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Abstract: Brain–computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs)
are inexpensive and do not require user training. However, the highly personalized reaction to visual
stimulation is an obstacle to the wider application of this technique, as it can be ineffective, tiring, or
even harmful at certain frequencies. In our experimental study, we proposed a new approach to the
selection of optimal frequencies of photostimulation. By using a custom photostimulation device, we
covered a frequency range from 5 to 25 Hz with 1 Hz increments, recording the subjects’ brainwave
activity (EEG) and analyzing the signal-to-noise ratio (SNR) changes at the corresponding frequencies.
The proposed set of SNR-based coefficients and the discomfort index, determined by the ratio of
theta and beta rhythms in the EEG signal, enables the automation of obtaining the recommended
stimulation frequencies for use in SSVEP-based BCIs.

Keywords: brain–computer interface; steady-state visually evoked potentials; personal response;
visual stimulation; frequency selection algorithm; discomfort index

1. Introduction

As graphical user interface (GUI) technology is nearing its 50th anniversary, humans
are actively seeking new modes of interaction with machines. A user, considered as a
source of information, can use their gestures, voice, eye movements, etc., to generate
control commands or actions. A promising communication channel is the one based on
the neural activity of the brain (hence, the so-called brain–computer interface (BCI)). Its
important advantage is accessibility, even for people whose motor reactions are disrupted or
cease completely. For healthy people, BCIs hold a compelling promise to “read one’s mind”,
especially when in conjunction with booming artificial intelligence (AI) technologies [1].
Although BCI technology is not yet fully mature, it has been applied to control a wide
variety of devices, including computers, motorized wheelchairs [2], and exoskeletons. It is
used to monitor cognitive states, mental loads, and fatigue [3], as well as in rehabilitation
systems for stroke patients [4].

There are many paradigms and approaches on the basis of which BCIs are built and
function [5]. The one that demonstrates the highest interaction accuracy and speed [6] is
steady-state visually evoked potential (SSVEP), which involves a specific neuronal response
that occurs as a result of presenting a periodic visual stimulus to a subject [7]. This reaction
is mainly localized to the occipital region of the cerebral cortex and can be recorded in the
O1, O2, and Oz leads placed according to the “10–20” system for electroencephalography
(EEG) [8]. The main characteristics of these potentials are their frequencies, which strictly
depend on the frequencies of visual stimuli, and power, which is usually significantly
higher than the power of the baseline brainwave activity. The widely claimed advantages
of SSVEP-based BCIs include the following [9]:
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1. The high speed of the information transfer;
2. The minimal time required for user training and relative ease of installation;
3. The safety for the users.

The aforementioned immaturity of the BCI technology leaves much to be desired for each
of the above points. First, much of the current research in the field is focused on the light
stimuli of high frequencies (for EEG signals, this means more than 30 Hz [10]) to enhance the
information transfer rate (ITR) or effective bit rate, as introduced in [11], and reported on
in BCI studies. ITR is a common metric in SSVEP-BCI interfaces, aiding in the estimation
and comparison of different identification algorithms by combining speed and accuracy.
Indeed, the low-frequency range of EEG signals is affected by high-amplitude artifacts,
such as EOG artifacts (concentrated in the frequency range of 1 to 5 Hz [12]). Moreover,
it is overlapped by a more powerful alpha-rhythm of the EEG signal, concentrated in the
frequency range of 8 to 14 Hz. However, SSVEP potentials are usually most intense in the
frequency range of around 15 Hz, and the power of the evoked potential decreases with
the increase of the light stimulus frequency [13].

Second, BCIs are rather less universal than most other human–machine interface
modes, as the former generally require calibration and adaptation to the user’s individual
characteristics. SSVEP-based BCIs have a wide scope of applications, ranging from con-
trolling smart home devices [14] to enabling communication with patients with disorders
of consciousness and facilitating the rehabilitation of individuals after severe head and
spinal cord injuries [15,16]. In these scenarios, the usability and minimal training duration
required to ensure reliable operation take precedence. Indeed, as mentioned above, in some
people, the response level to a certain stimulus frequency may be too low relative to the
EEG signal itself, making this frequency unsuitable for use [10]. This makes it difficult
to build a universal BCI that uses a single frequency range for its users. The need for
calibration is recognized as a major obstacle for the wider BCI development and hurts the
overall user experience (UX) [17,18]. The currently popular approach to the so-called subject
calibration problem is “subject-transfer” [19], which largely corresponds to the general trans-
fer learning approaches in AI-ML: instance-based, parameter-based, or feature-based [20].
Correspondingly, methods and models that improve the trade-off between the calibration
effort and the BCI performance move the field forward, but this issue is far from being
resolved yet.

Third, the claimed safety of BCIs is rather situational. Even if we do not consider
brain-invasive techniques, the photo stimuli can cause strong fatigue (particularly to the
eyes) and even provoke an epileptic seizure for individuals suffering from photosensitive
epilepsy [21]. Research suggests that these risks are frequency-specific, being more prone
to the middle-frequency range of EEG signals (from 12 to 30 Hz) [10], and user group-
specific [22]. Zhang and colleagues demonstrated in their recent study that SSVEP target–
classification accuracy decreases under the influence of stress [23]. To assess the extent of the
impact of periodic photostimulation on the subjective emotional state of participants and
to objectify the degree of discomfort experienced during interaction with neurointerfaces,
researchers in this field employ indices that are specifically derived from the power ratios
of major EEG frequency bands. For instance, theta–beta ratio [24], theta–alpha ratio [25],
and frontal alpha asymmetry [26] have frequently been used as such indices in scientific
literature. Incorporating these index values into the development of an algorithm for
individually tailored stimulation frequencies could represent a crucial step toward creating
more personalized and user-friendly interfaces.

As any interfacing technology matures, considerations of usefulness are supplemented
by those of usability. BCI is no exception in this regard. About 10 years ago, an editorial
in a dedicated Special Issue of Ergonomics noted that “for people with motor disabilities,
the ease and convenience of use . . . may be as important as speed of communication” [27].
Indeed, calls for considering UX in BCI began over a decade ago [28,29]. Currently, there is
a growing interest in BCI usability evaluations, encompassing both objective and subjective
measures. Clearly, this implies the need to extend the three points discussed above. A
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transition from a user interface (UI) to UX requires, at the very least, adding user satisfaction
to the puzzle.

The main research question of our study can be formulated as follows: Is it possible to
determine, based on the recorded EEG signal, whether a given photostimuli frequency is optimal
in a given range for a particular person? Regarding the selection of the optimal stimulation
frequency for the stable reproduction of the maximum SSVEP amplitude, opinions among
researchers in the scientific community vary significantly. Broad ranges for observing
SSVEP cover frequencies of 8.5–15 Hz [30], 12–18 Hz [31], or 12–30 Hz [32]. The wide
variety of results obtained reflect the individual characteristics of the brain’s background
state, influencing subsequent functional activity, not only of the visual system but also the
outcomes of the default mode network’s interaction with other neural systems [33], making
the aforementioned aim of our current study relevant. Solving this problem and improving
the selection of individual photostimulus frequencies can make BCI usage more effective
and satisfying for the users, by (1) increasing the information transfer rate (ITR), which
in the case of BCIs is highly dependent on the calibration process, and (2) significantly
improving the user experience by using stimulation frequencies that do not cause excessive
fatigue or stress in the users. This is especially relevant for people who experience visual
fatigue when using this type of BCI. All of these factors could enhance the acceptance of
BCIs outside of research settings and foster their integration into daily life.

The remainder of our paper is structured as follows. In Section 2, we provide an
overview of related work on BCI calibration, emphasizing the integration of usability and
UX concepts. We also advocate for the EEG theta-to-beta measurement as indicative of
user satisfaction. In Section 3, we present the algorithm for selecting BCI frequencies; in
Section 4, we describe the essential coefficients. Section 5 is dedicated to the experimental
evaluation of the proposed algorithm. In the final section, we summarize and discuss our
contributions.

2. Related Work
2.1. BCI Applications

Nowadays, brain–computer interfaces are being applied in many fields and for many
purposes. Many different paradigms are being used to design them (the SSVEP paradigm
we have chosen is just one of them). It is difficult to fully cover these areas, and presented
here is just a fraction of the research aimed at enhancing quality of life.

An important direction in this field involves the use of BCIs to restore the function
of the cerebral cortex when it is damaged. This is achieved through the introduction
of biological feedback. Reference [34] showed—for the first time—that with the help of
invasive BCIs, it is possible to restore movement to paralyzed limbs in people suffering
from “locked-in syndrome” (LIS). This condition is characterized by a complete loss of
speech and paralysis while maintaining consciousness and sensitivity.

BCIs are also used for cursor control, text input, and forming commands for robots. An
interesting example is presented in reference [35], where people with spinal cord injuries were
able to modulate neural activity associated with the intention to move, even 3 years after
the injury.

In recent studies, BCIs were created that could automatically recognize speech from
neural activities recorded using EEGs, as well as reconstruct whole sentences from thoughts
with a limited vocabulary [36]. Another line of research demonstrates the possibility
of controlling a patient’s prosthetics or exoskeletons based on neural activity recorded
using EEGs [37]. This opens up new perspectives for reproducing fine motor skills with
prosthetics in the future.

A recent study introduced an unsupervised data-driven pipeline for rejecting blink
and muscle artifacts in EEG time series for use in motor imagery (MI)-based BCIs integrated
with the Internet of Medical Things (IoMT) [38]. Using this approach reduces processing
times, resource demands, and reliance on human intervention, making it a promising
avenue for crafting efficient, user-friendly real-time BCI systems. Moreover, the technique
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proposed by the authors to enhance TL-CNN classification between Mex and MI finger-
pinching actions is superior to other state-of-the-art methods, which makes it promising for
further development and implementation in practice.

2.2. SSVEP-Based BCI Enhancements

As a rule, scalp electroencephalography (EEG) is used as a tool to provide continuous
registration of a user’s neural activity for further transmission to BCIs. The EEG signals
have high temporal resolution [9,39], and the approach involves a non-invasive process of
measuring the electrical activity of the cerebral cortex and does not require surgical inter-
vention. This provides a high safety level for users of such BCIs, compared to BCIs based
on electrocorticography (ECoG) [40]. The latter requires mandatory surgical intervention
and, thus, poses a high level of risk, making EEG-based BCIs a safer and more promising
technology for universal application.

It is recognized that BCI performance, which has been foremost associated with informa-
tion transfer rates, is considerably better with calibration than in calibration-free schemes [41].
With respect to SSVEP-based BCIs, it is believed that a subject-specific type of calibration
is capable of yielding the best performance. However, the time and effort spent on such
individual training sessions are considered to be the most serious disadvantages of this ap-
proach [42]. Correspondingly, up-to-date research in the field focuses on (a) reducing the data
amounts that need to be gathered from a particular subject by reusing some existing data [41],
(b) collecting the data more intensively, e.g., through several channels [43], and (c) making
more intensive use of available data via smarter calibration algorithms [33].

2.3. BCI Usability and User Satisfaction

While the safety of modern BCIs is well-established and performance remains a pri-
mary research focus, calibration algorithms that consider interface usability are relative new.
BCI-related studies that follow a user-centered approach define usability in terms of effec-
tiveness (accuracy), efficiency (ITR and subjective workloads), and user satisfaction [44].

Selection algorithms that consider the user’s emotional state and subjective comfort
during BCI interactions can help lead to new levels of user experience. However, there is a
certain disparity in how exactly the registered EEG signals should be used to automatically
infer various dimensions of user satisfaction. Y.N. Ortega and co-authors have exhaustively
addressed this in their works, recently culminating in a connection between potential EEG
signal characteristics and usability measures, as presented in [45].

As mentioned in [46], using flicker frequencies in the range of 4–30 Hz can lead to
visual fatigue. Thus, it is important to find frequencies at which the interaction will be the
most effective and the person experiences minimal discomfort in using BCIs [47]. Various
methods are employed to minimize the discomfort; for example, [46] proposed using a
chessboard stimulus, which allows for reducing user discomfort without compromising
performance. In turn, we suggest taking user satisfaction into account when selecting an
individual frequency for BCI.

The safety of using brain–computer interfaces is a determining factor that allows
them to be integrated into various aspects of our lives; therefore, this factor should be
approached with the utmost seriousness and attention. In experiments based on SSVEP, the
presentation of rhythmic visual stimuli potentially has the ability to induce epileptic activity
and trigger seizures. However, in our study, participants over 18 years old without a history
of epileptic seizures in their medical records were involved, and the likelihood that the
current experimental protocol could elicit such pathological brain activity was extremely
low. Additionally, after undergoing experimental stimulation without any negative effects,
the probability of experiencing seizures during subsequent long-term use of BCIs becomes
nearly zero. This is why we deemed it unnecessary to account for this factor or develop a
special index that could consider its influence.
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3. Selection Criteria of BCI Frequencies

In our study, we propose an algorithm for selecting recommended photostimulation
frequencies for SSVEP-based BCIs. The goal of the algorithm is to choose the individual
photostimulation frequencies that would be the most suitable for each user. We suggest
that the following individual user response characteristics be considered in this algorithm:

1. Reaction onset speed as a response to the presented visual stimuli;
2. Ability to maintain a stable response at an acceptable level during a continuous visual

stimuli presentation;
3. User satisfaction with the presented photostimulus.

The reaction onset speed is an extremely important factor since it directly affects how
quickly the user can send commands to the BCI. We hypothesize that by excluding photostimuli
to which the user does not respond within a reasonable timeframe, and focusing solely on
frequencies with the quickest reaction speeds, BCI performance will see significant improve-
ment [13]. In this paper, we consider a stimuli frequency range from 5 to 25 Hz, and use a
threshold method based on the signal-to-noise ratio (SNR) to measure the reaction speed.

The stability of the user response level is another important criterion. The more
stable the response level, the higher the probability of the correct recognition of the SSVEP
potential by the neurointerface. Each user has an individual response to each presented
frequency, which will be further demonstrated in this study.

Finally, the user’s satisfaction, when presented with a given photostimulus frequency,
is another equally important factor. The photostimuli should not cause discomfort or
fatigue to the user when using the neurointerface, as this can negatively affect the duration
of comfortable interaction with it.

Many scientific publications usually do not consider the possibility of response occur-
rences at multiples of stimulation frequencies (higher harmonics) when detecting SSVEP
responses. In the proposed algorithm, we analyze the fundamental frequency of photo-
stimulus f, as well as the second harmonic stimulation frequency 2*f when estimating the
reaction onset and SSVEP response stability. This allows us to take into account individual
user characteristics and expand the frequency range, especially in the low-frequency range
(8–15 Hz), where SNR may be low.

Although SSVEP-based BCIs are quite attractive for solving a variety of practical tasks, as
mentioned earlier, it should be noted that the user’s reaction may be unpredictable. The response
to individual frequencies of visual stimulation by a particular person may be so uncertain that
the algorithm will not be able to detect the response. This should certainly be taken into account,
and only frequencies with the highest probability of detection should be used.

Other important UX components are the speed and quality of communication. The
information transfer rate (ITR) is used for this purpose, which is measured in bits/min [48].
This parameter can be calculated using the following formula:

ITR(P, T) =
(

log2 M + P log2 P + (1− P) log2

[
1− P
M− 1

])
60
T

where P is the prediction accuracy (in the range of 0 to 1), M is the stimuli number, and T is the
stimulation duration in seconds. In most studies, accuracy is calculated as the ratio of correct
predictions in the experiment to the total number of predictions in the experiment.

Thus, communication speed can be increased by increasing accuracy, which depends
on the used method. Another option is to reduce the stimulation time. However, it
should be noted that reducing the stimulation time will lead to a decrease in BCI accuracy.
Therefore, one way to increase ITR is to select the optimal stimulation duration. Moreover,
stimuli frequencies also influence the results; thus, another way to increase the ITR in
SSVEP-based BCIs is to choose frequencies for stimulation that elicit the fastest and/or
most pronounced responses.

User satisfaction, as mentioned earlier, is also an important component of UX. In
the current study, we employ the theta-to-beta ratio. This approach has been used with
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reasonable success in previous work, reflecting the stress in VR/AR users [49]. We used the
theta-to-beta ratio as the discomfort index. Indeed, existing literature closely associates the
theta-to-beta ratio with manifestations of stress and anxiety [50,51], motivation [52], and
the influence of emotional factors on cognitive processes, such as attention [24]. All of these
are essential components for successful human interactions with BCIs. To our knowledge,
this is the first explicit attempt that takes into account emotional and motivational factors
while training or calibrating BCIs. The theta-to-beta ratio was calculated based on the
averaged powers of EEG theta (4–8 Hz) and beta (13–29 Hz) bands, derived from the two
frontal leads, namely, F3 and F4.

4. BCI Frequency Selection Coefficients

To quantitatively assess the characteristics of the user’s reaction to the photostimulus
that we have described and to obtain a list of recommended frequencies, we introduce a set
of coefficients:

1. Reaction speed coefficient Ksp;
2. Threshold overcoming coefficient Ko;
3. Frequency applicability coefficient K f a;
4. Discomfort coefficient Kd.

As mentioned above, when presenting a photostimulus with the frequency f , we
analyze the user’s reaction, not only at the fundamental frequency but also at the second
harmonic frequency. We will denote these frequencies as fst and fnd for the fundamental
and second harmonic frequencies, respectively. Thus, coefficients 1 to 3 will be calculated in
two instances for each photostimulus. The first three coefficients are calculated for occipital
EEG leads O1, O2, and Oz, since these are the leads in which the SSVEP potential appears
in response to the presented photostimulus. To obtain these coefficients, it is necessary to
calculate the SNR and the threshold values for both fst and fnd frequencies. The SNR of the
EEG signal at frequency f is calculated by the following expression [31]:

SNR( f ) =
K ∗M( f )

∑K/2
n=1{M( f + n∆ f ) + M( f − n∆ f )}

(1)

where M( f ) is the signal magnitude at frequency f , obtained as a result of the calculation of
a single-sided FFT, K = 4 is the total number of harmonics around f in the signal spectrum
considered as noise, and ∆ f is the frequency resolution.

During the presentation of each 60 s photostimulus, we record a fragment of the EEG
signal and then divide it into a set of windows of 3 s durations and 50% overlap between
the windows. For each obtained window, we compute the SNR at frequencies of fst and fnd
using Equation (1), thus obtaining two vectors to demonstrate how the SNR for frequencies
fst and fnd changed during the photostimulation. To compute the threshold value, we
take a fragment of the EEG signal, where no photostimuli or any other stimuli or artifacts
are presented. As in the previous example, this fragment is divided into 3 s windows set
with 50% overlap between the windows. For each obtained window, the SNR vectors for
frequencies fst and fnd are calculated using Equation (1). Then, to obtain the threshold
values for fst and fnd frequencies, we use the following expression:

SNRt( f ) = SNRm( f ) + k ∗ SNRsd( f ) (2)

where SNRm is the mean value of SNR for the obtained windows at frequency f , SNRsd is
the standard deviation of SNR at frequency f , and the coefficient k is equal to 3. Thus, if
we consider the value of the SNR at a given frequency outside the stimulation period as
a random variable, and then apply the three-sigma rule to it, we will obtain a threshold
value. Exceeding this threshold with a probability of 99.7% would not occur under normal
conditions (without the presentation of photo stimuli). After computing these parameters,
the coefficients we proposed can be computed.
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The response speed coefficient Ksp represents how fast the SSVEP potential’s SNR value
at frequency f reaches the SNRt threshold value, where it can be recognized in the BCI. This
coefficient is computed by Equation (3) for frequencies fst and fnd, and takes values from 0 to
1, where values close to 1 mean the fastest responses and values close to 0 mean the slowest
responses. Coefficient values equal to 0 indicate a complete absence of reaction.

Ksp( f ) = 1− TSNR( f )
t

(3)

where TSNR( f ) is the time in seconds from the start of the photostimulus presentation to the
first overshoot of SNRt( f ), and t is the total duration of the stimulation, which, in our case, is
equal to 60 s.

The threshold overcoming coefficient Ko represents how stable during the presentation
of the photostimulus the SSVEP potential exceeds the threshold value SNRt at the given
frequency. This coefficient is computed by Equation (4) for frequencies fst and fnd, and
takes values from 0 to 1, where values close to 1 mean the most stable responses and
values close to 0 mean the most unstable responses. Coefficient values equal to 0 indicate a
complete absence of reaction.

Ko( f ) =
No( f )

N
(4)

where No( f ) is the number of windows at which SNR at frequency f exceeds the threshold
value SNRt( f ), and N is the total number of windows during stimulation. The windows
were selected in the same manner as for Equation (1).

The frequency applicability coefficient K f a is introduced to combine the coefficients
Ksp and Ko into a single coefficient. The coefficient K f a shows how generally suitable the
selected frequency is for the fast and stable recognition of the photostimulus frequency f
in BCIs. This coefficient is calculated for frequencies fst and fnd by Equation (5) and takes
values from 0 to 1. Coefficient values close to 1 mean the most optimal in terms of speed
and stability of frequency response, and values close to 0 mean the most suboptimal.

K f a( f ) = Ksp( f ) ∗ Ko( f ) (5)

where Ksp( f ) denotes the response speed coefficient at frequency f , and Ko( f ) is the
threshold overcoming coefficient for frequency f .

The average frequency applicability coefficient K f a is calculated by taking the aver-
age of the two K f a coefficients obtained for the photostimulation at frequency f using
Equation (6). This coefficient takes values from 0 to 1 and represents how capable the pho-
tostimulus is to evoke a high-quality SSVEP response at both the fundamental and second
harmonic frequencies simultaneously. Values close to 1 mean the stimulation frequencies
with the highest quality SSVEP response in terms of the speed and stability of the frequency
response at the first two harmonics.

K f a( f ) =
K f a( fst) + K f a( fnd)

2
(6)

where K f a( fst) represents the applicability coefficient of frequency f at the fundamen-
tal harmonic, and K f a( fnd) represents the applicability coefficient of frequency f at the
second harmonic.

The discomfort index was defined as a ratio of absolute theta power (4–8 Hz) divided
by absolute beta power (13–30 Hz) averaged over F3 and F4 frontal electrodes, capturing
the neural signals coming from the left and right hemispheres, respectively (Equation (7)).
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To extract EEG powers in the above-mentioned frequency bands, fast Fourier transform
(FFT) was applied (Hanning window length 10) in the MNE Python.

DI( f ) =

(
∑8

n=4(MF3(n, f ))2

∑30
n=13(MF3(n, f ))2

+
∑8

n=4(MF4(n, f ))2

∑30
n=13(MF4(n, f ))2

)
∗ 0.5 (7)

where DI( f ) denotes the discomfort index for the frequency of photostimulation f , MF3(n, f )
and MF4(n, f ) are the signal magnitudes at frequency n from electrodes F3 and F4, respec-
tively, during light stimulations at frequency f .

The discomfort coefficient Kd is introduced in order to normalize the discomfort
index DI in the range of 0 to 1 and is intended to standardize this indicator for different
subjects when using our developed application for selecting recommended frequencies.
This coefficient is calculated using the min–max normalization formula and takes values
from 0 to 1, where values close to 1 indicate the highest level of discomfort, and values
close to 0 indicate the lowest level of discomfort. Despite the initial assumption that a
coefficient value of zero would indicate the absence of discomfort, it is possible that all
frequencies may still cause some level of discomfort for the subject. Therefore, when using
this coefficient, it is important to consider the subjective feelings of the user:

Kd( f ) =
DI( f )− DImin
DImax − DImin

(8)

where DImin is the minimum value of the discomfort index among all stimulation fre-
quencies, and DImax is the maximum value of the discomfort index among all stimulation
frequencies.

This normalization is necessary because each individual has their own “normal” and
“critical” discomfort indices, but it would be most convenient for the user to input this
parameter in a unified, constant range when working with the application. More details
about the application will be discussed in one of the following sections.

5. Experimental Evaluation
5.1. The Experiment Description
5.1.1. Subjects

In this study, eight volunteers participated: six men and two women. All of them were
2–3 year bachelor’s degree students at Novosibirsk State Technical University. The average
age of the participants was 20.8 years. Each participant was pre-selected for the absence of
any neurological diseases, including epilepsy. Volunteers were informed about the aims
and objectives of the experiment, as well as the possible risks and benefits of participation.
All participants gave their informed consent to participate in the study.

5.1.2. Design and Procedure

For this study, we used a portable Mitsar-EEG-SmartBCIx24 amplification unit, which
provides continuous recording of EEG signals over the whole experiment. The EEG data
were recorded from 21 channels using SmartCAPx24 cup Ag/Ag-Cl electrodes located
according to the international “10–20%” electrode placement system, as shown in Figure 1.
The electrode corresponding to the location of FCz was used as a reference (Ref) electrode.
The location of the grounding (Gnd) electrode corresponded to the AFz electrode. The
sampling rate of the EEG signal was 250 Hz. As the main operating frequency of our
devices’ electrical network was 50 Hz, we activated a notch filter in the “EEGStudio”
software designed by the amplification unit manufacturer to record EEG signals. The cutoff
frequency of the notch filter was equal to 50 Hz, and a bandwidth range of ±5 Hz around
it was used. The use of this filter was necessary to suppress the artifact of power line
interference [53]. Any additional tools for automatic artifact detection and removal in EEG
signals during the recording stage were disabled to preserve the integrity of the signals
and allow for their use in future studies related to adaptive artifact removal in EEG signals.
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Figure 1. Scheme of the EEG cap with Ag/AgCl sintered sensors by MCScap for the 24-channel
SmartBCI wireless wearable EEG system.

In many researches, LCD monitors of personal computers are used as a solution for
generating and presenting photostimuli to subjects. This approach has its disadvantages, such
as the occurrence of harmonics in the EEG signal spectrum that are multiples of the screen
refresh rate. Therefore, we used a special device of our own design, which provides a convenient
process of generation and photostimuli presentation with a specified duration and frequency.
More details about the device and its characteristics will be described in the following section.

Throughout the experiment, each subject was seated in a comfortable chair in a relaxed
state. The room where the recording was performed was shaded to reduce interference from
strong light. During the registration process for each subject, we carefully controlled the
impedance values, which on average lay in the range of 4 to 7 kOhm. After the electrode
placement procedure was completed, each subject was given 5 min to rest, and then the process
of EEG data recording began. Before the photostimuli presentation, a 60 s fragment of the EEG
signal in an eyes-closed state was recorded for each subject. The corresponding EEG signal
fragments were marked with special labels in the EEG recording software. After this stage, the
process of presenting photostimuli of given frequencies began.

In our study, we used a range of photostimulus frequencies from 5 to 25 Hz with
steps of 1 Hz. Stimulation at each frequency was performed for 60 s. Each fragment of the
EEG signal during the presentation of the photostimulus was marked with appropriate
labels. During stimulation, participants were required to focus their attention on the
flashes. They were also allowed to blink as needed. After each photostimuli presentation,
participants were given 2–3 min to rest. An obligatory stage during each rest period
involved verbal questioning of the participants about their well-being and discomfort
experienced during the stimulation. Since none of the participants experienced discomfort,
the survey data were not used in further analysis. Sufficient resting time was provided
between stimulations to prevent visual fatigue. Thus, for each participant, a .xdf file was
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recorded, containing EEG signals from 21 channels, along with an additional signal from
our photostimuli presentation device. Each file had an average duration of approximately
one and a half hours.

5.1.3. The Photostimulation Device

Many researchers and developers of BCI systems use personal computer displays
as sources of photostimuli. This imposes certain special requirements for the display.
However, it is still possible for additional frequency components to occur, which could be a
result of the screen refresh rate [54]. At the same time, in order to carry out research in this
area, it makes sense, in the first approximation, to give preference to a special device that
generates frequency-stable photostimuli, and is compatible with most of the EEG signal
registration equipment.

While exploring the available EEG equipment markets, we encountered a challenge in
finding photostimulators that were compatible with most manufacturers of EEG equipment
and also offered the ability to finely adjust the frequency and duration of photostimuli. As
a result, we created our own photostimulator with all the necessary characteristics and
functionalities, as shown in Figure 2.

Figure 2. The model of the developed photostimulator used for generating photostimuli in this study.

This device was based on an ATmega328P microcontroller with a maximum clock
frequency of 20 MHz, which is more than sufficient for generating visible stimulations
across the entire frequency range of interest. We utilized a 3D printer and additive tech-
nologies to produce the case and detachable elements (such as the stand, diffusing plates,
and pattern-changing stencils) using PLA plastic.

The photostimulator described is equipped with an LED matrix consisting of 60 white
light LEDs. This matrix serves as the source of light emissions for generating flashes during
photostimulation. The device is capable of generating photostimuli with a specified frequency
ranging from 0.5 to 60 Hz, with an increment value of 0.25 Hz. Additionally, it can produce
photostimuli with durations ranging from 1 to 90 s, with an incremental value of 0.5 s.

To ensure uniform illumination, the photostimulator is equipped with a set of diffusing
plates made of white PLA plastic, with a maximum diffusing surface area of 10 cm2. These
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plates have varying thicknesses (ranging from 0.3 mm to 2.0 mm), which help in achieving
consistent and evenly distributed light output.

During the process of generating photostimuli, the stimulator’s specialized software
takes control and generates an auxiliary signal. This signal is of rectangular shape and has
a frequency equal to the frequency of the photostimulus being produced. The amplitude of
this auxiliary signal is also set equal to the frequency of the photostimulus. This auxiliary
signal is streamed using the lab-streaming layer protocol, allowing it to be recorded in
parallel with the EEG signal. This simultaneous recording enables accurate detection of
specific fragments within the EEG signal that coincide with the photostimulation events.

5.2. Pre-Processing and Descriptive Statistics

After obtaining the records from all participants, we used the MATLAB software
package, version r2022b, for technical computing tasks. We utilized a band-pass filter with
a bandwidth frequency range of 3 to 49 Hz to preprocess the EEG signals. Despite the
fact that the occipital electrodes used in our calculations showed less prominent artifacts,
such as EOG artifacts compared to frontal electrodes [53], we filtered out any activity in
the frequency range up to 3 Hz. Additionally, due to the functioning of the notch filter
used during the recording stage of the EEG signals, the frequency range of 45–55 Hz was
unsuitable for our calculations; therefore, we suppressed all frequencies above 49 Hz.

Then, for each of the channels of occipital leads O1, O2, and Oz, we performed a procedure
of extracting fragments of the EEG signal with photostimulation. Each fragment consisted of
a 10 s interval before the presentation of the photostimulus, a 60 s fragment recorded during
the presentation of the photostimulus, and a 20 s fragment after the end of the presentation
of the photostimulus. Thus, for each participant, we obtained 21 × 3 EEG signal fragments
of 90 s each. We carefully checked all obtained fragments for the absence of any artifacts
that would prevent further computations. Finally, for each fragment, we calculated all the
coefficients described in Section 4.

Thus, Figure 3 represents the dependence of the reaction speed coefficient Ksp on
the photostimuli frequency for subject 3. This chart is presented for the fundamental and
second harmonics of the stimulation frequencies for all occipital leads. It is important to
note that, in our case, due to the effect of the notch filter, the results of calculating the
second harmonic coefficients for frequencies beginning from 45 to 55 Hz do not provide
any useful information and are not taken into account by us, since this frequency range
was affected by the filter.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frequency (Hz)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

K
s
p
(f

s
t)

K
sp

 dependence on visual stimuli frequency

O1

Oz

O2

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Frequency (Hz)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

K
s
p
(f

n
d
)

K
sp

 dependence on visual stimuli second harmonic

O1

Oz

O2

Subj
3
: Reaction Speed Coefficients

Figure 3. Reaction speed coefficient values for subject 3.
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As can be seen from the figure above, subject 3 demonstrates the best response speed
(close to one) for photostimuli frequencies from 13 to 25 Hz, according to the Ksp coefficients
calculated for the fundamental and second (excluding 23 Hz and above) harmonics (O2 and
Oz leads). It can also be noted that for the Ksp coefficient, calculated for the second harmonic,
photostimuli frequencies from 6 to 9 Hz can also be characterized as good in terms of the speed
of response (O2 lead). For this subject it can be seen only for the second harmonic, but not for
the fundamental. This once again emphasizes the importance of considering the response at
multiples of frequencies. Tables 1 and 2 present the results of calculating the Ksp coefficient
in the Oz lead for all subjects who participated in the experiment.

Table 1. Ksp coefficients at fundamental photostimuli frequencies, lead Oz.

Frequency (Hz) Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Subj 8

5 0.86 0.89 0.78 0.97 0.61 0.89 0.97 0.53
6 1.00 0.83 0.47 1.00 0.78 0.00 1.00 0.81
7 1.00 0.94 0.86 1.00 0.78 0.86 1.00 0.69
8 1.00 0.92 0.78 0.86 0.97 0.89 1.00 0.92
9 1.00 0.69 0.81 0.92 0.97 0.44 1.00 0.97

10 0.97 0.89 0.64 0.94 0.97 0.00 1.00 1.00
11 0.94 0.97 0.86 1.00 0.97 0.00 1.00 1.00
12 0.97 0.97 0.92 1.00 0.19 0.92 1.00 1.00
13 0.94 1.00 1.00 1.00 0.17 1.00 1.00 1.00
14 1.00 1.00 0.97 1.00 0.58 0.86 1.00 1.00
15 0.97 1.00 0.97 1.00 0.53 1.00 1.00 1.00
16 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00
17 0.97 0.97 1.00 1.00 0.97 1.00 1.00 1.00
18 0.89 1.00 1.00 1.00 0.17 0.92 1.00 1.00
19 1.00 1.00 1.00 1.00 0.97 0.83 1.00 1.00
20 0.97 1.00 0.97 1.00 0.97 0.83 1.00 1.00
21 0.94 0.97 1.00 1.00 1.00 0.97 1.00 1.00
22 0.97 1.00 0.97 0.97 0.94 0.83 1.00 1.00
23 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00
24 0.97 1.00 1.00 0.97 1.00 1.00 1.00 1.00
25 1.00 1.00 1.00 1.00 1.00 0.44 1.00 1.00

Table 2. Ksp coefficients at second harmonic photostimuli frequencies, lead Oz.

Frequency (Hz) Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Subj 8

10 0.86 0.75 0.33 0.97 0.17 0.00 1.00 0.97
12 0.97 0.75 0.97 1.00 0.00 0.42 1.00 1.00
14 1.00 0.94 1.00 1.00 0.19 0.72 1.00 0.97
16 1.00 0.94 0.78 1.00 0.00 0.00 1.00 0.92
18 1.00 1.00 1.00 0.97 0.94 0.00 1.00 0.97
20 0.97 0.94 0.89 1.00 1.00 0.00 1.00 1.00
22 0.78 1.00 0.89 1.00 1.00 0.56 0.97 0.92
24 1.00 1.00 0.92 0.94 1.00 0.92 1.00 0.97
26 0.94 1.00 1.00 0.92 1.00 0.03 0.97 0.94
28 1.00 0.94 0.97 1.00 0.97 0.67 0.92 0.94
30 1.00 0.97 1.00 1.00 1.00 1.00 0.97 1.00
32 1.00 1.00 1.00 1.00 1.00 0.92 0.97 1.00
34 1.00 1.00 1.00 1.00 1.00 0.97 0.97 1.00
36 0.97 1.00 1.00 1.00 1.00 0.97 0.97 1.00
38 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
40 1.00 1.00 0.97 0.97 0.97 0.81 0.94 0.97
42 0.86 0.97 0.97 1.00 0.94 0.72 0.97 1.00
44 0.89 0.97 0.97 0.97 0.97 0.97 0.94 1.00
46 0.97 0.94 0.81 1.00 1.00 0.97 0.92 1.00
48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
50 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00
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As can be seen from the data presented in Tables 1 and 2, each subject’s reaction
speed is highly individualized. Thus, subject 7 demonstrates extremely high Ksp coefficient
values at all presented photostimulus frequencies for both the fundamental and second
harmonics. In contrast, subject 6 showed some of the worst results, up to a complete
absence of response at the fundamental (Table 1, frequencies 6, 10, and 11 Hz) and second
(Table 2, frequencies 10, 16, 18, and 20 Hz) harmonics. This once again emphasizes the need
for an individual approach to each user when selecting stimulation frequencies in BCIs.

Figure 4 represents the dependence of the threshold, overcoming coefficient Ko on
the photostimuli frequency for subject 3. This chart is presented for the fundamental and
second harmonics of the stimulation frequencies for all occipital leads.
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Figure 4. Threshold overcoming coefficient values for subject 3.

As can be seen from the figure above, subject 3 demonstrated the most stable threshold
overcoming response at photostimuli frequencies from 13 to 18 Hz, as well as at 21 and
24 Hz, according to the Ko coefficient, calculated for the fundamental frequency (O2 and
Oz leads). Although the level of his response in terms of the reaction speed criterion Ksp
at the fundamental frequency was high enough from the stimulus frequency of 13 Hz to
25 Hz (Figure 3), the coefficient Ko showed that not all of these photostimulus frequencies
were able to produce a stable response. It can also be noted that while the Ksp coefficient,
calculated for the second harmonic, (Figure 3) identified photostimuli frequencies from
6 to 9 Hz as acceptable in terms of reaction speed, the Ko coefficient showed that only
the stimulus frequency at 9 Hz from the mentioned range was able to produce a stable
response at the second harmonic of photostimulus (O1, O2, and Oz leads). This example
demonstrates that if one photostimulus frequency may be acceptable under one criterion, it
does not mean that it will be acceptable under another criterion.

Tables 3 and 4 contain the results of calculating the Ko coefficient in the Oz lead for all
subjects who participated in the experiment.
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Table 3. Ko coefficients at fundamental photostimuli frequencies, lead Oz.

Frequency (Hz) Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Subj 8

5 0.46 0.30 0.05 0.41 0.14 0.03 0.49 0.05
6 0.73 0.43 0.05 0.84 0.08 0.00 0.86 0.08
7 0.97 0.24 0.22 0.54 0.39 0.24 1.00 0.44
8 1.00 0.46 0.32 0.70 0.03 0.48 1.00 0.92
9 1.00 0.35 0.81 0.89 0.61 0.10 1.00 0.97

10 0.94 0.14 0.32 0.95 0.81 0.00 1.00 0.92
11 0.59 0.76 0.30 1.00 0.56 0.00 1.00 0.97
12 0.35 0.50 0.92 1.00 0.03 0.59 1.00 1.00
13 0.92 0.35 1.00 1.00 0.03 0.99 1.00 1.00
14 0.94 0.81 0.95 1.00 0.31 0.93 1.00 1.00
15 0.97 0.86 0.97 1.00 0.11 1.00 1.00 1.00
16 0.89 1.00 0.97 1.00 0.28 0.96 1.00 1.00
17 0.49 0.95 0.97 1.00 0.11 0.48 1.00 1.00
18 0.84 0.97 0.95 0.89 0.03 0.45 1.00 0.95
19 0.97 1.00 0.53 0.76 0.28 0.38 1.00 1.00
20 0.97 1.00 0.76 0.57 0.53 0.31 1.00 0.97
21 0.83 0.76 0.97 0.59 0.81 0.55 1.00 0.95
22 0.92 0.95 0.92 0.50 0.43 0.45 1.00 0.97
23 1.00 0.62 0.57 0.68 0.83 0.21 1.00 0.86
24 0.97 0.32 0.95 0.43 1.00 0.03 1.00 0.94
25 1.00 0.78 0.49 0.16 0.60 0.07 0.92 0.78

Table 4. Ko coefficients at the second harmonic photostimuli frequencies, lead Oz.

Frequency (Hz) Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Subj 8

10 0.36 0.22 0.11 0.97 0.03 0.00 1.00 0.84
12 0.58 0.49 0.35 1.00 0.00 0.15 1.00 0.24
14 1.00 0.68 0.65 1.00 0.05 0.35 1.00 0.58
16 0.92 0.95 0.43 0.84 0.00 0.00 1.00 0.65
18 0.33 0.95 1.00 0.32 0.19 0.00 1.00 0.89
20 0.34 0.95 0.81 0.89 0.89 0.00 1.00 0.16
22 0.33 1.00 0.51 0.49 1.00 0.15 0.94 0.57
24 0.17 1.00 0.73 0.24 0.51 0.20 1.00 0.68
26 0.33 0.73 1.00 0.19 0.86 0.00 0.97 0.22
28 0.86 0.57 0.92 0.54 0.81 0.05 0.89 0.32
30 0.83 0.16 1.00 0.32 0.49 0.30 0.97 0.16
32 1.00 0.89 0.95 0.51 0.35 0.36 0.76 0.41
34 0.75 0.78 1.00 0.62 0.11 0.40 0.89 0.68
36 0.94 0.68 0.84 0.35 0.16 0.45 0.81 0.95
38 0.81 0.22 0.89 0.32 0.16 0.20 0.35 1.00
40 0.94 0.32 0.41 0.49 0.11 0.70 0.76 0.97
42 0.60 0.35 0.16 0.38 0.03 0.65 0.97 1.00
44 0.71 0.46 0.57 0.39 0.14 1.00 0.83 1.00
46 0.36 0.11 0.19 0.35 0.22 0.85 0.49 0.92
48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

An analysis of the data presented in Tables 3 and 4 also demonstrates the highly
individual stability of the SSVEP potential response level caused by the photostimuli
presentation. Thus, whereas subject 7 previously demonstrated an extremely high value
of the Ksp coefficient over the entire frequency range (Tables 1 and 2), in this case, the 5
and 6 Hz photostimulus frequencies do not exhibit as consistent a response level as the
subsequent frequencies for which the Ko coefficient was calculated at the fundamental
frequency (Table 3). This subject was also characterized by a significant decrease in the
Ko coefficient calculated for the second harmonic from the photostimulus frequency of
16 Hz (32 Hz in Table 4) to 20 Hz, as well as to 22 and 23 Hz. At the same time, for
subject 6, who demonstrates an extremely low speed of response Ksp (Tables 1 and 2), the



Algorithms 2023, 16, 502 15 of 26

results obtained for the Ko coefficient values remain very low, except for the 13–16 Hz
photostimulus frequencies for the Ko coefficient calculated at the fundamental frequency
and the 22 Hz photostimulus frequency for the Ko coefficient calculated for the second
harmonic (44 Hz in Table 4).

The results of calculating the K f a coefficient for subject 3 are shown in Figure 5.
According to the K f a coefficient formula (Equation (5)), the values close to one correspond
to the photostimuli frequencies that evoke the fastest and most stable SSVEP potentials.
Thus, this coefficient integrates both Ksp and Ko coefficients and provides an indication of
the frequency optimality according to two criteria at once.

Subj
3
: Frequency Applicability Coe cients
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Figure 5. Frequency applicability coefficient values for subject 3.

Thus, in the case of subject 3, the photostimuli frequencies at 13, 15–18, 21, and
24 Hz correspond to high-enough (at least 0.95) values of the coefficient K f a, calculated for
the fundamental frequency (O2 and Oz leads). At the same time, for the K f a coefficient
calculated for the second harmonic, the photostimuli frequencies of 9, 13, 15, and 17 Hz
correspond to values exactly equal to one (O1, O2, and Oz leads). It should be noted that
for this participant, the photostimulus frequencies of 13, 15, and 17 Hz have maximum
values of the K f a coefficient at the second harmonic. This further validates the relevance of
evaluating the response not only at the fundamental frequency but also at its harmonics.

The K f a coefficient values calculated for all other subjects are presented in Tables 5 and 6.
Due to the fact that the K f a coefficient takes into account both Ksp and Ko coefficients, it

can be used as an indicator of frequency optimality in terms of response speed and stability.
For example, subject 7 demonstrated equal-to-one values for the K f a coefficient calculated
for fundamental frequency (Table 5) in the photostimuli frequency range from 7 to 24 Hz
because of high values for Ksp (Table 1) and Ko (Table 3) coefficients. Similar values of the
K f a coefficient calculated for the second harmonic are achieved for this subject in the first
half of the used frequency range (Table 6). Analyzing the K f a coefficient values for subject 3,
who previously demonstrated very low values of Ksp (Tables 1 and 2) and Ko (Tables 3 and 4)
coefficients, the corresponding results can be seen. Thus, according to Table 5, the subject
only has 3 values of the K f a coefficient calculated for the fundamental frequency, namely, for
13, 15, and 16 Hz, which are close enough to one. The result of the calculation of the K f a
coefficient at the second harmonic in the case of the photostimulus frequency of 22 Hz (44 Hz
in Table 6) can also be considered acceptable. These results suggest an extremely low ability
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of this subject to produce fast and stable SSVEP potentials, although this claim remains to be
verified in practice. Nevertheless, even in this case, there were frequencies considered to be
optimal, and one of them only corresponded to the second harmonic. This demonstrates that,
by taking subharmonics into account, the frequency range used by the subject can theoretically
be extended when the response at the fundamental frequency is too low or absent.

Table 5. K f a coefficients at fundamental photostimuli frequencies, lead Oz.

Frequency (Hz) Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Subj 8

5 0.40 0.26 0.04 0.39 0.08 0.03 0.47 0.03
6 0.73 0.36 0.03 0.84 0.06 0.00 0.86 0.07
7 0.97 0.23 0.19 0.54 0.30 0.21 1.00 0.31
8 1.00 0.42 0.25 0.61 0.03 0.43 1.00 0.84
9 1.00 0.24 0.65 0.82 0.59 0.05 1.00 0.95

10 0.92 0.12 0.21 0.89 0.78 0.00 1.00 0.92
11 0.56 0.74 0.26 1.00 0.54 0.00 1.00 0.97
12 0.34 0.49 0.84 1.00 0.01 0.54 1.00 1.00
13 0.87 0.35 1.00 1.00 0.00 0.99 1.00 1.00
14 0.94 0.81 0.92 1.00 0.18 0.80 1.00 1.00
15 0.95 0.86 0.95 1.00 0.06 1.00 1.00 1.00
16 0.89 1.00 0.97 1.00 0.27 0.96 1.00 1.00
17 0.47 0.92 0.97 1.00 0.11 0.48 1.00 1.00
18 0.74 0.97 0.95 0.89 0.00 0.41 1.00 0.95
19 0.97 1.00 0.53 0.76 0.27 0.32 1.00 1.00
20 0.95 1.00 0.74 0.57 0.51 0.26 1.00 0.97
21 0.79 0.74 0.97 0.59 0.81 0.54 1.00 0.95
22 0.89 0.95 0.89 0.49 0.40 0.37 1.00 0.97
23 1.00 0.59 0.57 0.68 0.83 0.21 1.00 0.86
24 0.95 0.32 0.95 0.42 1.00 0.03 1.00 0.94
25 1.00 0.78 0.49 0.16 0.60 0.03 0.92 0.78

Table 6. K f a coefficients at second harmonic photostimuli frequencies, lead Oz.

Frequency (Hz) Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Subj 8

10 0.31 0.16 0.04 0.95 0.00 0.00 1.00 0.81
12 0.57 0.36 0.34 1.00 0.00 0.06 1.00 0.24
14 1.00 0.64 0.65 1.00 0.01 0.25 1.00 0.57
16 0.92 0.89 0.34 0.84 0.00 0.00 1.00 0.59
18 0.33 0.95 1.00 0.32 0.18 0.00 1.00 0.87
20 0.33 0.89 0.72 0.89 0.89 0.00 1.00 0.16
22 0.26 1.00 0.46 0.49 1.00 0.08 0.92 0.52
24 0.17 1.00 0.67 0.23 0.51 0.18 1.00 0.66
26 0.31 0.73 1.00 0.17 0.86 0.00 0.95 0.20
28 0.86 0.54 0.89 0.54 0.78 0.03 0.82 0.31
30 0.83 0.16 1.00 0.32 0.49 0.30 0.95 0.16
32 1.00 0.89 0.95 0.51 0.35 0.33 0.74 0.41
34 0.75 0.78 1.00 0.62 0.11 0.39 0.87 0.68
36 0.92 0.68 0.84 0.35 0.16 0.44 0.79 0.95
38 0.81 0.22 0.89 0.32 0.16 0.20 0.35 1.00
40 0.94 0.32 0.39 0.47 0.11 0.56 0.71 0.95
42 0.52 0.34 0.16 0.38 0.03 0.47 0.95 1.00
44 0.63 0.45 0.55 0.38 0.14 0.97 0.79 1.00
46 0.35 0.10 0.15 0.35 0.22 0.83 0.45 0.92
48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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The values of the K f a coefficient calculated for the fundamental and second harmonics
can be averaged to obtain an even more strict value of the K f a coefficient, since it equally
accounts for the results achieved at the fundamental and multiple harmonics of a particular
photostimulus frequency. The results of calculating the mean value of the K f a coefficients
for the fundamental and second harmonics are shown in Figure 6 for subject 3.
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Figure 6. Mean frequency applicability coefficient values for subject 3.

According to the values of this coefficient, we can assess which photostimuli frequencies are
capable of producing the fastest and most stable SSVEP potentials on both the fundamental and
second harmonics simultaneously. Thus, for subject 3, these are photostimuli with frequencies
of 13 (O2 and Oz leads), 15–16 (O1 lead), and 17 (O2 and Oz leads) Hz. The results of calculating
this coefficient for the remaining subjects are presented in Table 7.

Table 7. Mean K f a coefficients at photostimuli frequencies, lead Oz.

Frequency (Hz) Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Subj 8

5 0.35 0.21 0.04 0.67 0.04 0.02 0.74 0.42
6 0.65 0.36 0.18 0.92 0.03 0.03 0.93 0.15
7 0.99 0.43 0.42 0.77 0.16 0.23 1.00 0.44
8 0.96 0.66 0.29 0.72 0.01 0.21 1.00 0.72
9 0.67 0.60 0.83 0.57 0.39 0.02 1.00 0.91

10 0.63 0.51 0.46 0.89 0.84 0.00 1.00 0.54
11 0.41 0.87 0.36 0.74 0.77 0.04 0.96 0.75
12 0.25 0.74 0.76 0.61 0.26 0.36 1.00 0.83
13 0.59 0.54 1.00 0.59 0.43 0.50 0.97 0.60
14 0.90 0.67 0.91 0.77 0.48 0.42 0.91 0.65
15 0.89 0.51 0.97 0.66 0.27 0.65 0.97 0.58
16 0.95 0.95 0.96 0.76 0.31 0.64 0.87 0.70
17 0.61 0.85 0.99 0.81 0.11 0.44 0.93 0.84
18 0.83 0.82 0.89 0.62 0.08 0.42 0.89 0.95
19 0.89 0.61 0.71 0.54 0.22 0.26 0.68 1.00
20 0.95 0.66 0.56 0.52 0.31 0.41 0.86 0.96
21 0.65 0.54 0.57 0.49 0.42 0.50 0.97 0.97
22 0.76 0.70 0.72 0.43 0.27 0.67 0.89 0.99
23 0.68 0.34 0.36 0.51 0.52 0.52 0.72 0.89
24 0.47 0.16 0.47 0.21 0.50 0.02 0.50 0.47
25 0.50 0.39 0.24 0.08 0.30 0.02 0.46 0.39

Based on Table 7, the most optimal (exactly equal to one) frequencies for subject 7, who
demonstrates the best results among all participants in terms of the Ksp and Ko coefficients,
are the photostimuli frequencies of 7–10 Hz and 12 Hz. At the same time, the subject still
has enough numbers of the averaged coefficient K f a, as close to one as possible, namely, for
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the photostimuli frequencies 11, 13, 15, and 21 Hz. Subject 3, on the other hand, did not
show any photostimulus frequency that could be recognized as optimal in terms of this
coefficient because the maximum values of the coefficients K f a for the fundamental and
second harmonics did not overlap with each other in the frequency range (Tables 5 and 6).

Additionally, as mentioned above, for each of the participants involved in the exper-
iment, and for each stimulation frequency, we calculated the theta–beta ratio. This ratio
is considered in the context of this study as an indicator of subjective stress or discomfort
experienced during prolonged stimulation at a specific frequency. Individual values of
these calculated ratios are presented in Table 8.

Table 8. Theta–beta ratio.

Frequency
(Hz) Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Subj 8 Mean SD

Closed
eyes 11.22 5.90 4.08 2.62 3.26 3.93 9.09 3.58 5.46 3.10

5 9.53 5.90 5.87 2.05 6.04 4.96 14.10 4.23 6.59 3.69
6 11.27 6.94 5.19 2.04 5.64 4.42 11.12 2.81 6.18 3.46
7 8.25 7.27 5.87 1.69 11.36 6.22 11.92 3.09 6.96 3.59
8 6.48 5.11 5.29 2.44 12.02 5.42 11.30 2.50 6.32 3.59
9 6.32 6.83 4.12 1.90 12.02 6.32 16.45 3.29 7.16 4.83
10 6.43 5.98 3.90 1.94 10.63 6.47 13.78 3.64 6.60 3.89
11 7.00 6.75 5.00 1.45 7.98 6.35 17.35 2.97 6.86 4.77
12 8.20 6.57 5.04 1.41 8.19 4.54 11.65 2.93 6.07 3.28
13 5.08 6.23 4.35 1.50 7.54 4.84 12.33 2.49 5.55 3.34
14 6.78 6.50 4.89 2.01 8.00 6.57 10.26 2.46 5.93 2.75
15 7.57 8.14 4.24 2.10 7.92 4.81 13.73 3.22 6.47 3.71
16 7.92 7.28 7.55 1.89 6.30 5.37 16.28 1.79 6.80 4.53
17 9.26 6.57 6.87 2.26 6.72 4.17 13.52 2.23 6.45 3.76
18 6.97 6.57 4.96 1.99 5.05 4.62 17.70 2.50 6.30 4.92
19 4.07 7.23 4.30 1.64 7.58 6.59 15.04 2.73 6.15 4.18
20 4.73 4.16 3.96 3.14 4.05 3.77 11.71 2.37 4.74 2.91
21 4.78 5.18 4.48 1.83 4.20 4.75 8.14 2.78 4.52 1.85
22 6.23 6.73 4.22 1.90 4.54 3.66 12.34 2.44 5.26 3.31
23 7.55 6.53 3.28 3.09 4.77 5.55 13.42 2.12 5.79 3.59
24 7.14 8.23 4.23 1.77 5.32 3.91 10.43 2.72 5.47 2.93
25 8.69 7.05 4.63 1.50 4.82 4.77 11.93 3.10 5.81 3.31

The analysis of the obtained data revealed that the mean value of the index for the
entire sample was 6.09 (SD = 3.54) during stimulation session and 5.47 (SD = 4.14) during
the resting state with eyes closed. These data, among other things, indicate high values
of inter-subject variability of the measured index. When examining the plot of the index
values for individual frequencies, a noticeable decline in theta–beta ratio scores is observed
for males at frequencies of 20–21 Hz, with a tendency to return to average values with
further increases in stimulation frequency (Figure 7). The overall downward trend of
the obtained values may indicate a decrease in discomfort when transitioning from a
low- to high-frequency stimulation, which is consistent with existing literature data [21].
Conducting a more detailed statistical analysis across groups that differ in terms of gender
or stimulation frequency is challenging due to the small sample size within this pilot study.

The resulting theta–beta ratios are then normalized to a range of 0 to 1 according to
Equation (8) to obtain a discomfort coefficient Kd. An example of such normalization for
subject 3 is shown in Figure 8.

The values of this coefficient can additionally be used to filter out some of the optimal
frequencies selected by the values of the K f a coefficients, although it should be noted that
they are highly empirical in nature, and the same value of this coefficient can mean a
completely different level of discomfort for different subjects.
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Figure 7. Average theta–beta ratio for males and females.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frequency (Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
d
(f

)

Subj
3
: Discomfort Coe�cient

Figure 8. Discomfort coefficient values for subject 3.

5.3. Coefficients Analysis Application

We used the C++ programming language and the Qt library version 5.14 to create an
application with a graphical user interface. With the help of this application, it is possible to
analyze the calculated coefficients and generate a list of optimal photostimuli frequencies
for each subject. The app’s appearance is shown in Figure 9.

This application consists of two sections. In the first section, located on the left, the user
specifies the necessary input data used for analyzing the coefficients and generating a list of
recommended stimulation frequencies. In the second section, located on the right, the user
can view the results of the coefficient analysis performed according to the input parameters
specified by them. Thus, in the upper part of this section, the user can view detailed
information about any stimulation frequency for which coefficients have been calculated.
In particular, this will allow the user to find out which criteria led to the exclusion of a
particular frequency from the recommended list. The corresponding values that did not
pass any criteria are colored in red. In the lower part of this section, there is a final list of
recommended frequencies presented in the form of a table. Each row of the table is sorted
in descending order of the stimulation frequency rating.
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Figure 9. Main window of the developed application.

When starting to use the application, it is necessary to specify the path to the file with
the coefficients calculated in MATLAB for each stimulation frequency (in the left part of
the application). Then, the user must provide a set of criteria for selecting stimulation
frequencies in the corresponding sections. The list of selection criteria available for setting
was chosen in such a way that the user can adapt the behavior of the application to
their goals and tasks. For example, the user can specify occipital leads for which the
coefficient analysis needs to be performed. We added this feature to the application for
the reason that a subject’s individual response to the presented frequencies may appear
not only in the reaction level of the occurring SSVEP potential but also in the location
of this response among the occipital electrodes. For example, in the previous section, in
the phase of calculating the basic coefficients for subject 3, the vast majority of optimal
coefficients were at the O2 and Oz electrodes, while the values for the O1 electrode were
lower. However, this is not a strict rule and is highly dependent on subject differences.
Thus, even in the case of subject 3, an example can be given where the highest response
was found on electrode O1; it can be seen in Figure 5 for photostimulus frequencies of
15 Hz (for the coefficient K f a calculated for the fundamental frequency) and 16 Hz (for the
coefficient K f a calculated for the second harmonic). This allows for determining the rating
of each frequency and identifying the most suitable EEG channel for searching for SSVEP
potential at any stimulation frequency. If necessary, the user can specify the exact number
of frequencies recommended by the application, depending on the requirements of the BCI,
or leave this section disabled to turn off the frequency number limitation. In the following
sections, the user needs to set the minimum permissible threshold values for the Ksp and
Ko coefficients proposed in this article.

Establishing minimum acceptable thresholds for these coefficients provides fine control
over how the application prioritizes certain frequencies. For example, setting the Ko
coefficient threshold closer to one and decreasing the Ksp coefficient threshold will cause the
application to prioritize stimulation frequencies with the most stable threshold overshoot
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of SNR. And if the user needs the fastest response to a stimulus, then it is possible to set the
Ksp coefficient threshold close to one, and slightly decrease the Ko coefficient threshold. In
cases where there are strict requirements for response speed and SNR threshold overshoot,
both thresholds of these coefficients can be set closer to one, although this may significantly
reduce the final list of recommended frequencies.

The application also includes the ability to set minimum values for the three K f a
coefficients. The proximity of these coefficients to one depends heavily on the values of
the Ksp and Ko coefficients. Therefore, setting the minimum allowable values for the K f a
coefficients ensures that the mutual influence of the Ksp and Ko coefficients will not result
in the application selecting a frequency with a maximum value for one coefficient at the
expense of significantly reducing the other. Instead, the application will maintain a balance
between the values of the Ksp and Ko coefficients by selecting stimulation frequencies that
best satisfy the established thresholds for the Ksp, Ko, and K f a coefficients simultaneously.
In this case, only the threshold coefficient K f a with the maximum value will be considered
for each photostimulus frequency. As a result, the list of recommended frequencies will
also indicate which K f a coefficient formula should be used to detect SSVEP potential at
a given photostimulus frequency. This allows us to additionally consider stimulation
frequencies where the SSVEP potential is exclusively present at the main or multiple
stimulation frequencies. Additionally, this approach takes into account different time
delays or response stabilities at the main and multiple frequencies, selecting the best option.
Considering these factors expands the final list of recommended frequencies.

The process of selecting recommended frequencies in our application was designed in
such a way that the first priority is given to searching for stimulation frequencies that exceed
the threshold value of the K f a( f , 2 f ) coefficient. This ensures that the list primarily includes
frequencies that produce a high response at both the main and multiple stimulation frequencies.
The remaining frequencies are then selected in descending order of the values of the K f a( f )
and K f a(2 f ) coefficients, which are analyzed as a unified list. This approach allows us to
properly take into account those subjects who are most characterized by SSVEP potentials
occurring at multiple stimulation frequencies rather than at the main stimulation frequencies.

Finally, the user can set the maximum allowable discomfort coefficient Kd as the
last threshold value. This allows the list of recommended frequencies to be adjusted by
excluding frequencies that cause discomfort for the subject. For example, as shown in
Figure 9, our application excluded the frequency of photostimulation at 17 Hz from the
list of recommended frequencies due to its high discomfort coefficient. However, this
frequency passed all other threshold values set for the Ksp, Ko, and K f a coefficients.

It is important to note that because SSVEP potentials can arise not just at the primary
frequency but also at its multiples, some chosen frequencies might be mathematically
incompatible. For example, the photostimuli presentation with a frequency of 5 and 10 Hz
in both cases can provoke a reaction at 10 Hz, 20 Hz, etc. This feature is not taken into
account in our application because its primary goal is to generate the most complete list of
potentially usable frequencies.

6. Discussion

In this study, to determine individual stimulation frequencies, we used criteria such
as the reaction onset speed in response to presented visual stimuli, the capacity to maintain
a consistent response at an acceptable level during continuous visual stimuli presentation,
and user satisfaction with the presented photostimulus to identify individual stimulation
frequencies. For this purpose, we proposed a number of coefficients based on the SNR and
theta-to-beta power ratio:

1. Reaction reaction speed coefficient Ksp;
2. Threshold overcoming coefficient Ko;
3. Frequency applicability coefficient K f a;
4. Discomfort coefficient Kd.
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Each coefficient serves as a quantitative measure, ranging from 0 to 1, which charac-
terizes the extent to which the stimulation frequency is suitable for the subject in terms
of various factors, including the response onset speed to the presented photostimuli, the
stability of the response, the overall applicability of the frequency, and the level of induced
stress. Notably, our study utilized these coefficients to account for subject responses, not
only at the fundamental frequency but also at the second harmonic of the photostimulus
frequency. This approach enabled the identification of frequencies that may have elicited
weak responses at the fundamental frequency but demonstrated favorable outcomes at the
second harmonic.

The results of calculating these coefficients in Section 5.2 demonstrate the highly
individualized response of each subject to the presented photostimuli.

To facilitate working with the obtained coefficients, we developed a special applica-
tion described in Section 5.3. With the help of this application, the user can adjust the
desired threshold values of the calculated coefficients and automatically obtain a set of
photostimulus frequencies most appropriate for a particular subject.

During the course of this study, notable variations in SSVEP response were observed
among subjects. In certain instances, the reaction was indistinguishable, while in others,
the reaction was only significant on the fundamental frequency or subharmonic frequency.
These findings indicate that an individualized approach may be necessary, as certain
frequencies may not be suitable for all patients, but this does not preclude the possibility of
other frequencies being effective. Additionally, some subjects exhibited more pronounced
responses to subharmonics, suggesting that incorporating subharmonics into SSVEP may
enhance the accessibility of SSVEP-BCI.

It is crucial to situate the findings of our study within the broader context of previous
studies and obtain results. For example, in the study by Kus et al., the researchers aimed to
determine the SSVEP response curve, which represented the magnitude of the evoked signal
based on frequency. They induced the SSVEP response using a wide range of frequencies
(5–30 Hz) and collected data from 10 subjects. The main finding of the study was the iden-
tification of the optimal frequency range (12–18 Hz) for detecting SSVEP [31]. The authors
of another relevant paper successfully used a filter bank canonical correlation analysis to
incorporate fundamental and harmonic frequency components to improve the detection of
SSVEPs [55]. In line with these findings, the results of our study point to the same range
for optimal stimulation frequencies, encompassing high alpha and low beta EEG frequency
bands. However, within this optimal range, different subjects have their own most suitable
frequencies at which the speed and stability of the evoked SSVEP potential are high enough.
Furthermore, we demonstrated that considering not only the fundamental frequency of the
photostimulation but also the second harmonic frequency improved the estimation of the
reaction onset rate and stability of the SSVEP response. This approach enabled us to ac-
count for individual user characteristics and extend the frequency range, particularly in the
low-frequency range, where the signal-to-noise ratio may be compromised.

As a limitation of the methodology for individual frequency selection in general, it is
important to note that the individual calibration process might need to be repeated after a
while, since the human body is prone to changes, especially over longer periods of time
(months and years). And, indeed, the individual reactions might be different due to a
user’s condition. However, this deserves a specific study and is beyond the scope of our
current paper. It is also important to note that some frequencies may be mathematically
incompatible. For example, if a 5 Hz photostimulus does not evoke a response at the
fundamental but at the second (10 Hz) harmonic, then such a photostimulus may be
indistinguishable from a 10 Hz stimulation frequency, which evokes a response only at the
fundamental frequency. However, this fact is more of a limitation of the SSVEP paradigm
itself than of our proposed method.
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7. Conclusions

Brain–computer interfaces are rapidly gaining popularity due to their potentially
wide range of applications, being equally beneficial for both healthy individuals and
patients suffering from severe illnesses. The vast number of approaches, relying on various
neurophysiological mechanisms and methods of acquisition and processing, provides an
opportunity to actively pursue multiple directions in search of optimal solutions. One
such approach that has demonstrated practical effectiveness involves the development
of BCIs based on steady-state visually evoked potential. Currently used stimulation
protocols typically focus on frequencies exceeding 30 Hz, which is attributed to lower
fatigue likelihood in individuals as well as reduced probability of epileptic activity when
displaying rhythmically flickering stimuli. However, within the scope of this current
research, we focused on a frequency range from 5 to 25 Hz. The use of photoflashes at
these frequencies yields a maximum SSVEP amplitude compared to frequencies above
30 Hz [13]. By limiting ourselves to frequencies within this range, our objective was to
develop an algorithm for identifying the most optimal stimulation frequencies for each
subject while considering their subjective level of stress/discomfort (being quantified by
using the theta-to-beta power ratio) when presented with stimuli at specific frequencies.

The improvement of approaches in developing increasingly reliable, accurate, and
user-friendly brain–computer interfaces enables the active integration of these technologies
into clinical practice, significantly enhancing the quality of life for patients. Over the
decades of BCI utilization, including those based on SSVEP, substantial advancements have
been achieved in rehabilitating patients who have suffered from strokes [56,57], as well
as patients recovering from severe spinal [58] or brain injuries [59,60]. Personalization of
diagnostic programs and therapeutic interventions in modern medicine is one of the main
directions of development. The development of next-generation interfaces that take into
account a greater number of influencing factors, considering the individual condition of
the patient during BCI training, will potentially provide patients with the ability to actively
interact with the external world and lead lifestyles that are qualitatively indistinguishable
from those of healthy individuals. Despite being conducted on a sample of healthy subjects,
our study nevertheless has the feasibility and potential to be used on patients who are
experiencing significant difficulties in returning to their normal lives after a previous illness.

Future plans include performing the experiment described in this article on a larger
group of participants, using the obtained individual stimulation frequencies in real condi-
tions, and analyzing the variability of optimal frequencies calculated for participants over
time. We also plan to quantitatively evaluate the reasonability of this approach relative to
other methods for selecting individual photostimuli frequencies and the scenario without
any selection at all.
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