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Abstract: Stream ciphers usually rely on highly secure Boolean functions to ensure safe commu-
nication within unsafe channels. However, discovering secure Boolean functions is a non-trivial
optimization problem that has been addressed by many optimization techniques: in particular by
evolutionary algorithms. We investigate in this article the employment of Genetic Programming (GP)
for evolving Boolean functions with large non-linearity by examining the search space consisting of
Walsh transforms. Especially, we build generic Walsh spectra starting from the evolution of Walsh
transform coefficients. Then, by leveraging spectral inversion, we build pseudo-Boolean functions
from which we are able to determine the corresponding nearest Boolean functions, whose compu-
tation involves filling via a random criterion a certain amount of “uncertain” positions in the final
truth table. We show that by using a balancedness-preserving strategy, it is possible to exploit those
positions to obtain a function that is as balanced as possible. We perform experiments by comparing
different types of symbolic representations for the Walsh transform, and we analyze the percentage
of uncertain positions. We systematically review the outcomes of these comparisons to highlight the
best type of setting for this problem. We evolve Boolean functions from 6 to 16 bits and compare
the GP-based evolution with random search to show that evolving Walsh transforms leads to highly
non-linear functions that are balanced as well.

Keywords: artificial intelligence; cybersecurity; cryptography; evolutionary computation; evolutionary
algorithms; genetic programming; stream ciphers; spectral inversion; Boolean functions; non linearity;
Walsh transform

1. Introduction

The importance of cryptography methods is critical in several applications that in-
volve performing communication and exchanging messages and data. Thanks to these
techniques, data exchanges are executed in a safe way even within unsafe communication
channels on which, in general, malicious actors are potentially listening. Symmetric cryp-
tography is a particular type of cryptography in which the communication is protected
with encryption and decryption by means of a shared secret key that should be known only
by the participants involved in the communication [1].

A typical problem in the cryptography field consists of guaranteeing the confidentiality
of communication in the presence of passive attackers that can eavesdrop on the exchanged
messages. To this end, symmetric ciphers can be employed to encrypt the exchanged
messages so that an attacker is not able to gain information about the original messages on
the basis of the encrypted ones. In this context, stream ciphers represent a particular class
of symmetric ciphers for which each message is elaborated as a whole and combined with
other messages by means of bit-wise operations.
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In many stream-cipher-based architectures, an important building block is represented
by Boolean functions with a specific number n of variables. A Boolean function that exhibits
high-quality cryptography properties (e.g., non-linearity and balancedness) is essential
for guaranteeing high security standard for a given stream cipher. However, discovering
Boolean functions with good security properties is, in practice, a complex optimization prob-
lem that has been largely studied in the literature. In particular, Evolutionary Computation
(EC) methods have been shown to be promising techniques [2–9].

Among the safety properties that can be used to characterize a Boolean function, non-
linearity is certainly one of the most important ones. Despite the large number of research
works that have investigated how to devise Boolean functions that are characterized by
large non-linearity [3,5,7,9–11], the optimal non-linearity, in the cases for which this value
is theoretically known, has still not been reached yet (especially for real-world Boolean
functions where n is large) [12]. For this reason, novel approaches to this problem are
important for finding and addressing the best exploration strategy.

In this setting, the evolutionary-based optimization method and the Boolean function
representation are both important factors. Especially, a Boolean function can be mainly
represented in three ways: with a truth table, with the algebraic normal form (ANF),
or with the Walsh transform [13]. By performing different combinations of algorithms and
representations, it is possible to discover new and hopefully better ways of exploring the
search space.

In this article, we delve into the usage of Genetic Programming (GP) in a way that we
can design an algorithm that evolves Boolean functions represented by their corresponding
Walsh transforms. This approach appears to be particularly promising since the Walsh
transform can be easily and indirectly represented by a GP-based tree while encoding
regularities among the different Walsh coefficients. Moreover, the optimization of Walsh
transforms enables us to explore a different fitness landscape that may be hopefully more
promising with respect to the desired objectives.

We evolve symbolic trees representing Walsh transforms to maximize their non-
linearity. Specifically, for each evolved Walsh transform, we retrieve the corresponding
Walsh spectrum from which, through spectral inversion, we generate a pseudo-Boolean
function. Given a pseudo-Boolean function, we compute the nearest Boolean one while
trying to improve the balancedness of the final solution as best as possible. To this end, we
exploit the “uncertain” inputs of the pseudo-Boolean function in which we have to non-
deterministically choose the binary values that should be mapped to the target truth table.

In this work, we try to provide an answer to the following research questions:

RQ1. Can we easily obtain balanced solutions?
RQ2. Can we leverage a GP-based evolution to discover solutions with higher non-linearity than

random search?
RQ3. What are the implications of changing the tree syntactical structure as regards our fitness

function?

We test and compare different combinations of function sets and terminal sets for
the structure of the Walsh-transform-based tree. Additionally, we analyze the trend of
the percentage of uncertain positions when computing the nearest Boolean function. We
provide a review of all these comparisons to highlight the best type of setting for a Walsh-
transform-based search-space exploration. Results show that by leveraging GP to evolve
Walsh transforms, it is possible to outperform random search, meaning that the evolutionary
process and the type of chosen representation are both effective at providing a high-quality
exploration strategy, which, consequently, deserves further research effort. Furthermore,
the discovered solutions appear also to be balanced thanks to the balancedness-preserving
strategy adopted during the nearest Boolean function computation.

We detail the main contributions of this manuscript:

(i). We show how we can evolve Walsh Transforms with GP to maximize non-linearity
by using spectral inversion.
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(ii). We show how we can discover balanced solutions with an effective balancedness-
preserving strategy when computing the nearest Boolean functions from the
corresponding pseudo-Boolean ones.

(iii). We demonstrate that, even with a small population size and with a low number of
generations, GP is able to outperform RS if we choose the correct function set and
terminal set.

(iv). We provide an analysis for explaining why certain types of function and termi-
nal set combinations perform poorly by inspecting the percentages of uncertain
positions.

In Section 2, we analyze the current literature regarding optimization of Boolean
functions for building secure stream ciphers. In Section 3, we describe the application
domain by analyzing stream ciphers and Pseudo-Random Generators (PRG) in Section 3.1
and Boolean function representations in Section 3.2. In Section 4, we describe our proposed
evolutionary-based approach. In Section 5, we describe our experimental phase and present
the results. In Section 6, we inspect the obtained results and provide an answer to the
research questions.

2. Related Works

Applying a brute-force-based optimization method in order to identify, with respect
to a certain quality criterion, the best Boolean function is inconceivable when the number
of variables (n) is larger than five. On the other hand, stream ciphers usually leverage
Boolean functions with n greater than 13 [14]. Therefore, designing and constructing
Boolean functions that are characterized by sound security features requires more intelligent
approaches than a purely random one. In the literature, this problem has been addressed
by leveraging different types of strategies.

Algebraic constructions, such as the Rothaus construction [15] and the McFarland
construction [16], are adopted to build classes of Bent functions [17]. Li et al. [18] introduced
a method to generate n-variable Boolean functions with optimal algebraic immunity and
computed a lower bound of the number of Boolean functions with optimal algebraic
immunity. Chen et al. [19] proposed two classes of symmetric Boolean functions with
optimum algebraic immunity for which both the algebraic degree and the non-linearity are
also determined. Tu et al. [20] presented a combinatorial conjecture about binary strings
that, if correct, enables the discovers of two classes of Boolean functions with optimal
algebraic immunity: Bent functions and balanced functions, with the latter having an
optimal algebraic degree and the best non-linearity.

Heuristic-based optimization approaches have been applied to seek good-quality
Boolean functions with respect to given security objectives. Burnett et al. [21] optimized
the non-linearity of a starting Boolean function with incremental changes. Moreover, they
provided a method that discovers resilient Boolean functions by progressively concate-
nating valid Walsh spectra. Clark et al. [13] optimized functions that intrinsically exhibit
good cryptography properties and tried to transform the most-promising ones to Boolean
functions that preserve the original properties. In [22], Clark et al. optimized good-quality
Boolean functions by using a Simulated Annealing algorithm [23]. Lopez et al. [24] pre-
sented a novel diversity-aware meta-heuristic for non-linearity maximization of Boolean
functions that exploits a cost function that adopts the Walsh–Hadamard Transform (WHT)
to gather useful information for the task at hand.

Evolutionary Computation (EC) techniques serve as auspicious substitutes to more
traditional optimization methods when it comes to searching for Boolean functions that
possess certain security features. Aguirre et al. [11] investigated a multi-objective evolu-
tionary approach to discover balanced functions with similar characteristic that satisfy
multiple criteria such as non-linearity. Knevzevic et al. [25] provided a survey describing
the usage of evolutionary algorithms in both the symmetric and asymmetric cryptography
fields. Millan et al. used Genetic Algorithms (GAs) to discover balanced Boolean functions
that satisfy both correlation immunity and the strict avalanche criterion [26], and they em-
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ployed the same type of algorithm to identify Boolean functions with large non-linearity [3].
Asthana et al. [10] presented a GA-based scheme to build Boolean functions that satisfy
balancedness, correlation immunity, algebraic degree, and non-linearity properties. Mar-
iot et al. [2] adopted GA to evolve plateaued Boolean functions [27] by using the spectral
inversion technique introduced in [13] and thus by representing the chromosome of an
individual as a permutation of a three-valued Walsh spectrum. Morevoer, Mariot et al. [28]
implemented a Particle Swarm Optimizer for generating Boolean functions with good
cryptography properties. Particularly, this Particle Swarm Optimizer updates the particle
positions while preserving their Hamming weights in a way that the generated functions re-
main balanced. Additionally, it exploits hill-climbing to further improve non-linearity and
correlation immunity. Behera et al. [29] applied GA with the integration of a process based
on hybrid local search for determining Boolean functions composed of good characteristics
of auto-correlation and also non-linearity. Dimovski et al. [30] proposed a hill-climbing
method that incorporates a GA to search for highly non-linear Boolean functions.

Miller et al. [4] presented an empirical study on how to adopt Cartesian Genetic Pro-
gramming (CGP), i.e., a variant of Genetic Programming (GP) [31], to spot general-purpose
Boolean functions. Picek et al. [5] resumed the work of Miller et al. [4] and investigated
how much more effective CGP is than GP when it comes to learning highly non-linear
Boolean functions. They further investigated GA and GP with different mutation operators
and initialization procedures [32]. CGP was also investigated by Hrbacek et al. [33] to
routinely build Bent functions with up to 16 variables. Husa et al. [34] implemented a
parallelized version of Linear GP to discover Bent functions instead of using CGP, and they
focused their research work on learning functions that are as large as possible. Moreover,
they proposed a comparative study wherein GP, Linear GP, and CGP are compared with
respect to the task of building Boolean functions with an even number of inputs and that
can exhibit high-quality non-linearity, algebraic degree, balancedness, and correlation
immunity [35]. Picek et al. [6] highlighted that among evolutionary algorithms, GP ex-
hibits high qualitative performance when it comes to discovering both Boolean functions
that provide non-linearity in filter and combiner generators and Boolean functions with
sound correlation immunity and a Hamming weight that is as small as possible. Moreover,
Picek et al. [36] analyzed the landscape of results obtained by integrating algebraic and
EC-based approaches for searching for secure Boolean functions. Carlet et al. [37] also
explored a method that tries to combine evolutionary algorithms with known algebraic
constructions. Specifically, they analyzed a recent generalization of the Hidden Weight
Boolean Function construction, and they showed that evolutionary algorithms can mean-
ingfully improve the cryptography properties of functions based on this construction.
Mariot et al. [8] proposed several evolutionary algorithms to evolve Hyper-Bent functions,
which provide better security towards approximation attacks. They showed that these
specific types of functions are extremely difficult to evolve because of their rarity and
complexity. Moreover, they [7] applied GA and GP to evolve Boolean functions that satisfy
the perfect balancedness property. Specifically, they used these evolutionary techniques to
evolve two different types of solution encodings: the truth table and weight-wise balanced
representations. Carlet et al. [9] tried to evolve Boolean constructions by leveraging GP
to build balanced functions with high non-linearity. Finally, Rovito et al. [38] proposed
a work in which they represented Boolean functions by using Walsh-transform-based
representations, and they evolved these representations with GP to discover non-linear
functions with good balancedness properties.

We introduce an algorithm based on GP with which we evolve Boolean functions
represented by their corresponding Walsh transforms in order to maximize non-linearity
and preserve balancedness as best as possible. Specifically, we resume the work in [38] and
provide an in-depth experimental analysis of various types of symbolic Walsh-transform-
based representations.
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3. Cryptography Overview

Cryptography is the set of methodologies, practices, tools, and algorithms that facili-
tates the safe management and transmission of data while being in a not-safe channel. While
there exist different types of cryptography, our main focus is symmetric cryptography—i.e.,
a type of cryptography wherein we have two entities that are interacting within an unsafe
channel by employing a key (private and only shared between them). A public cipher
adopts the key along with a message and safely performs the encryption and decryption of
it [1]. In this section, we are going to briefly explore how a stream cipher works, along with
its main construction, its building blocks, and how it can be represented.

3.1. PRG-Based Stream Cipher Design

In the context of symmetric cryptography (Figure 1), we are interested in making the
interaction safe despite the eventual presence of eavesdroppers—i.e., our security require-
ment matches the confidentiality of the communication. This means that without having
the secret key, it is computationally infeasible to retrieve the original content of an encrypted
message or a single component of it. In this scenario, we assume an unsafe communication
channel in which there is a passive attacker, i.e., a malicious actor that can retrieve the
encrypted message and process it but, at the same time, cannot alter the communication
itself [1].

Figure 1. A typical scenario of symmetric cryptography.

We focus our attention on stream ciphers, which are symmetric ciphers for which a
message is treated as a single block. A One-Time Pad (OTP) is an example of a stream
cipher that satisfies Shannon’s perfect secrecy definition, which states that an encrypted
message must reveal no information about any bit of the corresponding plain-text mes-
sage [39]. Given a plain-text message and a shared secret key, the encryption is performed
by applying a bit-wise XOR operator between the plain-text message and a shared secret
key. Similarly, the decryption is performed by applying the same operation between the
encrypted message and the secret key. This implies that the secret key length must be as
long as the length of the exchanged messages. Furthermore, in order to keep the OTP safe,
the same secret key must not be reused across different message exchanges.

The aforementioned requirements pose practical limitations to the adoption of the
OTP in real-world scenarios. To this end, a Pseudo Random Generator (PRG) can be
employed to adapt the OTP construction when the length of the secret key is smaller
than the length of the message. Specifically, a PRG is a public, deterministic, and efficient
algorithm that, given a binary string called the “seed”, is able to generate a much longer,
seemingly random binary string [40,41]. By adopting a PRG, it is possible to build the
Vernam stream cipher [42] (Figure 2), which basically consists of an OTP for which the
secret key is expanded by a PRG to match the length of the message. A Vernam stream
cipher is considered to be confidentially safe if and only if the PRG is safe, i.e., unpredictable.
To this end, several PRG architectures have been implemented.
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Figure 2. Architecture of the Vernam cipher (K = Key, EK = Expanded Key, PT = Plain-Text, and
CT = Cipher-Text).

The Linear Feedback Shift Register (LSFR) [43] is an example of a construction that
can be adopted within a PRG architecture. This registry essentially outputs a single bit
at every clock cycle starting from a given seed (a binary string). For instance, given a
state represented by the current seed stored in the registry, at every clock cycle, the most-
significant bit is returned as output; then, the registry performs a left-shift operation,
and the least-significant bit is populated with bit-wise XOR operations performed on a
subset of the seed. This way, if the registry works for t clock cycles, it will generate a t-bit
long binary string. The Content Scramble System (CSS) [44] is an example of an unsafe
stream cipher that leverages LSFR. This statement highlights the fact that LSFR alone does
not suffice to build secure stream ciphers.

A potentially unpredictable PRG can be constructed by using a combination of n LSFRs
and an n-variable Boolean function. This architecture is called the Combiner model [14]
(Figure 3). The seed is an s-bit long binary string. It is processed in parallel by n LSFRs,
which consequentially output an n-bit long binary string at each clock cycle (one bit for
each LSFR). An n-variable Boolean function f is thus applied to this binary string, and
a single bit is generated. Hence, if the Combiner model works for d clock cycles, it will
generate a d-bit long binary string. The safety of the Combiner model relies entirely upon
the safety of the Boolean function that processes the output of the LFSRs, i.e., the Combiner
model is an unpredictable PRG if and only if the Boolean function exhibits highly secure
cryptography properties. We are going to analyze these properties in the next section.

Figure 3. Architecture of the Combiner model.

3.2. Boolean Function and Walsh Transforms

Let B = {0, 1} be a set of binary values for which zero stands for False and one
stands for True. Let ⊕ be the sum operator defined over B, and ∧ is the product operator.
Specifically, ⊕ is the logical XOR operator (the output bit is one if and only if the input
bits are not equal), and ∧ is the logical AND operator (the output bit is one if and only
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if both the input bits are one). A Boolean function can be formalized as f : Bn → B.
Given n, 2n is the total number of n-bit long binary strings, and thus the set of all possible
values of f has a size of 22n

. Provided that, searching for an f with a defined set of desired
properties is already infeasible when n is greater than five [14]. Secure cryptography
systems usually employ Boolean functions with at least 13 variables. From now on, we are
going to use n to denote the number of variables of a Boolean function and f to denote a
generic Boolean function. Moreover, we are going to use the terms “binary string” and
“binary vector” interchangeably.

We can formulate an f of n variables with: an Ω f ∈ B2n
point holding the truth table of

f , a multivariate polynomial called the Algebraic Normal Form (ANF) of f (defined as the
sum of products over B), or a Walsh transform [13]. Particularly, let w · x =

⊕n
i=1 wi ∧ xi

be the dot product defined over Bn: a Walsh Transform is formulated as F̂ : Bn → R. More
precisely:

F̂(w) = ∑
x∈Bn

f (x)(−1)w·x (1)

From the application of F̂ to all the w ∈ Bn, we obtain the Walsh spectrum of f , i.e., the
vector of Walsh coefficients S f ∈ R2n

. Given a generic S f , it is possible to build Ω̂ f ∈ Z2n
,

which is the polar-form version of the truth table of f . We retrieve that from the application
of the Inverse Walsh Transform F̂−1 : Bn → R:

F̂−1(x) = 2−n ∑
w∈Bn

F̂(w)(−1)w·x (2)

There is no guarantee that calling Equation (2) by providing a generic spectrum S f
as input leads to a Boolean function, specifically, a truth table in polar form. Generally,
Equation (2) outputs a polar-form-based pseudo-Boolean function f̃ : Bn → R. Basically,
the polar form is a truth table consisting only of −1 (True) and 1 (False).

For a given pseudo-Boolean function f̃ , there are potentially many nearest Boolean
functions that can be computed starting from the pseudo-Boolean one. We are mainly
interested in computing only one ( f ) of all the possible nearest Boolean functions in polar
form of a given pseudo-Boolean function. The classical approach consists of defining f
as follows:

f (x) =


1 if f̃ (x) > 0
−1 if f̃ (x) < 0
−1 or 1 at random if f̃ (x) = 0

(3)

When f̃ (x) = 0, we say that there is uncertainty with f̃ as regards the computation
of the truth value of x. In Equation (3), the uncertain positions are filled by adopting a
random criterion (i.e., unbiased uncertainty filling). Mind that uncertain positions could
also be filled by leveraging other types of strategies. Clearly, selecting how uncertain cases
are managed directly influences the way function f is defined.

Once the nearest Boolean function f is computed, the corresponding Walsh spectrum
can be obtained by applying Equation (1). We are interested in discovering Boolean
functions with good security properties. Especially, we focus our research work on building
secure Boolean functions with respect to non-linearity and balancedness.

Let wH : Bn → N be the Hamming weight of a given binary vector, i.e., the number of
values equal to 1 contained in it. The Hamming weight of f can be calculated by applying
the Hamming weight to Ω f , i.e., the truth table of f . A Boolean function f is balanced if
and only if F̂(0) = 0, i.e.,

|{b ∈ Ω f | b = 0}| = |{b ∈ Ω f | b = 1}|
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Under this condition, wH( f ) = 2n−1. We define the balancedness degree of a Boolean
function as

| |{b ∈ Ω f | b = 0}| − |{b ∈ Ω f | b = 1}| |

The truth table is more balanced when this balancedness degree is lower. We are interested
in balanced Boolean functions since non-balanced functions are characterized by some
statistical bias, which, eventually, attackers may try to use.

The Hamming-based distance between two binary vectors of equal size is the number
of positions for which the corresponding bits are not equal. The non-linearity of f can be
formalized as the Hamming-based distance between f and linear functions [14]:

`( f ) = 2n−1 − 1
2

max
w∈Bn

|F̂(w)| (4)

The non-linearity `, when n is even, is bounded by the Covering Radius bound (Ucrb
n ) [45],

which states that ` ≤ 2n−1 − 2
n
2−1. When n is odd, the maximum non-linearity of n-

variable Boolean functions is lower bounded by 2n−1 − 2
n−1

2 (L`
n) and upper bounded by

2b2n−2 − 2
n
2−2c (U`

n) [46]. A Boolean function with large non-linearity can more easily
defend itself from attacks based on fast-correlation [12].

4. Proposed Approach

We adopt tree-based Genetic Programming (GP) [31] to evolve symbolic formulae.
Especially, these formulae, or trees, express Walsh transforms of generic pseudo-Boolean
functions, from which it is possible to discover actual Boolean functions. Specifically,
a generic individual, or solution, can be adopted for calculating the Walsh transform coeffi-
cients. From now on, we are going to use the terms “tree” and “formula” interchangeably.

A GP-based symbolic tree has a specific structure. In particular, a given tree is re-
lated to a specific function set and a specific terminal set. The function set contains the
(mathematical) operators that can be used to fill the internal nodes of a tree. The terminal
set contains the values that can be used to fill the leaves of the tree, which are typically
variables and constants. In this work, we resume the tree configuration that has already
been explored in [38] and provide a more in-depth comparison among different types of
symbolic configurations. Specifically, we explore two types of function sets:

F1 = {+, ×, (.)2}

F2 = {+, −, ×, %∗, even, odd}

The module operator %∗ is protected to avoid cases in which the denominator is equal
to zero:

%∗(a, b) = sign(b)(a % (|b| if b 6= 0 else 1))

The even function outputs 1 if the input value is an even number and 0 otherwise.
On the other hand, the odd function outputs 1 if the input value is an odd number and
0 otherwise.

The input of a Walsh transform is a binary string of size n. For this purpose, we
examine in-depth three variations of the input encoding. This results in three different
types of terminal sets:

1. A terminal set of one variable representing an integer between 0 and 2n − 1, i.e., the
integer encoded by a given binary string of size n (N);

2. A terminal set of n variables representing the binary positions of the input string (B);
3. A terminal set of n variables representing the binary positions of the input string in

polar form (P).

For each terminal set, we additionally test an extension that includes ephemeral
random constants uniformly sampled between −1 and 1 (ERC).
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The combination of a specific function set and a specific terminal set provides us with
a particular tree structure, which we are going to denote with the notation S<terminal_set>

<function_set> .
For instance, SNF1 refers to a structure with F1 as the function set and N as the terminal set,
SP,ERC
F2 refers to a structure with F2 as the function set and P with the addition of ephemeral

random constants as the terminal set. Two examples of trees are shown in Figure 4.

×

+

0.5

0.2i

0.9 (.)2

×

i

Figure 4. Two examples of formulae (trees) related to SN,ERC
F1 .

Under these conditions, a tree represents a generic F̂. A generic tree can thus be
applied to each w ∈ Bn in a way so that a Walsh spectrum Ŝ f ∈ Z2n

can be retrieved.
Precisely, the spectrum potentially contains real values that are eventually rounded to their
corresponding integers. Then, by using the spectral inversion technique, Equation (2) can
be applied to Ŝ f to obtain, in general, a pseudo-Boolean function f̂ . The nearest Boolean
function can be computed starting from f̂ by leveraging different strategies. These strategies
differ among each other on the criterion that is adopted to assign the entries of Ω f , where
f̂ (w) = 0 (large uncertainty on how to assign those entries). We explore two approaches,
which we describe as follows:

(1) Unbiased uncertainty filling: the nearest Boolean function is retrieved with Equation (3).
This approach was already explored in [13].

(2) Biased (toward balancedness) uncertainty filling: a strategy that was presented in [38] to
propose a technique that tries to improve or, eventually, preserve the balancedness
when computing nearest Boolean functions. This strategy is based on the idea that
uncertain positions can be exploited for the purpose of balancing Ω f . Let Ω̂ f be the
polar-form-based truth table of f̂ . Let:

v1 = |{b ∈ Ω̂ f | b < 0}|
v0 = |{b ∈ Ω̂ f | b > 0}|
u = |{b ∈ Ω̂ f | b = 0}|

Our purpose is to discover u∗ ∈ {−1, 1}u, i.e.:

u∗ = arg min
u∈{−1, 1}u

|(v1 + u1)− (v0 + u0)|

where
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u1 = |{b ∈ u | b = −1}|
u0 = |{b ∈ u | b = 1}|

Obviously, the balancedness degree is not affected by the way −1 and 1 are
sorted in u∗. Hence, a given type of u∗ can be computed deterministically (e.g.,
u∗ = [−1u1 , 1u0 ]), and in order to enhance diversity, a random permutation of it can
be performed. Finally, we obtain u∗p ∈ {−1, 1}u, i.e., a permutation of u∗ retrieved
by performing a random shuffle of it. We leverage u∗p to assign the uncertain entries
of Ω f as follows:

f (x) =


1 if f̃ (x) > 0
−1 if f̃ (x) < 0
u∗p[ind(x)] if f̃ (x) = 0

(5)

where u∗p[ind(x)] is the value in u∗p located at the position given by ind(x), where
the latter represents an integer between 0 and u− 1. Specifically, the ind function is
defined only for uncertain binary strings with respect to f̂ and provides the ranking
in which these strings appear in Ω̂ f .

Once the truth table Ω f of the nearest Boolean function of f̂ is computed, Equation (1)
can be applied to obtain the associated Walsh spectrum S f . The fitness function is a single-
objective function consisting of the non-linearity ` Equation (4) evaluated on S f . The
optimization algorithm is set to maximize as much as possible the fitness function.

The optimization algorithm is tree-based GP [31] with a single-objective fitness func-
tion. We briefly describe the main steps of GP when evolved solutions represent symbolic
formulae or trees:

1. Initialization: generate an initial population of random symbolic formulae representing
mathematical expressions and evaluate their fitness;

2. Selection: choose symbolic formulae from the current population as parents for the
next generation based on their fitness, with some randomness to maintain diversity;

3. Crossover (Recombination): create new symbolic formulae by swapping sub-parts of
two parent formulae, combining them to form offspring;

4. Mutation: introduce random changes to offspring formula, which may involve adding,
removing, or modifying sub-parts. Then, perform a novel evaluation of the fitness of
the offspring and go back to the selection step so that the next generation begins.

These steps are the core of GP (Figure 5), where symbolic formulae are evolved and re-
fined over multiple generations to approximate or represent desired symbolic relationships
or mathematical expressions. In our specific context, these symbolic formulae are refined to
identify a representation of the Walsh transform characterized by a large non-linearity.
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Initialization

Selection

Crossover

Mutation

Figure 5. A typical example of GP-based evolutionary process.

5. Experimental Phase

We divide our experimental phase into three steps:

(1) We analyze the distribution of the best solutions discovered at the end of the evolution
with GP and Random Search (RS) and check whether GP is meaningfully better
than RS;

(2) We analyze the balancedness degree of the best solutions discovered at the end of
the evolution, and we compare the results with the biased strategy and the unbi-
ased strategy;

(3) We perform an in-depth analysis of the mean percentage of uncertain positions in the
discovered pseudo-Boolean functions to provide a justification of the obtained results.

We set RS as the baseline and compare it to GP. We set n with values from 6 to 16 and
test both uncertainty filling strategies. We perform 30 repetitions with different seeds for
RS and GP for each composition of uncertainty filling criterion, n, and tree structure.

We set a GP run with a number of generations of 5 and a population size of 500. Our
fitness function is the non-linearity, and our problem is a maximization one. The selection
procedure is based on tournaments of size 5, the crossover operator is a sub-tree crossover
(executed with probability 0.80), and the mutation operator is a sub-tree mutation (executed
with probability 0.30). We set an RS process with a sampling of 2500 random formulae (the
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sample size equals the fitness evaluations of GP). In particular, an RS process consists of a
random generation of 2500 formulae, where the formula with the highest non-linearity is
selected. The maximum depth is always 5 to limit the size of the trees (the depth of the root
is 0).

Python 3.9 and Pymoo [47] are used for the implementation: BooleanCryptoGP, ac-
cessed on 10 September 2023.

5.1. Non-Linearity Distribution

An important component of this type of experimental evaluation consists of demon-
strating that by leveraging the proposed approach, it is possible to exploit the advantages
of a GP-based exploration, which should be, given the context, more effective than a simple
RS-based method, even when the population size and number of generations are small.

We operate a comparison of the distribution of non-linearity of the best individuals
identified with RS and with full GP evolution. In this experiment, we adopt the biased
uncertainty filling method. In the following box-plots (Figures 6–17), we show the results
of this experiment, and we attach for each n the p-value of a Wilcoxon signed-rank test [48]
performed on non-linearity values across all the repetitions. To make the plot readable,
scaling between 0 and U`

n is executed on each non-linearity value.
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Figure 6. Box-plot with comparison between GP and RS with SBF1.
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Figure 7. Box-plot with comparison between GP and RS with SB,ERC
F1 .

https://github.com/lurovi/BooleanCryptoGP
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Figure 8. Box-plot with comparison between GP and RS with SNF1.
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Figure 9. Box-plot with comparison between GP and RS with SN,ERC
F1 .
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Figure 10. Box-plot with comparison between GP and RS with SPF1.
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Figure 11. Box-plot with comparison between GP and RS with SP,ERC
F1 .
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Figure 12. Box-plot with comparison between GP and RS with SBF2.
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Figure 13. Box-plot with comparison between GP and RS with SB,ERC
F2 .
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Figure 14. Box-plot with comparison between GP and RS with SNF2.
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Figure 15. Box-plot with comparison between GP and RS with SN,ERC
F2 .
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Figure 16. Box-plot with comparison between GP and RS with SPF2.
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Figure 17. Box-plot with comparison between GP and RS with SP,ERC
F2 .

By inspecting the box-plots, we can easily observe that SN,ERC
F1 and SNF1 are the only

Walsh transform symbolic representations that are able to take advantage of a GP evolution
to reach better non-linearity values than RS (Figures 8 and 9). All the other tested symbolic
representations provide us with a negative result in which the corresponding GP evolution
is not meaningfully better than RS.

This type of analysis highlights that SN,ERC
F1 and SNF1 are the configurations that, for this

problem, provide the best results, and thus it is likely that future research efforts should
focus on these types of configurations. As a final notice, we can see that the non-linearity
tends to improve as n increases in all the box-plots.

5.2. Balancedness Degree

In this step, we provide an analysis of the balancedness degree of the best individuals
identified with GP. In this phase, we employ the balancedness-preserving uncertainty filling
criterion, and the aim consists of proving that this criterion is meaningfully better than
the standard unbiased one as regards discovering balanced Boolean functions. For each
tested uncertainty filling criterion and n, we perform the comparison of the distribution of
balancedness degree across 30 repetitions. Particularly, we execute a Wilcoxon signed-rank
test [48] for each n with the purpose of making a comparison between the balancedness
degrees achieved from the two approaches.

We perform this experiment with SN,ERC
F1 and SNF1, i.e., the only symbolic configura-

tions that are promising as regards the formulated problem. The results are presented in
Tables 1 and 2.

The results demonstrate that by employing the biased uncertainty filling method,
we have a high probability of discovering balanced solutions. We stress that balanced
Boolean functions are preferable for constructing secure stream ciphers because of their
resistance to statistical-bias-based attacks. For this reason, we believe that employing a
biased uncertainty filling approach is almost mandatory when adopting these types of
optimization techniques based on spectral inversion. As a matter of fact, by adopting an
unbiased uncertainty filling method, we would probably end up with a totally unbalanced
function, which should be absolutely avoided for safety concerns.
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Table 1. Table that details the mean (µ) and standard deviation (σ) of the balancedness degree
belonging to the best individuals. The p-values of the Wilcoxon test [48] are detailed as well. The
results are based on GP with SN,ERC

F1 as the tree structure.

n Biased Unbiased p-Value

µ ± σ µ ± σ

6 0.53 ± 2.0 7.53 ± 2.12 0.0
7 0.0 ± 0.0 9.86 ± 5.34 0.0
8 0.0 ± 0.0 15.67 ± 6.95 0.0
9 0.0 ± 0.0 24.03 ± 10.42 0.0
10 0.0 ± 0.0 34.03 ± 19.28 0.0
11 0.0 ± 0.0 37.96 ± 21.88 0.0
12 0.0 ± 0.0 62.84 ± 44.66 0.0
13 0.0 ± 0.0 78.07 ± 42.94 0.0
14 0.0 ± 0.0 94.27 ± 67.75 0.0
15 0.0 ± 0.0 137.8 ± 107.01 0.0
16 0.0 ± 0.0 278.87 ± 185.31 0.0

Table 2. Table that details the mean (µ) and standard deviation (σ) of the balancedness degree
belonging to the best individuals. The p-values of the Wilcoxon test [48] are detailed as well. The
results are based on GP with SNF1 as tree structure.

n Biased Unbiased p-Value

µ ± σ µ ± σ

6 0.0 ± 0.0 7.03 ± 2.36 0.0
7 0.0 ± 0.0 9.89 ± 4.07 0.0
8 0.0 ± 0.0 17.47 ± 8.2 0.0
9 0.0 ± 0.0 26.22 ± 11.89 0.0
10 0.0 ± 0.0 34.8 ± 17.59 0.0
11 0.0 ± 0.0 46.48 ± 29.98 0.0
12 0.0 ± 0.0 50.8 ± 38.46 0.0
13 0.0 ± 0.0 95.2 ± 69.43 0.0
14 0.0 ± 0.0 101.38 ± 60.62 0.0
15 0.0 ± 0.0 178.51 ± 128.97 0.0
16 0.0 ± 0.0 304.38 ± 218.25 0.0

5.3. Uncertainty Position Percentage

In this step, we perform an in-depth analysis of the results obtained in the previous
experimental steps to provide an explanation of and a justification for the negative results
highlighted in Section 5.1. As we have already explained in Section 4, when applying
spectral inversion to a symbolic formula representing a generic Walsh transform, we obtain
a pseudo-Boolean function, which is basically a pseudo-truth table in polar form containing
integer values. These values may be either strictly negative, strictly positive, or zero. We
have explained that, since the output of spectral inversion is a function in polar form,
negative values are mapped to True and positive values are mapped to False. On the other
hand, zero values are said to be “uncertain” positions, which need to be filled via a random
criterion (i.e., an uncertainty filling strategy, such as the ones proposed in Section 4).

In a setting like this one, if the percentage of uncertain positions in the pseudo-truth
table is high, then the nearest Boolean function is computed almost entirely at random.
This is not beneficial for the fitness optimization, since in this way, we lose the advantages
of an actual evolution and end up with a standard random-search-based method that adds
no intelligence to the way the fitness landscape is explored.

To this end, we analyze the mean uncertainty position percentage of the pseudo-truth
tables corresponding to the individuals in the population across the executed generations
and repetitions. We perform this experiment with n equal to 8 bit, 12 bit, and 16 bit. We test
all the symbolic representations for the Walsh transform. We adopt the biased uncertainty
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filling strategy. The trend of the mean uncertainty position percentage is presented in
Figure 18 (shaded area represents variance).
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Figure 18. Trend of the mean uncertainty position percentage across the generations of several
GP evolutions.

The plot shows that in almost all the cases, the mean uncertainty position percentage is
approximately 1.0 for the whole evolution, meaning that the method resembles a random-
search-based technique. Interestingly, we can see that the trend is lower only for SN,ERC

F1

and SNF1, i.e., the only tree structures that have been shown to outperform RS. This means
that if we use a configuration that is different from SN,ERC

F1 and SNF1, then we identify
pseudo-Boolean functions with an extremely high percentage of uncertain entries, which
are, consequently, assigned with non-deterministic choices. These choices clearly invalidate
the whole evolution. SN,ERC

F1 and SNF1 are clearly the only configurations that provide
pseudo-Boolean functions that can be actually improved by an evolution based on GP,
since the percentage of uncertain entries is not so high that the individual is entirely built
at random.

6. Discussion

Following, we recap the research questions presented in Section 1 and try to provide
an answer to them based on the observed results:
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RQ1. Can we easily obtain balanced solutions?
We demonstrate that by using the proposed biased uncertainty filling method,
we are able through a GP evolution to discover solutions that are balanced. This
is of paramount importance since unbalanced functions have a statistical bias
that can be exploited by attackers. Therefore, it is essential to guarantee a high
chance of building balanced solutions when using the proposed spectral inversion
technique.

RQ2. Can we leverage a GP-based evolution to discover solutions with higher non-linearity than
random search?
We show that by using GP, we are able to discover better solutions than RS even if
we set a small population size and a low number of generations, provided that we
use a specific type of symbolic tree structure. In this case, it seems that the (scaled)
non-linearity is usually larger than 0.90. This means that by employing SN,ERC

F1 and
SNF1 as tree structures along with GP and biased uncertainty filling, the proposed
technique has the potential to identify Boolean functions characterized by a large
non-linearity. Therefore, performing an exploration of the search space composed
by Walsh transforms is potentially an interesting approach. As a further remark,
we stress that for the numbers of bits that have been extensively studied in a way
for which the optimal non-linearity has been derived [12], given the complexity of
the problem, GP is still unable to reach the optimal non-linearity.

RQ3. What are the implications of changing the tree syntactical structure as regards our fitness
function?
We provide an analysis of why with certain types of symbolic representations the
GP-based method is not able to perform better than random search. We find the
justification of this phenomenon in the percentage of uncertain positions in the
pseudo-truth tables obtained through spectral inversion. To this end, by analyzing
the mean uncertainty position percentage across the executed generations, we
show that when the tree structure is different from SN,ERC

F1 and SNF1, the percentage
of uncertain positions in the pseudo-truth tables constructed during the evolution
is so high that the corresponding nearest functions are basically built at random,
making the evolution ineffective and no different from a simple random search.
On the other hand, when the percentage of uncertain positions is lower, then there
is a portion of these pseudo-truth tables that actually take advantage of the GP
evolution, leading to better solutions than random search.

This article provides a comprehensive analysis of how to design and implement
Boolean functions that can serve as components for safe stream ciphers. In particular,
as we have already seen in Section 3.1, we only need a safe Boolean function to build a
confidentiality-safe stream cipher that can be adopted in real-world applications. As a
matter of fact, we can adopt a Vernam cipher with PRG so that we do not need a key that is
as long as the exchanged message. This is an almost mandatory requirement as regards
cipher applicability in real-world tasks. Moreover, we can employ the Combiner model as
PRG to guarantee confidentiality of the communication. However, this holds true if and
only if we provide to the Combiner model a Boolean function characterized by good safety
features. With our proposed approach, it is indeed possible to build Boolean functions that
should respect those types of features. We can run our evolutionary process, retrieve the
best solution, and plug that solution into a Combiner model that is employed as PRG in
a Vernam cipher. In this way, we obtain a confidentiality-safe stream cipher that can be
adopted in real-world problems for securing communications against eavesdroppers.

As a final analysis, we try to discuss possible validity threats when they apply in
our context. All our experiments are executed on computational resources internal to the
university. The only goal of our experiments is to assess the validity of a hypothesis. In
our specific case, we run several repetitions (with different random seeds) of a heuristic
optimization algorithm that performs calculations that are based on both deterministic and
non-deterministic choices. Therefore, the internal validity is ensured by the fact that we set
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our random seeds to ensure reproducibility with a dedicated Python environment wherein
dependencies and versions are detailed. Moreover, we perform several (30) repetitions that
are statistically meaningful for our hypothesis. Changing the Python version or versions
of some of the installed packages is unlikely to change the values of the results since
non-deterministic choices are controlled by built-in Python libraries based on our fixed
random seeds.

As regards the external validity, the only possible limitation consists of analyzing a
re-implementation of our code with, for instance, a different coding language. Even in this
case, the results may vary a little bit, but since we assess the validity of our hypothesis
with statistical tests performed on many repetitions, we believe the final conclusions are
unlikely to vary.

7. Conclusions

In this article, we introduce an evolutionary-based approach that discovers poten-
tially balanced Boolean functions characterized by good non-linearity by performing an
exploration of the search space composed by Walsh transforms, i.e., particular Boolean
function representations. In our method, a Walsh transform is a symbolic formula with a
given functions set and terminal set that can be evolved by leveraging GP. In addition, we
present and analyze an effective balancedness-preserving strategy that enables us to obtain
balanced Boolean functions when computing the nearest Boolean functions starting from
the corresponding pseudo-Boolean ones.

In our experimental phase, we study and implement different types of Walsh-transform-
based representations by using different combinations of the function set and the terminal
set. We test these representations by performing several GP runs and RS runs. We perform a
rigorous comparison between GP and RS and try to figure out whether the space determined
by evolving Walsh transforms with GP represents an encouraging strategy for the purpose
of devising Boolean functions that can build confidentiality-safe stream ciphers. For this
particular problem, the results show that the convergence is faster for GP than the baseline
based on RS, and this is evident even with a small population size with a low number
of generations, making the proposed approach a promising one that deserves further
research effort. However, we demonstrate that this result is possible only if a specific type
of combination of function set and terminal set is adopted.

To this end, we provide a comprehensive analysis regarding the uncertain positions
of the pseudo-Boolean functions that are built with spectral inversion. We show that for
the majority of the tree syntactical structures, the percentage of uncertain positions is so
high that the corresponding Boolean functions are basically constructed completely at
random, making the whole evolution useless. On the other hand, we show that if the
proper function set and terminal set are selected, then the percentage of uncertain positions
is low enough to make the evolution be beneficial for the maximization of the non-linearity
and the selection of better solutions as generations are executed.

This leads to possible future work in which larger populations can be adopted to seek
higher non-linearity values, and a comprehensive benchmark of these types of evolutionary
methods for Boolean function optimization can be formalized to help point out the best
exploration strategy. This way, it should be possible to check the effectiveness of these
techniques when a larger search space is explored. The goal in this case would consist
of figuring out whether a higher and unknown non-linearity can be discovered. Finally,
a strict comparison among these methods may help to highlight the technique that has the
fastest convergence and the exploration strategy that appears to be the most promising for
the task of maximizing the non-linearity of Boolean functions.
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