 1.7762 react 1.0000 1.0000 1.0000

fda5 10 5 hvr 2.1537 2.7315 2.4955 react 16.0000 16.0000 15.9333
fda5 10 5 hvr 2.2018 2.6023 1.9044 react 11.0000 10.8000 10.9333
fda5 10 5 hvr 2.267 2.3623 2.0773 react 6.0000 6.0000 6.0000
fda5 10 5 hvr 2.1636 2.4252 1.8647 react 1.0000 1.0000 1.0000

fda5 10 2 hvr 1.5414 1.6826 1.2248 react 6.9000 7.0000 7.0000
fda5 10 2 hvr 3.3034 3.2674 1.4156 react 5.0000 4.9667 5.0000
fda5 10 2 hvr 4.9233 5.1433 1.1358 react 3.0000 3.0000 3.0000
fda5 10 2 hvr 3.5145 4.0314 1.2700 react 1.0000 1.0000 1.0000

fda5 1 4 hvr 4.4565 4.0032 3.8261 react 12.6000 13.0000 13.0000
fda5 1 4 hvr 2.4313 2.5719 2.2178 react 7.7667 7.3000 7.5333
fda5 1 4 hvr 4.7446 3.4347 3.5272 react 5.0000 4.8667 4.8667
fda5 1 4 hvr 2.1979 2.7897 2.2656 react 1.0000 1.0000 1.0000

fda5 1 5 hvr 2.9987 2.6455 1.9198 react 16.0000 15.0000 11.5000
fda5 1 5 hvr 2.6475 2.1308 1.0979 react 8.2000 7.3000 2.8000
fda5 1 5 hvr 3.088 2.8665 2.5523 react 6.0000 5.3333 5.5000
fda5 1 5 hvr 2.5349 2.3717 1.3460 react 1.0000 1.0000 1.0000

fda5 1 2 hvr 3.0785 3.5184 1.8674 react 4.0000 3.9000 3.0000
fda5 1 2 hvr 2.2679 3.1541 1.0209 react 3.3000 3.7000 1.2000
fda5 1 2 hvr 2.9413 3.3106 3.2396 react 3.0000 2.9333 2.6667
fda5 1 2 hvr 3.2166 3.2704 2.2137 react 1.0000 1.0000 1.0000

Table A7. nNVD and sNVD for each DMOA for FDA5 with various frequency and severity of change.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

fda5 10 4 nNVD 39.5000 50.0333 45.3000 sNVD 0.1175 0.0966 0.1008
fda5 10 4 nNVD 57.1667 67.3333 68.4333 sNVD 0.0906 0.0791 0.0726
fda5 10 4 nNVD 63.5000 74.6333 63.1333 sNVD 0.1100 0.0915 0.0962
fda5 10 4 nNVD 71.9000 72.9333 58.8667 sNVD 0.1237 0.1122 0.1245

fda5 10 5 nNVD 42.0000 49.9667 27.4000 sNVD 0.1652 0.1327 0.1010
fda5 10 5 nNVD 72.0667 70.2000 35.0667 sNVD 0.1105 0.1015 0.0915
fda5 10 5 nNVD 74.4333 65.4667 36.4000 sNVD 0.1089 0.1005 0.0940
fda5 10 5 nNVD 79.0667 60.1667 34.0333 sNVD 0.1017 0.1079 0.1059

fda5 10 2 nNVD 12.2667 11.8333 2.9333 sNVD 0.2712 0.2546 0.0040
fda5 10 2 nNVD 13.1667 9.1000 1.5667 sNVD 0.1928 0.2910 0.0032
fda5 10 2 nNVD 19.3000 9.8000 2.6333 sNVD 0.2200 0.3729 0.0005
fda5 10 2 nNVD 41.5667 33.8000 2.6000 sNVD 0.1413 0.1716 0.0062

fda5 1 4 nNVD 12.9667 12.7000 9.6333 sNVD 0.1967 0.2117 0.0279
fda5 1 4 nNVD 32.4667 18.6667 12.3667 sNVD 0.2258 0.1087 0.0253
fda5 1 4 nNVD 13.6667 12.9667 9.3667 sNVD 0.2683 0.2654 0.0122
fda5 1 4 nNVD 29.2333 28.9000 16.5333 sNVD 0.2238 0.0853 0.0124

fda5 1 5 nNVD 19.4000 23.2000 21.7333 sNVD 0.0897 0.0592 0.0568
fda5 1 5 nNVD 35.8333 34.2000 67.6333 sNVD 0.0946 0.0687 0.0368
fda5 1 5 nNVD 21.0333 23.4333 21.0333 sNVD 0.1374 0.1011 0.0651
fda5 1 5 nNVD 39.1 33.6333 62.8333 sNVD 0.0757 0.0693 0.0407

fda5 1 2 nNVD 22.1667 23.6333 26.4333 sNVD 0.1600 0.1365 0.0837
fda5 1 2 nNVD 20.8667 17.8667 6.6000 sNVD 0.0726 0.0964 0.0577
fda5 1 2 nNVD 18.8000 17.5000 17.4333 sNVD 0.2013 0.2357 0.1891
fda5 1 2 nNVD 20.2667 18.0333 11.4667 sNVD 0.0617 0.0747 0.0391
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Table A8. nVD and dVD for each DMOA for FDA5 with various frequency and severity of change.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

fda5 10 4 nVD 0.0333 0.0000 0.0000 dVD 0.0333 0.0000 0.0000
fda5 10 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 10 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 10 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000

fda5 10 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 10 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 10 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 10 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000

fda5 10 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 10 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 10 2 nVD 0.0333 0.0000 0.0000 dVD 0.0333 0.0000 0.0000
fda5 10 2 nVD 0.0333 0.0000 0.0000 dVD 0.0333 0.0000 0.0000

fda5 1 4 nVD 0.0667 0.0000 0.0000 dVD 0.0667 0.0000 0.0000
fda5 1 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 1 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 1 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000

fda5 1 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 1 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 1 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 1 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000

fda5 1 2 nVD 0.0333 0.0000 0.0000 dVD 0.0333 0.0000 0.0000
fda5 1 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 1 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
fda5 1 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000

Table A9. acc and stab for each DMOA for dMOP2 with various frequency and severity of change.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

dmop2 10 4 acc 0.8700 0.7811 0.8707 stab 0.0000 0.0000 0.0000
dmop2 10 4 acc 0.8284 0.8287 0.8715 stab 0.0000 0.0164 0.0000
dmop2 10 4 acc 0.8124 0.8805 0.8840 stab 0.0000 0.0110 0.0002
dmop2 10 4 acc 0.9980 0.9717 0.9995 stab 0.0006 0.0165 0.0001

dmop2 10 5 acc 0.7858 0.7680 0.9103 stab 0.0000 0.0000 0.0000
dmop2 10 5 acc 0.6857 0.7187 0.9217 stab 0.0099 0.0261 0.0000
dmop2 10 5 acc 0.8374 0.7731 0.9080 stab 0.0000 0.0159 0.0000
dmop2 10 5 acc 0.9773 0.9755 0.9951 stab 0.0209 0.0226 0.0036

dmop2 10 2 acc 0.8127 0.8490 0.8298 stab 0.0000 0.0000 0.0000
dmop2 10 2 acc 0.8232 0.8581 0.7979 stab 0.0000 0.0000 0.0000
dmop2 10 2 acc 0.9443 0.8277 0.8558 stab 0.0000 0.0000 0.0000
dmop2 10 2 acc 0.9980 0.9975 0.9988 stab 0.0009 0.0003 0.0002

dmop2 1 4 acc 0.9266 0.3449 0.3097 stab 0.0000 0.0000 0.0000
dmop2 1 4 acc 0.9309 0.8833 0.5509 stab 0.0224 0.1167 0.4491
dmop2 1 4 acc 1.0000 0.3802 0.6802 stab 0.0000 0.6198 0.3198
dmop2 1 4 acc 0.5236 0.4389 0.4764 stab 0.0073 0.0045 0.0396

dmop2 1 5 acc 0.9478 0.2882 0.9615 stab 0.0000 0.0000 0.0000
dmop2 1 5 acc 0.9393 0.9508 0.9574 stab 0.0177 0.0492 0.0426
dmop2 1 5 acc 0.9991 0.3737 0.9778 stab 0.0009 0.6263 0.0222
dmop2 1 5 acc 0.4861 0.3884 0.7584 stab 0.0103 0.0710 0.2271

dmop2 1 2 acc 0.9548 0.7587 0.9164 stab 0.0000 0.0000 0.0000
dmop2 1 2 acc 0.9833 0.8949 0.9059 stab 0.0059 0.1051 0.0941
dmop2 1 2 acc 0.9942 0.8278 0.9069 stab 0.0058 0.1722 0.0931
dmop2 1 2 acc 0.4735 0.5391 0.7011 stab 0.0169 0.0625 0.2519
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Table A10. hvr and react for each DMOA for dMOP2 with various frequency and severity of change.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

dmop2 10 4 hvr 1.2872 1.2594 1.2577 react 12.8667 12.9667 12.3667
dmop2 10 4 hvr 1.1982 1.2284 1.3295 react 8.0333 8.6333 8.6000
dmop2 10 4 hvr 1.5950 1.5624 1.4643 react 4.9667 4.8333 4.8333
dmop2 10 4 hvr 1.3038 1.4336 1.4014 react 1.0000 1.0000 1.0000

dmop2 10 5 hvr 1.9143 1.8882 1.1107 react 16.0000 16.0000 16.0000
dmop2 10 5 hvr 1.6730 1.7919 1.1055 react 11.0000 11.0000 11.0000
dmop2 10 5 hvr 1.7423 1.6500 1.0242 react 6.0000 5.9333 5.9667
dmop2 10 5 hvr 1.8847 2.0522 1.1175 react 1.0000 1.0000 1.0000

dmop2 10 2 hvr 1.3575 1.5524 1.4858 react 6.8000 6.9000 6.8000
dmop2 10 2 hvr 1.3303 1.4589 1.4937 react 4.8000 4.9333 4.8333
dmop2 10 2 hvr 1.7886 1.3657 1.3977 react 2.9333 2.8000 2.9000
dmop2 10 2 hvr 1.5989 1.5930 1.4986 react 1.0000 1.0000 1.0000

dmop2 1 4 hvr 1.5361 2.0163 1.6181 react 8.6000 2.6000 1.4000
dmop2 1 4 hvr 2.4648 9.2045 4.3700 react 7.8000 5.2667 2.3333
dmop2 1 4 hvr 0.9826 6.7302 10.8249 react 5.0000 2.4667 4.6000
dmop2 1 4 hvr 2.0165 5.4407 2.7435 react 1.0000 1.0000 1.0000

dmop2 1 5 hvr 1.651 4.8469 0.9488 react 12.0000 2.5000 12.5000
dmop2 1 5 hvr 2.1529 14.7819 0.9485 react 9.6333 8.3333 8.6667
dmop2 1 5 hvr 0.9861 6.5701 0.9669 react 6.0000 2.8333 6.0000
dmop2 1 5 hvr 1.7927 6.4797 0.7462 react 1.0000 1.0000 1.0000

dmop2 1 2 hvr 1.9387 7.6131 1.4606 react 3.3000 1.5000 2.9000
dmop2 1 2 hvr 2.3369 5.3866 1.5312 react 4.7667 3.1333 2.8667
dmop2 1 2 hvr 0.9523 10.4355 2.5348 react 3.0000 2.9333 3.0000
dmop2 1 2 hvr 1.7974 1.3771 0.7159 react 1.0000 1.0000 1.0000

Table A11. nNVD and sNVD for each DMOA for dMOP2 with various frequency and severity
of change.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

dmop2 10 4 nNVD 5.3667 5.8333 6.4333 sNVD 0.0597 0.0511 0.0466
dmop2 10 4 nNVD 4.0667 3.9333 3.6000 sNVD 0.0698 0.0835 0.0716
dmop2 10 4 nNVD 3.1333 3.0000 3.1000 sNVD 0.0775 0.1051 0.0987
dmop2 10 4 nNVD 4.3000 3.3333 3.0667 sNVD 0.0721 0.0806 0.0951

dmop2 10 5 nNVD 12.6000 13.3333 3.8333 sNVD 0.1300 0.1264 0.0291
dmop2 10 5 nNVD 10.4000 9.8667 3.0000 sNVD 0.1548 0.1585 0.0395
dmop2 10 5 nNVD 11.0000 9.3333 2.9667 sNVD 0.1465 0.1710 0.0382
dmop2 10 5 nNVD 9.6667 7.9333 2.5667 sNVD 0.1740 0.2079 0.0364

dmop2 10 2 nNVD 5.8333 5.8667 6.5667 sNVD 0.1150 0.1180 0.1052
dmop2 10 2 nNVD 3.9000 3.1333 2.8667 sNVD 0.1543 0.1751 0.2310
dmop2 10 2 nNVD 3.7333 2.9333 2.8333 sNVD 0.1752 0.1745 0.2025
dmop2 10 2 nNVD 4.6333 3.2000 3.0333 sNVD 0.1419 0.1825 0.2077

dmop2 1 4 nNVD 68.1667 91.5667 94.4667 sNVD 0.0441 0.0326 0.0319
dmop2 1 4 nNVD 49.3000 24.8000 60.7000 sNVD 0.0633 0.1534 0.1541
dmop2 1 4 nNVD 50.8000 63.1667 30.2333 sNVD 0.0585 0.0660 0.1982
dmop2 1 4 nNVD 0 0.0333 0 sNVD 0.0000 0.0000 0.0000

dmop2 1 5 nNVD 81.0667 75.4333 0.9333 sNVD 0.0366 0.0596 0
dmop2 1 5 nNVD 59.5333 3.4333 1.0000 sNVD 0.0519 0.0929 0
dmop2 1 5 nNVD 60.6333 66.3333 0.9 sNVD 0.0492 0.0532 0
dmop2 1 5 nNVD 0.0000 0.0000 0.0000 sNVD 0.0000 0.0000 0.0000

dmop2 1 2 nNVD 31.4333 32.0333 5.8000 sNVD 0.1038 0.1133 0.0060
dmop2 1 2 nNVD 13.4333 1.7000 2.1000 sNVD 0.2290 0.3570 0.0454
dmop2 1 2 nNVD 19.9333 12.5333 0.6333 sNVD 0.1599 0.5381 0.0247
dmop2 1 2 nNVD 0.0000 0.0000 0.0000 sNVD 0.0000 0.0000 0.0000
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Table A12. nVD and dVD for each DMOA for dMOP2 with various frequency and severity of change.

DMOOP nt τt PM PPA DPA RSTFRA PM PPA DPA RSTFRA

dmop2 10 4 nVD 0.0667 0.0000 0.0000 dVD 0.0667 0.0000 0.0000
dmop2 10 4 nVD 0.0333 0.0000 0.0000 dVD 0.0333 0.0000 0.0000
dmop2 10 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
dmop2 10 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000

dmop2 10 5 nVD 0.0333 0.0000 0.0000 dVD 0.0333 0.0000 0.0000
dmop2 10 5 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
dmop2 10 5 nVD 0.1333 0.0000 0.0000 dVD 0.1333 0.0000 0.0000
dmop2 10 5 nVD 0.0667 0.0000 0.0000 dVD 0.0667 0.0000 0.0000

dmop2 10 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
dmop2 10 2 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
dmop2 10 2 nVD 0.0333 0.0000 0.0000 dVD 0.0333 0.0000 0.0000
dmop2 10 2 nVD 0.0333 0.0000 0.0000 dVD 0.0333 0.0000 0.0000

dmop2 1 4 nVD 0.0000 0.0000 0.0000 dVD 0.0000 0.0000 0.0000
dmop2 1 4 nVD 0.0000 23.3333 0.0000 dVD 0.0000 8.0838 0.0000
dmop2 1 4 nVD 0.0000 0.0000 3.3333 dVD 0.0000 0.0000 1.1525
dmop2 1 4 nVD 1.0000 96.6667 100.0000 dVD 78.3002 64.215 85.5742

dmop2 1 5 nVD 0.0000 6.6667 6.6667 dVD 0.0000 1.0863 1.0156
dmop2 1 5 nVD 0.0000 66.6667 0.0000 dVD 0.0000 25.4565 0.0000
dmop2 1 5 nVD 0.0000 13.3333 10.0000 dVD 0.0000 2.5970 1.7496
dmop2 1 5 nVD 1.0000 100.0000 100.0000 dVD 83.0633 65.1873 93.9007

dmop2 1 2 nVD 0.0000 0.0000 6.6667 dVD 0.0000 0.0000 1.1100
dmop2 1 2 nVD 0.0000 26.7333 1.7000 dVD 0.0000 9.0173 0.4143
dmop2 1 2 nVD 0.0000 0.0000 24.1667 dVD 0.0000 0.0000 7.6244
dmop2 1 2 nVD 1.0000 62.4667 57.6333 dVD 85.1725 90.4603 93.0091

References
1. Helbig, M.; Engelbrecht, A.P. Analysing the performance of dynamic multi-objective optimisation algorithms. In Proceedings of

the IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 1531–1539. https://doi.org/10.1109/
CEC.2013.6557744.

2. Jiang, S.; Yang, S. A benchmark generator for dynamic multi-objective optimization problems. In Proceedings of the UK Workshop
on Computational Intelligence (UKCI), Bradford, UK, 8–10 September 2014; pp. 1–8. https://doi.org/10.1109/UKCI.2014.6930171.

3. Azzouz, R.; Bechikh, S.; Said, L.B. Recent Advances in Evolutionary Multi-objective Optimization; Springer: Berlin/Heidelberg,
Germany, 2017; Volume 20. https://doi.org/10.1007/978-3-319-42978-6.

4. Nguyen, T.T.; Yang, S.; Branke, J. Evolutionary dynamic optimization: A survey of the state of the art. Swarm Evol. Comput. 2012,
6, 1–24. https://doi.org/https://doi.org/10.1016/j.swevo.2012.05.001.

5. Coello Coello, C.A.; Reyes-Sierra, M. Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. Int. J. Comput.
Intell. Res. 2006, 2, 287–308. https://doi.org/10.5019/j.ijcir.2006.68.

6. Pareto, V. Cours D’Economie Politique; Librairie Droz: Geneva, Switzerland 1964.
7. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons, Inc.: New York, NY, USA, 2001.
8. Bianco, N.; Fragnito, A.; Iasiello, M.; Mauro, G.M. A CFD multi-objective optimization framework to design a wall-type heat

recovery and ventilation unit with phase change material. Appl. Energy 2023, 347, 121368. https://doi.org/10.1016/j.apenergy.20
23.121368.

9. Deb, K.; Bhaskara Rao, N.U.; Karthik, S. Dynamic Multi-objective Optimization and Decision-making Using Modified NSGA-II: A
Case Study on Hydro-thermal Power Scheduling. In Proceedings of the International Conference on Evolutionary Multi-Criterion
Optimization, EMO’07, Matsushima, Japan, 5–8 March 2007; pp. 803–817.

10. Farina, M.; Deb, K.; Amato, P. Dynamic multiobjective optimization problem: Test cases, approximation, and applications. IEEE
Trans. Evol. Comput. 2004, 8, 425–442.

11. Hämäläinen, R.P.; Mäntysaari, J. A dynamic interval goal programming approach to the regulation of a lake–river system.
J. Multi-Criteria Decis. Anal. 2001, 10, 75–86. https://doi.org/https://doi.org/10.1002/mcda.290.

12. Hämäläinen, R.P.; Mäntysaari, J. Dynamic multi-objective heating optimization. Eur. J. Oper. Res. 2002, 142, 1–15. https:
//doi.org/10.1016/S0377-2217(01)00282-X.

13. Huang, L.; Suh, I.H.; Abraham, A. Dynamic multi-objective optimization based on membrane computing for control of
time-varying unstable plants. Inf. Sci. 2011, 181, 2370–2391. https://doi.org/10.1016/j.ins.2010.12.015.

https://doi.org/10.1109/CEC.2013.6557744
https://doi.org/10.1109/CEC.2013.6557744
https://doi.org/10.1109/UKCI.2014.6930171
https://doi.org/10.1007/978-3-319-42978-6
https://doi.org/https://doi.org/10.1016/j.swevo.2012.05.001
https://doi.org/10.5019/j.ijcir.2006.68
https://doi.org/10.1016/j.apenergy.2023.121368
https://doi.org/10.1016/j.apenergy.2023.121368
https://doi.org/https://doi.org/10.1002/mcda.290
https://doi.org/10.1016/S0377-2217(01)00282-X
https://doi.org/10.1016/S0377-2217(01)00282-X
https://doi.org/10.1016/j.ins.2010.12.015


Algorithms 2023, 16, 504 25 of 26

14. Zhang, X.; Zhang, G.; Zhang, D.; Zhang, L.; Qian, F. Dynamic Multi-Objective Optimization in Brazier-Type Gasification and
Carbonization Furnace. Materials 2023, 16, 1164. https://doi.org/10.3390/ma16031164.

15. Zhou, X.; Sun, Y.; Huang, Z.; Yang, C.; Yen, G.G. Dynamic multi-objective optimization and fuzzy AHP for copper removal
process of zinc hydrometallurgy. Appl. Soft Comput. 2022, 129, 109613. https://doi.org/10.1016/j.asoc.2022.109613.

16. Fang, Y.; Liu, F.; Li, M.; Cui, H. Domain Generalization-Based Dynamic Multiobjective Optimization: A Case Study on
Disassembly Line Balancing. IEEE Trans. Evol. Comput. 2022, 1. https://doi.org/10.1109/TEVC.2022.3233642.

17. Iris, C.; Asan, S.S. Computational Intelligence Systems in Industrial Engineering. Comput. Intell. Syst. Ind. Eng. 2012, 6, 203–230.
https://doi.org/10.2991/978-94-91216-77-0.

18. Helbig, M., Challenges Applying Dynamic Multi-objective Optimisation Algorithms to Real-World Problems. In Women in
Computational Intelligence: Key Advances and Perspectives on Emerging Topics; Smith, A.E., Ed.; Springer International Publishing:
Cham, Switzerland, 2022; pp. 353–375. https://doi.org/10.1007/978-3-030-79092-9_16.

19. Jaimes, A.L.; Montaño, A.A.; Coello Coello, C.A. Preference incorporation to solve many-objective airfoil design problems. In
Proceedings of the IEEE Congress of Evolutionary Computation (CEC), New Orleans, LA, USA, 5–8 June 2011; pp. 1605–1612.
https://doi.org/10.1109/CEC.2011.5949807.

20. Coello, C.A.C.; Lamont, G.B.; Veldhuizen, D.A.V. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer: New York,
NY, USA, 2007. https://doi.org/10.1007/978-0-387-36797-2.

21. Cruz-Reyes, L.; Fernandez, E.; Gomez, C.; Sanchez, P. Preference Incorporation into Evolutionary Multiobjective Optimization
Using a Multi-Criteria Evaluation Method. In Recent Advances on Hybrid Approaches for Designing Intelligent Systems; Castillo,
O., Melin, P., Pedrycz, W., Kacprzyk, J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 533–542. https:
//doi.org/10.1007/978-3-319-05170-3_37.

22. Cruz-Reyes, L.; Fernandez, E.; Sanchez, P.; Coello Coello, C.A.; Gomez, C. Incorporation of implicit decision-maker preferences
in multi-objective evolutionary optimization using a multi-criteria classification method. Appl. Soft Comput. J. 2017, 50, 48–57.
https://doi.org/10.1016/j.asoc.2016.10.037.

23. Ferreira, T.N.; Vergilio, S.R.; de Souza, J.T. Incorporating user preferences in search-based software engineering: A systematic
mapping study. Inf. Softw. Technol. 2017, 90, 55–69. https://doi.org/https://doi.org/10.1016/j.infsof.2017.05.003.

24. Rostami, S.; O’Reilly, D.; Shenfield, A.; Bowring, N. A novel preference articulation operator for the Evolutionary Multi-
Objective Optimisation of classifiers in concealed weapons detection. Inf. Sci. 2015, 295, 494–520. https://doi.org/https:
//doi.org/10.1016/j.ins.2014.10.031.

25. Goulart, F.; Campelo, F. Preference-guided evolutionary algorithms for many-objective optimization. Inf. Sci. 2016, 329, 236–255.
Special issue on Discovery Science, https://doi.org/https://doi.org/10.1016/j.ins.2015.09.015.

26. Sudenga, S.; Wattanapongsakornb, N. Incorporating decision maker preference in multiobjective evolutionary algorithm. In
Proceedings of the IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), Orlando, FL, USA, 9–12
December 2014; pp. 22–29. https://doi.org/10.1109/CIES.2014.7011826.

27. Thiele, L.; Thiele, L.; Miettinen, K.; Miettinen, K.; Korhonen, P.J.; Korhonen, P.J.; Molina, J.; Molina, J. A Preference-Based
Evolutionary Algorithm for Multi-Objective Optimization. Evol. Comput. 2009, 17, 411–436. https://doi.org/10.1162/evco.2009.1
7.3.411.

28. Mezura-Montes, E.; Coello Coello, C.A. Constraint-handling in nature-inspired numerical optimization: Past, present and future.
Swarm Evol. Comput. 2011, 1, 173–194. https://doi.org/10.1016/j.swevo.2011.10.001.

29. Kennedy, J.; Eberhart, R. A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE International
Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October
1997; Volume 5, pp. 4104–4108. https://doi.org/10.1109/ICSMC.1997.637339.

30. Jensen, P.A.; Bard, J.F. Operations Research Models and Methods; John Wiley & Sons: New York, NY, USA, 2003.
31. Methods, C.; Michalewicz, Z. A Survey of Constraint Handling Techniques in Evolutionary Computation Methods. Evol. Program.

1995, 4, 135–155.
32. Zhang, W.; Yen, G.G.; He, Z. Constrained Optimization Via Artificial Immune System. IEEE Trans. Cybern. 2014, 44, 185–198.

https://doi.org/10.1109/TCYB.2013.2250956.
33. Azzouz, R.; Bechikh, S.; Said, L.B. Articulating Decision Maker’s Preference Information within Multiobjective Artificial Immune

Systems. In Proceedings of the 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, Athens, Greece, 7–9
November 2012; Volume 1, pp. 327–334. https://doi.org/10.1109/ICTAI.2012.52.

34. Das, S.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 2011, 15, 4–31.
https://doi.org/10.1109/TEVC.2010.2059031.

35. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective
Optimization: NSGA-II. In Proceedings of the Parallel Problem Solving from Nature PPSN VI, Paris, France, 18–20 September
2020; Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.P., Eds.; Springer: Berlin/Heidelberg,
Germany, 2000; pp. 849–858.

36. Adekunle, R.A.; Helbig, M. A differential evolution algorithm for dynamic multi-objective optimization. In Proceedings of the
IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–10.
https://doi.org/10.1109/SSCI.2017.8280936.

https://doi.org/10.3390/ma16031164
https://doi.org/10.1016/j.asoc.2022.109613
https://doi.org/10.1109/TEVC.2022.3233642
https://doi.org/10.2991/978-94-91216-77-0
https://doi.org/10.1007/978-3-030-79092-9_16
https://doi.org/10.1109/CEC.2011.5949807
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-3-319-05170-3_37
https://doi.org/10.1007/978-3-319-05170-3_37
https://doi.org/10.1016/j.asoc.2016.10.037
https://doi.org/https://doi.org/10.1016/j.infsof.2017.05.003
https://doi.org/https://doi.org/10.1016/j.ins.2014.10.031
https://doi.org/https://doi.org/10.1016/j.ins.2014.10.031
https://doi.org/https://doi.org/10.1016/j.ins.2015.09.015
https://doi.org/10.1109/CIES.2014.7011826
https://doi.org/10.1162/evco.2009.17.3.411
https://doi.org/10.1162/evco.2009.17.3.411
https://doi.org/10.1016/j.swevo.2011.10.001
https://doi.org/10.1109/ICSMC.1997.637339
https://doi.org/10.1109/TCYB.2013.2250956
https://doi.org/10.1109/ICTAI.2012.52
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1109/SSCI.2017.8280936


Algorithms 2023, 16, 504 26 of 26

37. Helbig, M.; Engelbrecht, A.P. Issues with performance measures for dynamic multi-objective optimisation. In Proceedings of the
IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), Singapore, 16–19 April 2013;
IEEE: Piscataway, NJ, USA, 2013; pp. 17–24.

38. Helbig, M. Solving Dynamic Multi-Objective Optimisation Problems Using Vector Evaluated Particle Swarm Optimisation. Ph.D.
Thesis, University of Pretoria, Pretoria, South Africa, 2012.

39. Goh, C.K.; Tan, K.C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans.
Evol. Comput. 2009, 13, 103–127. https://doi.org/10.1109/TEVC.2008.920671.

40. Padhye, N.; Mittal, P.; Deb, K. Feasibility preserving constraint-handling strategies for real parameter evolutionary optimization.
Comput. Optim. Appl. 2015, 62, 851–890. https://doi.org/10.1007/s10589-015-9752-6.

41. Hamdan, M. On the disruption-level of polynomial mutation for evolutionary multi-objective optimisation algorithms. Comput.
Inform. 2010, 29, 783–800.

42. Engelbrecht, A.P. Computational Intelligence: An Introduction; John Wiley & Sons: New York, NY, USA, 2007.
43. Gaemperle, R.; Mueller, S.D.; Koumoutsakos, P. A Parameter Study for Differential Evolution. Adv. Intell. Syst. Fuzzy Syst. Evol.

Comput. 2002, 10, 293–298.
44. Ronkkonen, J.; Kukkonen, S.; Price, K. Real-parameter optimization with differential evolution. In Proceedings of the IEEE

Congress on Evolutionary Computation, Scotland, UK, 2–5 September 2005; Volume 1, pp. 506–513. https://doi.org/10.1109/
CEC.2005.1554725.

45. Price, K.V. Differential Evolution. In Handbook of Optimization: From Classical to Modern Approach; Zelinka, I., Snášel, V., Abraham,
A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 187–214. https://doi.org/10.1007/978-3-642-30504-7_8.

46. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces.
J. Glob. Optim. 1997, 11, 341–359. https://doi.org/10.1023/A:1008202821328.

47. Cámara, M.; Ortega, J.; de Toro, F. A Single Front Genetic Algorithm for Parallel Multi-objective Optimization in Dynamic
Environments. Neurocomput 2009, 72, 3570–3579. https://doi.org/10.1016/j.neucom.2008.12.041.

48. van Veldhuizen, D. Multiobjective Evolutionary Algorithms: Classification, Analyses, and New Innovations. Ph.D. Thesis,
Faculty of the Graduate School of Engineering, Air Force Institute of Technology, Air University, Wright-Patterson Air Force Base,
OH, USA, 1999.

49. Helbig, M.; Engelbrecht, A.P. Performance measures for dynamic multi-objective optimisation algorithms. Inf. Sci. 2013,
250, 61–81. https://doi.org/10.1016/j.ins.2013.06.051.

50. Sola, M.C. Parallel Processing for Dynamic Multi-Objective Optimization. Ph.D. Thesis, Universidad de Granada, Granada,
Spain, 2010.

51. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,
Austria, 2017.

52. Helbig, M. Dynamic Multi-objective Optimization Using Computational Intelligence Algorithms. In Proceedings of the Computa-
tional Intelligence and Data Analytics; Buyya, R., Hernandez, S.M., Kovvur, R.M.R., Sarma, T.H., Eds.; Springer Nature: Singapore,
2023; pp. 41–62.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TEVC.2008.920671
https://doi.org/10.1007/s10589-015-9752-6
https://doi.org/10.1109/CEC.2005.1554725
https://doi.org/10.1109/CEC.2005.1554725
https://doi.org/10.1007/978-3-642-30504-7_8
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1016/j.neucom.2008.12.041
https://doi.org/10.1016/j.ins.2013.06.051

	Introduction
	Background
	Bounding Box Mathematics
	Mathematics for Newly Proposed Performance Measures
	Deviation of Violating Decisions
	Spread of Non-Violating Decisions

	Core Dynamic Multi-Objective Optimization Algorithm

	Experimental Setup
	Algorithm Setup
	Decision-Maker's Preference Incorporation
	Algorithms
	Differential Evolution Algorithm Control Parameters

	Decision-Maker's Preferences
	Benchmark Functions
	Performance Measures
	Statistical Analysis

	Results
	Conclusions
	Detailed Results
	References

