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Abstract: With the recent advancements in the field of diffusion generative models, it has been shown
that defining the generative process in the latent space of a powerful pretrained autoencoder can
offer substantial advantages. This approach, by abstracting away imperceptible image details and
introducing substantial spatial compression, renders the learning of the generative process more
manageable while significantly reducing computational and memory demands. In this work, we
propose to replace autoencoder coding with a model-based coding scheme based on traditional lossy
image compression techniques; this choice not only further diminishes computational expenses but
also allows us to probe the boundaries of latent-space image generation. Our objectives culminate in
the proposal of a valuable approximation for training continuous diffusion models within a discrete
space, accompanied by enhancements to the generative model for categorical values. Beyond the
good results obtained for the problem at hand, we believe that the proposed work holds promise
for enhancing the adaptability of generative diffusion models across diverse data types beyond the
realm of imagery.

Keywords: information theory; generative models; diffusion models; image compression; vector
quantization; denoising

1. Introduction

Current generative models exhibit the remarkable capability of producing novel data
that closely resembles real-world examples, partially mimicking the mechanisms of human
creativity. Within the domain of computer vision, the challenge of generative image synthe-
sis addresses the task of creating visually coherent and lifelike images. Denoising Diffusion
Probabilistic Models (DDPMs) [1] have recently emerged as the dominant paradigm for
image generation, rivaling the performance of well-established techniques like Generative
Adversarial Networks (GANs) [2].

DDPMs operate as a series of denoising autoencoders which gradually reverse a degra-
dation process, modeled as a Gaussian process, to recover the original image. The training
objective, defined as a weighted variational lower bound, can be conveniently parameter-
ized to learn the mean of the reverse Gaussian process. The most noticeable drawbacks
of DDPMs formulation are the substantial computational and memory requirements for
the generation phase, which imply repeated evaluations of a denoising model (up to
1000), and the tendency of the reverse process to attempt to model perceptually insignif-
icant details during the training phase, which originates from explicitly modeling the
high-dimensional RGB space.

For these reasons, a highly successful research direction involves shifting the gener-
ative phase to the latent space defined by pretrained autoencoders. While this approach
was already adopted by different generative paradigms [3–5], it has gained traction in the
context of diffusion models due to the accomplishments of Stable Diffusion [6]. By capi-
talizing on the latent space’s ability to capture essential features and patterns, it becomes

Algorithms 2023, 16, 501. https://doi.org/10.3390/a16110501 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16110501
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1006-7826
https://orcid.org/0000-0001-9082-8087
https://orcid.org/0000-0002-7327-3347
https://doi.org/10.3390/a16110501
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16110501?type=check_update&version=2


Algorithms 2023, 16, 501 2 of 17

possible to separate the perceptual compression phase from the actual synthesis in the
generative process, resulting in a significantly more efficient training process. The reduced
spatial resolution of latent representations also allows for substantial memory savings and
quicker decoding.

Our work starts from this concept, however, discarding the autoencoder as a means of
defining latent space, experimenting instead with a lossy “model-based” image compres-
sion algorithm. We define a simple Vector Quantization (VQ)-based compression algorithm,
which allows to approximate patches of the image with a finite set of representative ele-
ments. The defined latent space is essentially a discrete distribution over a finite set of
indices, and to accommodate this feature, below, we propose a useful approximation for
dealing with a discrete process mimicking a representation in the continuum. Finally, we
propose a refinement of the discrete inverse diffusion process, which further accommodates
our setting.

In short, our contributions can be summarized as follows:

• We propose a shallow encoding for the perceptual compression stage which is of
simple definition and predictable behavior (Section 3.1).

• We propose a simple strategy which allows training a continuous-space diffusion
model on the discrete latent space. This is achieved by enforcing an originality property
in the latent space through a sorting of the finite set of latent values along the direction
of maximum covariance (Section 3.2.1).

• Finally, we propose to redefine the reverse diffusion process in a categorical frame-
work by explicitly modeling the latent image representation as a set of categorical
distributions over the discrete set of latent variables used for the lossy encoding
(Section 3.2.2).

2. Related Works
2.1. Generative Models

The problem of image synthesis can be formalized as the search from a generative
model G which approximates the unknown distribution P of “real-world” images, some-
times conditioned with respect to a certain class (cats, churches, faces, etc.). This task has
already been studied in the literature of other domains (text generation, music files. . . ),
and since its inception, it has found large use relative to long sequences or, in our case,
to high-resolution images. These problems are related to both the computational power
required to generate such models and the numerical instability phenomena which lead
the process to be unsteady with respect to the choice of hyperparameters and the training
process. On the other hand, the power and surprising results have pushed the literature
towards the search for a compromise between performance and efficiency. In light of this,
there are many recent works that attempt, through various techniques, to stabilize the
generative methods and make them efficient. In this section, we therefore try to summarize,
without claiming to be exhaustive, some ideas developed in the literature along these lines.

Evaluation of Generative Models

Assessing the performance of generative image models is notoriously complicated,
and different strategies have been proposed thought the years. Inception Distance (ID) [7]
measures the dissimilarity between the distribution of generated images and a reference
dataset using an InceptionV3 network pretrained on ImageNet [8]. ID is computed by
extracting a feature representation from both the real and the generated images and then
computing the Kullback–Leibler (KL) divergence between the related distributions. The
Fréchet Inception Distance (FID) [9] takes this concept by instead computing the Fréchet
distance between the features distributions. From a practical standpoint, computing the
FID score requires a large set R of images from the real distribution and a comparably sized
set of generated images G. First, the pretrained InceptionV3, up to its final pooling layer, is
used to extract 2048-dimensional feature vectors from each image in both sets. Afterwards,
the FID is computed by measuring the Fréchet distance between the two sets of feature
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vectors, as defined in Equation (1). This computation is carried out after determining the
mean vectors (µR, µG) and covariance matrices (ΣR, ΣG) for both sets of feature vectors:

FID(G, R) = ||µG − µR||22 + Tr
(

ΣG + ΣR − 2(Σ1/2
R ΣGΣ1/2

R )1/2
)

(1)

where Tr(·) defines the trace operator. The metric defined with this formulation ideally
should quantify the perceivable difference in appearance between the generated and real
images; in fact, as the FID score approaches zero, it should indicate that the two sets of
images are indistinguishable. However, how the FID and similar metrics might fail at
capturing semantic aspects of image content, such as object composition or scene coherence,
is still being investigated. Moreover, subtle details of the implementation have been shown
to invalidate the reliability of these metrics [10]. In addition, a disadvantage of these types
of metrics is that they require the generation of an image set in the tens of thousands,
which, depending on the model under consideration, can take quite an onerous amount of
computation time. Nonetheless, for the purpose of this work, the assessment by means of
FID score was opted for.

2.2. Diffusion Models

Diffusion models are a class of likelihood-based generative models which define the
generative process as a mapping from a prior distribution N (0, Id) to the target unknown
distribution P of the real data. This is achieved by defining a forward degradation (or
diffusion) process q which gradually corrupts a data sample x0 with additive Gaussian
noise at each time step t with t ∈ (1, . . . , T) and a reverse degradation process which learns
an approximation pθ parameterized by the weights θ of the denoising process.

The forward process q(xt|xt−1) is modeled by a conditional Gaussian distribution
which, at each step, is defined by the mean µt = µt(xt−1) and variance βt:

q(xt|xt−1) = N (
√

1− βtxt−1, βtId) (2)

where 0 < β1 < β2 < . . . < βT < 1 are fixed according to a predefined variance scheduler,
which in the original work is defined as linearly increasing from β1 = 10−4 to βT = 2 · 10−2

with T = 1000. The reverse process pθ(xt−1|xt) is also a conditional Gaussian distribution

pθ(xt−1|xt) = N (µθ(xt, t), βtId) (3)

with θ usually being the parameters of a powerful denoising neural network and µθ being
the mean of the learned inverse process. With the variance being fixed, only the mean of
the posterior distribution has to be learned. Once the model is trained, sampling from the
approximated distribution of real images can be performed effectively by starting with a
realization of pure noise ε ∼ N (0, Id) and sampling xt−1 from pθ for t = T, T− 1, . . . , 1 to
recover the sample x̃0, which represents the initial generated state.

A suitable objective function to learn the reverse process can be derived by a repa-
rameterization of the mean µθ , leading to the following (we refer to [1] for the complete
derivation):

Lε(θ) = ||ε− εθ(xt, t)||22
t ∼ U (0, T) ε ∼ N (0, Id)

(4)

where εθ(xt, t) is the neural network tasked with estimating the noise level on xt at the
uniformly drawn time step t. Since the forward process is a fixed Markov chain, xt can
be directly computed at any noise level t without going through the intermediate levels.
Hence, Equation (4) can be efficiently optimized at random time steps t by simply predicting
the noise realization ε added to x0. An alternative parameterization of the mean can lead to
a different definition of the training objective as the learning of the uncorrupted image x̃θ

0
given xt and t:

Lx0(θ) = ||x0 − x̃θ
0(xt, t)||22 (5)
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Although the two formulations are theoretically equivalent, the former is generally pre-
ferred because of its observed better quality of the generated images. In the remainder of
this paper, we use both expressions, and in particular, we leverage a combination of them
when introducing our formulation for the reverse process in Section 3.2.2.

We close this section by remarking that, starting from [1], DDPMs have been leveraged
in both unconditional generation, where the image space is randomly sampled, and con-
ditional generation, where the generative process is guided by a prior, such as the image
class in a multiclass scenarios or even complex natural language queries. For the remainder
of this work, we only focus on the unconditional generation task.

2.3. Latent Diffusion Models

As briefly stated in the introductory section, Stable Diffusion [6] achieved impressive
results in image generation with DDPMs by shifting the generation process in latent space.
This choice is motivated by the inherent difficulty of training DDPMs for high-resolution
image generation, due to the waste of expressive capacity for generating irrelevant image
details and the very high computational cost. The shift to latent space introduces a strong
GreenAI-boosting perceptual and spatial compression, simplifying training and reducing
computational cost. The latent space is defined by an encoder E(x) = z which maps an
image x ∈ Rw×h×c into a latent representation z ∈ Rw

s ×
h
s×c and a decoder D(z) = x which

reconstructs x ≈ x in the image space. The pair (E ,D) defines a Variational Autoencoder
(VAE) pretrained on the Open Images dataset [11] (and frozen when training the diffusion
model), trained by simultaneously minimizing a reconstruction term ||x − x||22 and a
regularization term useful to bound the variance of the latent space. Good results have
been achieved with VQ-VAE regularization [12], which introduces a Vector Quantization
(VQ) layer to regularize the latent space. This, however, is not to be confused with the
VQ-based compression method introduced in Section 3.1, especially since z is extracted
from the VAE bottleneck before the VQ layer, which is hence embedded in the decoder.

Defining the generative process in latent space means redefining the loss in Equation (4)
as a function of z:

LL(θ) = ||ε− εθ(zt, t)||22 (6)

Hence, the reverse diffusion model is used to sample z̃, and at the end of the generation
process, the sampled image x̃ = D(z̃) is recovered using D. The work presented in this
manuscript is conceived as an ablation of this method by substituting the deep latent space
defined by the VAE with a shallow latent space defined by a model-based lossy image
compression technique.

3. Proposed Method

In this section, we illustrate the theoretical fundamentals of our employed model.
Specifically, the first part is dedicated to the description of the outline of the image compres-
sion strategy, while in the second one we discuss the proposed approach to successfully
leverage the compressed representation for image generation.

3.1. Latent-Space Encoding

Lossy image compression is a fundamental branch of image processing that addresses
the problem of reducing the data required to represent an image by selectively discarding
the information that is deemed less relevant for the human perception. Typical lossy
compression algorithms encode images in ways that exploit the inherent redundancy,
allowing them to be efficiently represented using fewer bits. The first aspect to consider
when designing a compression algorithm that can be leveraged for latent-space image
synthesis is the convolutional encoder–decoder style of the generative model itself, which
can only produce output of fixed size. Conversely, the most popular image compression
algorithms, with JPEG on top of all, produce variable-length compressed representations
for different images. For this reason, we devise a simple yet effective compression strategy
based on VQ techniques, which maintains a constant compressed representation size for
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each patch by employing predefined codebook mapping input vectors to fixed-length code
words, thus ensuring consistent compression regardless of image content. Similar strategies
have been popular since the 1980s (see e.g., [13,14]) for their simplicity and overall good
performances. In the deep learning era, VQ-like approaches were rediscovered [12], as was
the case with other compression techniques [15,16].

Given an RGB image x ∈ Rw×h×3, the model-based compression algorithm produces
a latent representation z ∈ Rw

s ×
h
s×c. The compression algorithm is designed by first

converting the image to the YCbCr color space, this separates the image information into its
perceptually relevant components, enabling a better use of compression techniques. Then,
for each channel from 1 to 3, the image is divided in non-overlapping patches of s× s pixels,
with each patch capturing a localized region of the image, preserving both spatial and
chromatic information. Then, finally, the core of our compression techniques involves vector
quantization applied to each individual patch. Vector quantization replaces each patch with
one (or more) representative vector, denoted as codewords, from a fixed-size codebook, thus
allowing the whole (s2 ∗ 8 bit) block to be encoded as the index i of the assigned codeword.
Clearly, the strategy of the definition of the codebook and the codewords assignment
strategy are crucial to set the optimal tradeoff between compression ratio and information
preservation; therefore, hereafter, we detail the multiple strategies experimented. The
complete compression algorithm is schematized in Figure 1. In Section 4.1, instead, we flesh
out all the technical details of the practical implementation of the quantization approaches,
together with results on a lossy compression benchmark.

8x8 Patches

RGB →YCbCR521x512
RGB

Y-VQ

Cr-VQ

Cb-VQ

3 * Np

Yc

W/8

H
/8

Crc
Cbc...

...

...

Figure 1. Image compression scheme.

3.1.1. Vector Quantization

Vector quantization [17,18] is a popular technique in the domain of data compression
and signal processing. Its fundamental idea is the approximation of the entire data space X
with a finite subset of representative vectors C. This process not only reduces the cardinality
of the space but also enables a concise and efficient representation by assigning a codeword
ci to each element x ∈ X of the subset. Conveniently, each entry ci can be uniquely
represented by its index i ∈ I , with I := {1, . . . , |C|}.

Formally, this procedure is described by a quantizer defined by an encoder function
E(x) and a decoder function D(i)

q : X −→ C (7)

x 7−→ c = q(x) = D(E(x)) (8)

The encoder function, E : X −→ I , maps each element of the space into its compact code
representation E(x) = i ∈ I . On the other hand, the decoder function D : I −→ C maps
the index i ∈ I back to the representative vector ci. The representative vector ci is chosen
by definition in order to minimize the distortion with respect to x; hence, the encoder can
be defined as

E(x) = i⇐⇒ ‖x− ci‖2
2 = min

c
‖x− c‖2

2 (9)

From Equation (9), the lossy nature of VQ is clear, since the encoding process implies an
approximation error e, or ci = x + e. For convenience, C is referred to as the codebook,
and its elements ci as codewords, with i being the code associated to x. For the scope of
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this work, we focus on fixed-rate quantizers, where each code is represented with the
same number of bits; hence, the number of bits required to approximate x with i using a
codebook C is bC = log2(|C|), defined as bitrate of q. When x ∈ Rn with n >> bC , it makes
VQ a very powerful compressor.

Defining an optimal quantizer is not straightforward, as it depends on the desired
tradeoff between reconstruction error and compression rate, which is strictly dependent
on |C|. In the simple case where X is defined as a finite subset of Rn and |C| is fixed
beforehand, recalling Equation (9), the formulation for the error introduced by encoding X
with q simplifies to

MSE(q) = ∑
x∈X
‖x− q(x)‖2

2 = ∑
x∈X
‖x− D(E(x))‖2

2 (10)

From this definition, the choice of the optimal quantizer for X reduces to defining the set
of vectors ci, which minimizes Equation (10), which are those provided by the k-means
algorithm. K-means directly minimizes the MSE by iteratively updating centroids to
minimize the sum of squared distances between data points and their assigned centroids.
In Section 4.1, we detail the process of defining the optimal quantizer for the problem of
image compression, where X is defined as a set of representative image patches.

3.1.2. (Optimized) Product Quantization

The base vector quantizer described in Section 3.1.1, while being a powerful tool,
implies some major drawbacks. The number of codewords |C| required to represent a
code E(x) = i using bC bits is proportional to the cardinality of the codebook as |C| = 2bC .
For moderately large x (i.e., an 8 × 8 8-bit grayscale image patch), a reasonably high
compression rate of 1 : 16 would imply encoding the block with 512/16 = 32 bits, which
would lead to a codebook with |C| = 232 ' 4B possible codewords! Clearly, such a
large codebook would be hard to obtain and require large memory usage and intense
computation cost; hence, more sophisticated quantizers are needed.

Product Quantization (PQ) [19], schematized in Figure 2, is an upgrade in this direction.
Instead of processing the input vector x as a whole, it is possible to split it into m subvectors
x(1), x(2), . . . , x(m) and consider a subcodebook for each of them. For simplicity, it is common
to have subvectors with equal length of n′ = n

m : x(j) = (xm∗(j−1)+1, . . . , xm∗j), where m is a
divisor of n. At this point, the quantizer is the Cartesian product of m subquantizers that
act on each subvector:

q : X −→ C = C1 × . . .× Cm (11)

x 7−→ c = (c1, . . . , cm) = (q1(x(1)), . . . , qm(x(m))) (12)

Since each subquantizer qj is a separate vector quantizer, defined by its codebook Cj,
the code for x can be obtained by independently encoding each subvector:

E(x) = (E1(x(1)), . . . , Em(x(m))) = (i1, . . . , im) (13)

The fundamental difference is that the resulting code (i1, . . . , im) is a vector; therefore, the
total number of bits required to represent it corresponds to the sum of the bitrates of the
subcodebooks. Hence, encoding x with a 32-bit code will require just 4 8-bit codebooks,
for a total of only 1024 possible codewords.
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RPATCH

Flattened Patch Rotation Matrix (*)
m sub-patches

....1

....

....

nn-assign

(m*8)-bit
codebook

2

N

8-bit sub-codebooks

(n*8)-bit
codes

index

Figure 2. Product quantization. (*) When R 6= Id this corresponds to OPQ.

Optimized Product Quantization (OPQ) [20] offers further improvement. Instead of
directly encoding the vector x as it is, it first applies an orthogonal matrix R (i.e., a change
in basis). This operation is particularly useful in our case, as image pixels have correlations
between them that are dictated by the structures present in the images subjects. Hence,
simply splitting the images at fixed intervals may not be the best course of action, but it
may be necessary to first reorder their pixels, so that correlated pixels end up in the
same subvector. The problem of finding an optimal quantizer involves finding both the
C1, . . . , Cm codebooks and the matrix R subject to RRT = Id. In [20], the authors derive
a nonparametric solution as an alternating minimization scheme, where in one step R is
given, and the codebook is learned; in the other, the optimization of the MSE is carried out
with respect to R, while the codebook is fixed. The former step can simply be carried out via
k-means in the transformed domain. For the latter, considering Equation (10), the problem
can be written as

argmin
s.t. RRT=Id

∑
x∈X
‖Rx− Rc‖2

2 = argmin
s.t. RRT=Id

‖RX−Y‖2
F (14)

where, in the last formulation, with a slight abuse of notation, X is the matrix containing the
practical data samples from the space, and Y is the reconstruction of X in the transformed
domain according to the current codewords estimates (i.e., Y = D(E(X))). This problem
is known as Generalized Procrustes Alignment [21] and has a closed-form solution in
R = VUT , with V and U being the orthogonal matrices of the Singular Value Decomposition
of XYT .

3.1.3. Residual Quantization

A different strategy to improve VQ is represented by additive quantization [22]. In
this case, the quantizer q can be seen as the sum of a set of quantizers {qj}m

j=1. Each of these
quantizers maps the vector x into its own codebook Cj:

q : X −→ C (15)

x 7−→ c =
m

∑
j=1

cj =
m

∑
j=1

qj(x) (16)

Similarly to PQ, the code assigned to x is a vector in Rm, and the bitrate of the encoding
corresponds to the sum of the bitrates of the subcodes. Unlike in PQ, here, the centroids are
vectors with the same length as x and not just a fraction of it.

Residual Quantization (RQ) [23] is a specific example of additive quantization. The idea
is to give a hierarchy to the quantizers qj. The first one, q1, is learned normally without any
additional information. The second one, instead, wants to be the optimal quantizer for the
vector x− q1(x), i.e., the residual between x and its quantization. In general, for j ≥ 2, qj is
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meant to quantize the vector x−∑
j−1
s=1 qs(x), which effectively places this strategy under

the additive quantization umbrella. While RQ demonstrated superior performance in mini-
mizing reconstruction errors, as shown in Section 4.1, it exhibits a fundamental limitation.
Specifically, it allows for the possibility of multiple valid encodings for a single data point,
which undermines the core principles of the generative model training procedure.

3.2. Latent-Space Diffusion Models

The lossy compression algorithm defines an encoding function E which maps an
image x to a latent representation z ∈ Rw

s ×
h
s×c. Ideally, redefining the training objective of

the generative model to operate in the new latent space should be straightforward:

min
θ
‖ε− εθ(zt, t)‖2

2 zt = E(xt) (17)

This approach has been shown to be valid in the case of a latent space defined by a deep
autoencoder [6,12]. However, when relying on the shallow latent space defined by the pro-
posed compression algorithm, we observed the impossibility of learning anything useful.
The causes of this limitation can be traced back to the definition of the encoding algorithm
using VQ (and its other embodiments), especially in the definition of the codewords using
k-means, as defined in Equation (10). Effectively, the encoding of an image patch with the
assigned code i ∈ I imposes a bi-univocal correspondence with the set of positive inte-
gers, which implies an inherent total ordering of the codewords c1, . . . , c|I|. The imposed
ordering, which by the nature of k-means is fundamentally random, is not reflected in
an ordering of the Rn space where codewords are defined; hence, the addition of Gaus-
sian noise to i will result in the random assignment of a new codeword cdi+N (0,1)e, while
ideally the additive noise should lead to a codeword cj ∝ ci +N (0, 1). The above can be
intuitively appreciated by observing the effect of a constant addition on an encoded image
in Figure 3b.

A useful interpretation is to consider the codewords as a finite and discrete set of
categorical data, which brings us to the domain of categorical diffusion models, previously
introduced in Section 2.2. Recent works on discrete-state diffusion models [24–28] mainly
propose to redefine the forward diffusion process by relying on a transition matrix which
defines the probabilities of moving from one state to another. An interesting result of [24]
is that we can imitate a continuous-space diffusion model by defining the discrete diffusion
process in a way that will transit with higher probability to similar states, introducing an
ordinal bias. Along this line, we show that the careful choice of an optimal ordering on C
can be leveraged to approximate as a continuous process virtually with no additional work.

(a) (b) (c)

Figure 3. This example is obtained with compression schema OPQ-32-8-8, see Section 4.1 for details.
(a) D(E(x))—only reconstruction noise. (b) D(E(x) + 1) before rearranging I . (c) D(E(x) + 1) after
rearranging I .
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3.2.1. Enforcing Pseudo-Ordinality

In principle, we are interested in an ordering of the code space I which satisfies an
ordinality property on the codewords space C in Rn:

‖ci+1 − ci‖2 < ‖ci+j − ci‖2 ∀i ∈ {1, . . . , |C| − 1}, j ∈ {2, . . . , |C| − i} (18)

‖ci−1 − ci‖2 > ‖ci−j − ci‖2 ∀i ∈ {2, . . . , |C|}, j ∈ {2, . . . , i− 1} (19)

In this way, we can enforce that the addition of noise leads to a transition to a code that
is similar to the source code in proportion to the level of noise added. Clearly, with n > 1,
and in the absence of additional constraints on the codebook’s definition, the existence
of a suitable mapping Rn → R that defines I cannot be guaranteed, and in most cases
simply will not exist. More specifically, if we look at the codewords as vectors in Rn, there
could be an arbitrary number of values j which satisfy the right part of the expression in
Equations (18) and (19), i.e., there could be multiple elements of C, identified by different
indexes j, which are equidistant from ci. Therefore, we propose a relaxation of the desired
property by imposing an ordering along the direction which maximizes the correlation
between the elements of C. This approach is borrowed from the technique of Principal
Components Analysis (PCA) [29], widely used in the context of dimensionality reduction.
Given a generic VQ codebook C ⊂ Rn, its principal component v0 ∈ Rn can be conveniently
computed as the eigenvector of the covariance matrix of C corresponding to its largest
eigenvalue. The projection of ci ∈ C along the principal component is hence computed
as c0

i = civ0, which also represents a mapping Rn → R. We assign each element of C to
an index i ∈ {1, . . . , |C|} such that c0

i > c0
i+1, or in simpler terms, as the indices that sort

the vectors through their principal components. This approach does not strictly satisfy
the properties in Equations (18) and (19), nor does it assures to maximize the correlation
between adjacent pairs, but it is guaranteed to be the best possible achievable approximation
with a linear transformation. The latter claim is secured by the fact that PCA, in its linear
version, is the linear component reduction technique that best preserves explained variance.
The additive noise in the diffusion process then causes a displacement along the maximum
variance dimension, which in a categorical framework implies moving towards a highly
correlated latent state, which resembles the continuous diffusion process. Figure 4 provides
a powerful intuition of the achievement.

Categorical Values  = 0.1  = 0.5  = 1.0  = 2.0  = 10.0

Figure 4. Effect of temperature smoothing of categorical distribution.

3.2.2. Categorical Posterior Distribution

Despite the promising results in training the DDPM in latent space, thanks to the
approximation introduced above by optimizing for the training objective of Equation (4),
the sample quality of the decoded images As an additional enhancement, we revise the
formulation of the inverse process to better align with the inherent characteristics of VQ-
encoded images. Building upon the training objective presented in Equation (5), learning
the reverse process within the latent space by targeting the uncorrupted sample z ∈ Rw

s ×
h
s×c

implies predicting the index i corresponding to the suitable codebook entry ci ∈ Cj for each
codebook j ∈ (1, . . . , c) at each spatial location. Instead of directly regressing the value of
ci, we propose an alternative strategy, wherein the inverse process targets a categorical
distribution for each codebook entry across all utilized codebooks. Assuming that all
codebooks contain the same number of entries, the output for the reverse process can
be parametrized as ẑ ∈ Rw

s ×
h
s×c×|C| so that the recovered sample z̃ could be obtained by

sampling the corresponding categorical distribution at each spatial location. The forward
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diffusion process instead is kept unchanged, with zt being defined by introducing noise to
z in the index space.

Since the sampling operation is nondifferentiable, in the training phase, we leverage
the Gumbel-Softmax trick [30] to approximate the sampling of the categorical distribution;
this is achieved by perturbing the logits ẑj for each category with Gumbel-distributed noise
Gi ∼ Gumbel(0, 1), and then approximating the one-hot vector representing the categorical
choice by applying the Softmax function to the perturbed logits. Mathematically, this can
be expressed as

zj = so f tmax
(

ẑj + G
τ

)
j = 1, . . . , c̄

G ∼ Gumbel(0, Id)
(20)

The hyperparameter τ is a temperature parameter which increases the entropy of the distri-
bution; hence, for τ → 0, it approaches the argmax function, and for τ → ∞, it approaches
the uniform distribution, as depicted in Figure 4. Notably, this approximation allows
us to explicitly sample from the codebook distribution instead of the index distribution.
Consequently, we can decode the predicted codewords in a fully differentiable manner,
as demonstrated by the equation

c̃ = [z1C1, · · · , zcCc] (21)

and the decoded image x̃ can be recovered from c̃ depending on the utilized VQ specific
(the complete procedure is schematized in Algorithm 1). By leveraging this formulation,
we could compute the training objective in image space as in Equation (5), while still
performing the generation and the gradient computation in the latent space. It is worth
noticing that, in this way, the latent codes for z are never elicited in the training objective.

Algorithm 1 Differentiable decoding denoised sample

Require: noisy sample zt, time step t
Ensure: denoised sampled in image space x̃0
predicted_codewords = empty()
ẑ0 ← nn(zt, t) . ẑ0 ∈ Rw

s ×
h
s×c×|C|

for each channel c ∈ (1, . . . , c) do
for all i,j do

z0[i, j, c] = gumbel_softmax(ẑ0[i, j, c])
c̃← ẑ0[i, j, c]Cc
predicted_codewords[i, j, c]← c̃

end for
end for
return vq_decode(prediced_codewords)

In order to sample from the trained model, the only distinction from the standard
parameterization of the reverse process in the latent space is that deriving the next sample
zt−1 requires obtaining z̃ by sampling from the categorical distributions derived from ẑ,
which is achieved by the assigned codebook index from the corresponding categorical
distribution, this is schematized in Algorithm 2. It is worth noticing that simply taking
the index with the largest logit (argmax function) corresponds to using the mode of the
categorical distribution, which contrasts with the definition of the inverse process.
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Algorithm 2 Sampling

Require: noisy sample zt, time step t
Ensure: z̃t−1

ẑ0 ← nn(zt, t)
for all i,j do

z̃0[i, j]← sample(ẑ[i, j])
end for
z̃t−1 ← reverse(z̃0, t− 1) . implementation of the reverse process parametrized by z0
return z̃t−1

4. Experiments and Evaluation
4.1. Image Compression

In this section, we detail the implementation detail of the VQ-based image encoding
algorithm introduced in Section 3.1 and provide the qualitative analysis that led to picking
the exact configuration used to train the generative models.

The size of the patch is fixed to s = 8 for all models, and the VQ training set is
defined by extracting all the possible patches from the 18 high-quality images of the McM
dataset [31], which are augmented to 36 by vertically flipping each one, leading to just over
8.6 million patches. Once a VQ method (among VQ,PQ/OPQ, and RQ) is picked, a distinct
VQ encoder is trained for each channel in YCbCr space by leveraging the implementations
of the FAISS library [32] for maximum efficiency. Each channel can be encoded with a
different bitrate; hence, we use the notation {VQ}-{Yb-Crb-Cbb} to uniquely identify the used
combination of VQ type and assigned bitrates.

Each method is tested on three standard images of size 512× 512, which have been
used in the image compression literature for decades (https://sipi.usc.edu/database/,
accessed on 24 October 2023) [33]. The performance is evaluated with two different quality
measures. The Peak Signal-to-Noise Ratio (PSNR) is defined as

PSNR(x1, x2) = 20log10

(
255√

MSE(x1, x2)

)

MSE(x1, x2) =
1

hw

h

∑
i=1

w

∑
j=1
‖x1(i, j)− x2(i, j)‖2

2

(22)

and takes values on all the real lines, where the smaller the number, the worse the quality
of the image. The other is the Structural SIMilarity index (SSIM), which can be computed as

SSIM(x1, x2) =
(2µx1 µx2 + c1)(2σx1x2 + c2)

(µ2
x1
+ µ2

x2
+ c1)(σ2

x1
+ σ2

x2
+ c2)

where, for i = 1, 2, µxi is the mean of xi, σxi is its standard deviation, and σx1x2 is the
covariance between the two images. The constants c1 and c2 are constants placed in order
to avoid numerical issues. The SSIM of an image takes values in the interval [0, 1], where a
score of 0 implies an heavy dissimilarity between the images, while a score of 1 means the
contrary. We also report the compression ratio, which, since the patch size is fixed, can be
conveniently computed as

R(q) = 3 ∗ 8 ∗ s2

Yb + Crb + Cbb
(23)

where Yb, Crb, and Cbb represent the number of bits needed to represented the pixel value
for the respective channel.

The results reported in Table 1 are in line with what was expected: baseline VQ severely
underperforms (especially in terms of SSIM), and increasing the bitrate for the luminance
channel yields far better results, while still achieving a high compression ratio. The absolute
best results are obtained with RQ, which, however, turned out to be unsuitable for our

https://sipi.usc.edu/database/
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application because of the commutative propriety of the sum, also being computationally
inefficient for the sequential nature of the encoding. In addition, basic PQ really does not
make much sense, because it produces highly redundant codebooks. For the above reasons,
we chose to proceed with OPQ-32-8-8. We also report the results obtained on the same
benchmark by two configurations of the pretrained VAE used in [6]. It is imperative to
acknowledge that although the metrics under evaluation may not explicitly highlight this
phenomenon, deep encoding tends to yield markedly more visually appealing images.
This phenomenon can likely be attributed to the fact that shallow encoding introduces
high-frequency and blocky artifacts, which are very noticeable to the human visual system,
while deep encoding produces high-level errors that are not obvious at a glance unless a
side-by-side comparison is made.

Table 1. Evaluation of the proposed lossy compression algorithm.

Encoding C.R
Baboon Peppers Lenna

PSNR SSIM PSNR SSIM PSNR SSIM

VQ-{8-8-8} 1:64 28.83 0.40 30.75 0.63 31.23 0.67
PQ-{32-8-8} 1:32 29.07 0.60 31.28 0.69 31.80 0.74
OPQ-{32-8-8} 1:32 29.12 0.62 31.56 0.72 32.35 0.78
RQ-{32-8-8} 1:23 29.22 0.64 31.97 0.75 32.81 0.81

VQ-f4 [6] n.d 21.43 0.66 29.17 0.77 31.33 0.83
VQ-f8 [6] n.d 18.31 0.37 26.66 0.68 27.16 0.73

4.2. Image Generation

In this section, we provide an experimental evaluation of the proposed approach in
a popular benchmark for unconditional image generation. As introduced in Section 2.1,
the definition of a metric for evaluating generative models is still an open problem; hence,
for the remainder of this section, we opted to stick with the FID score, which, to date, is
the most popular metric in the literature.

4.2.1. Experimental Setup

We assess the generative performances in a single-class unconditional scenario on two
subsets of the LSUN dataset [34] which are extremely popular in this context: the cat subset
and the church one. The first is a large dataset of over 1.6 million images of cats acquired
from a wide variety of sources. This is a very complicated dataset due to the extreme
variability in the appearance and composition of the images, caused in part by the nature
of the subject. In contrast, the dataset of churches is smaller with only 125 thousand images,
and it is considerably easier to handle because of the chromatic and geometric regularity
of the buildings represented. All the experiments are conducted with an image resolution
before compression of 512× 512, which means a latent representation of 64× 64× 6 using
the OPQ-{32-8-8} encoding.

We fix a common setup for all the experiments: the denoiser model is defined as a
U-Net model with four down/up sampling stages and attention only at the bottleneck
level in order to reduce the memory footprint. In total, the model has around 50 million
parameters, which is a small number if compared with what is commonly used. We
base our experimental setup on the Pytorch implementation by Phil Wang of the original
DDPM paper, with the addition of Min-SNR weighting [35], which penalizes the loss terms
proportionally to the inverse of the magnitude of the noise added al timestep t. In this
way, the model is discouraged from focusing on minor details and self-conditioning [36],
which conditions the denoising process based on the previous estimate of the recovered
sample x̃0. All the evaluated models are trained for 1 million steps with a batch size of 64
on 2 Nvidia v100 GPUs, which takes around 10 days. This represents an extremely tight
computational budget for this kind of application. In comparison, in the original DDPM, a
U-Net configuration with either 114 or 256 million parameters (approximately 2–5 times
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larger than ours) is leveraged and trained for the equivalent of over 100 v100 days, which
is over 10 times our computational budget. An additional difference is that, thanks to the
efficiency of the proposed encoding, we are able to generate samples of size 512× 512,
which after encoding with the chosen setup (OPQ-{32-8-8}) corresponds to latent codes
of size 64× 64× 6. Other existing methods, such as the original DDPM [1], typically use
samples of size 256× 256, i.e., 1

4 of the size of our decoded samples. The results, expressed
in terms of FID score, are shown in Table 2.

Table 2. Evaluation of unconditional image generation on LSUN datasets. Best results in bold.

Model
FID Score (↓)

LSUN-Cat LSUN-Church

Continuous 14.01 12.46
Continuous + Refiner 11.92 10.05

Categorical Rev. (τ = 1.0) 13.97 12.06
Categorical Rev. (τ = 2.2) 13.75 -

4.2.2. Continuous-Style Diffusion Model

We begin this evaluation by analyzing the case in which the forward and backward
processes are kept unchanged compared with the continuous case. Hence, we optimize for
the objective in Equation (4) while leveraging the codeword-to-index assignment introduced
in Section 3.2.1. As anticipated, the generative process is able to infer and reproduce the
high-level structure of real images and model the textures and details. Where this approach
fails is in the last steps of the inverse process, since the ambiguity introduced by the
approximation to the continuum seems to limit the overall definition of the finest details in
the image, resulting in an extremely noisy generated image.

As an impromptu solution, we opted to train a trimming model to improve the quality
of the generated image x̃ = D(z̃) after it has been decoded to RGB space. The refiner
is based on the same U-Net architecture with a smaller configuration with only 1.7 M
parameters, and it is trained in a fully supervised fashion by synthetically generating noisy
images xn by slightly corrupting their encoded representation, xn = D(E(x) + γ), where γ
is scaled-down Gaussian noise. The objective function for the refiner is a combination of
L1 and SSIM losses, which easily achieves a PSNR of over 30 on both datasets. The clear
downside of this solution is the necessity of training a custom refiner for each dataset and
the increased cost of generating new images. In Figure 5 the effect of the refiner model
can be appreciated, while in Figure 6 a batch of refined generated samples are reported for
qualitative evaluation.

(a) (b)

Figure 5. (a) Generated Image. (b) After Refinement.
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Figure 6. Samples generated with continuous formulation (after refiner).

4.2.3. Categorical Reverse Process

Comparatively, we evaluate the performance obtained with the formulation intro-
duced in Section 3.2.2 for the definition of the reverse process. At training time, we leverage
the objective function of Equation (5) with the differentiable decoding of x̃0 derived in
Equation (21). We found out that it is preferable to add a second term to the loss in order to
condition the prediction of z0 codes based on those assigned by the VQ encoding, which
are otherwise not explicitly in the derivation of x̃0.

The complete training objective used is

Lcat(θ) = ||x0 − x̃θ
0||22 + ||ε− εθ

z ||22
εθ

z = (at ∗ zt − z̃θ
0)/bt,

(24)

where

• εθ
z is the derivation for the predicted noise in latent space, obtained from the prediction

for the uncorrupted image z̃θ
0 sampled from ẑ0 using the Gumbel-Softmax trick;

• at and bt are time-dependent constants values that are derived from the detailed
definition of the diffusion process in [1], the details of which we omit for simplicity;

• The θ superscript is added to indicate values that are a function of model parameters.

In this configuration, satisfactory results are obtained without resorting to the refiner
model, as it can be appreciated in Figures 7 and 8. One interesting thing to study is the
introduction of a temperature smoothing at inference time in the generative process (i.e.,
deriving zt−1 given zt). Since zt−1 is obtained from the current estimate for z̃0, we can
introduce a temperature factor γ in the sampling of z̃0 from ẑ0

z̃0 ∼ so f tmax(ẑ0/γ) (25)

The effect of the introduction of γ can be qualitatively appreciated in Figure 9. In partic-
ular, for γ→ 0, the sampling operation corresponds to the argmax function and essentially
defines the mode of the categorical distribution, while for larger values of γ, the distribution
shifts towards a uniform distribution.

Figure 7. Sampling steps (t = 1000, 900, . . . ., 0) of the model trained with the categorical parameteri-
zation of the reverse process.
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Figure 8. Samples generated with categorical formulation (no refiner needed).

(a) (b) (c) (d)

Figure 9. Effects of distribution smoothing on ẑ0. (a) argmax. (b) γ = 0.1 (c) γ = 1.0. (d) γ = 2.0.

4.3. Discussion

In this study, we conducted comprehensive experiments to evaluate the performance
of our proposed image compression and generation techniques. On the compression
side, the results demonstrate the effectiveness of the VQ-based image encoding algorithm,
specifically, the OPQ-{32-8-8} configuration emerged as the most promising, striking a
balance between compression ratio and image quality. Regarding the image generation task,
it is important to stress that competing with state-of-the-art generative models is beyond
the scope of this work and would be Utopian given the possibilities of our academic budget;
hence, the results provided are primarily intended to demonstrate the applicability of the
proposed methodology. Nevertheless, the results obtained are compelling: the continuous-
style model served to demonstrate the goodness of the proposed approximation for the
continuous representation of discrete space, and with the addition of the refiner, it is able to
consistently produce visually appealing images. The categorical parameterization further
improves the fit of the inverse process to the discrete case and produces images with
greater visual appeal, mitigating issues of high-frequency artifacts and eliminating the
need for a refiner model. The introduction of temperature smoothing during inference
showcased its ability to control the level of stochasticity in the generative process, offering
flexibility in the tradeoff between image quality and diversity.

5. Conclusions

In conclusion, with the proposed approach, although not without problems and limi-
tations, convincing results have been achieved in the image generation task. The idea of
approximating to the continuous state by rearranging the discrete space proved to be valid,
although the way it was defined is not entirely satisfactory and requires refinement of the
generated images. The categorical parameterization of the inverse model has partially
improved this aspect but with some flaws remaining, such as the oversimplification of
details in the generated images, which can be partially modulated by acting on the temper-
ature parameter of the distribution. Furthermore, the proposed image compression scheme,
although being a well-known and long-established concept, has proven to be an excellent
use case for the study of generative models for categorical data. Therefore, the experimen-
tal concepts could be applied to other applications, such as language generation or other
token-based discrete structures where the variables are not strictly ordinal.
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Glossary of Mathematical Notation

w, h Width and height of the image
c Number of channels
E Image encoding function to latent space
D Decoding function from latent space
z Encoded image in latent space
x̃, z̃ Generated image, generated latent representation.
c Number of channels of the latent representation
s Patch size
q quantizer
E VQ Encoder
D VQ Decoder
n Length of the vector to be encoded
m Number of subquantizers in PQ and RQ
R OPQ Rotation matrix
C Generic VQ Codebook
c Generic codebook element
i Index of the codebook entry ci
I Set of the indices i
c0

i Principal component on the i-th codebook entry
X Set of Rn vectors to be approximated by q
bC Number of bits used to encode a vector with C (bitrate).
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