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Abstract: In the mathematical discipline of computational geometry (CG), practical algorithms
for resolving geometric input and output issues are designed, analyzed, and put into practice. It
is sometimes used to refer to pattern recognition and to define the solid modeling methods for
manipulating curves and surfaces. CG is a rich field encompassing theories to solve complex
optimization problems, such as path planning for mobile robot systems and extension to distributed
multi-robot systems. This brief review discusses the fundamentals of CG and its application in
solving well-known automated path-planning problems in single- and multi-robot systems. We
also discuss three winning algorithms from the CG-SHOP (Computational Geometry: Solving Hard
Optimization Problems) 2021 competition to evidence the practicality of CG in multi-robotic systems.
We also mention some open problems at the intersection of CG and robotics. This review provides
insights into the potential use of CG in robotics and future research directions at their intersection.

Keywords: computational geometry; robotics; multi-robot systems; path planning; optimization

1. Introduction

Computing geometric (CG) attributes of groups of geometric objects in space, such as
the straightforward above/below connection of a given point concerning a particular line,
is the focus of CG. CG is more broadly concerned with creating and evaluating geometric
problem-solving algorithms. In the mathematical discipline of CG [1], practical algorithms
for resolving geometric input and output issues are designed, analyzed, and put into
practice. It can also refer to the solid modeling methods used to control surfaces, curves, and
pattern recognition. The late 1970s saw the creation of this field, which quickly advanced
through the 1990s to reach its current state. The study of sorting and searching algorithms
employed in one-dimensional spaces to address problems involving multi-dimensional
inputs led to the development of computation-based geometry. Its story also influenced
insights from computational graph theories used in natural geometric settings. Problems
in two-dimensional and, rarely, three-dimensional space were the primary emphasis of this
field in the beginning [2].

Most researchers assume that the space’s dimension is a tiny constant when consid-
ering mathematical issues within multi-dimensional environments. However, scholars
who concentrated on discrete algorithms rather than numerical analysis were the ones
who founded this field. They also focused on the characteristics of geometric problems
rather than conventional continuous questions. As a result, most of the objects in this field
are flat and straight, including lines, polygons, planes, and line segments. It occasionally
employs curved things like circles, but avoids solid modeling issues with intricate curves
and surfaces [3].

Robotics is the study of the creation and application of robots. Robots are geometric
items that function in a three-dimensional space or the actual world; therefore, it stands to
reason that geometry issues emerge frequently. The design of robots and the work cells
in which they must function present additional geometric challenges. The majority of
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industrial robots are fixed-base robot arms. The parts that the robot arm manipulates must
be provided in a way that makes it simple for the robot to grip them. It might be necessary
to paralyze some components for the robot to work on them. Before the robot can work on
them, they might need to be turned toward a known orientation. All of these issues are
geometric, occasionally with a kinematic element.

The path planning issue, in which a robot must discover a path across an environment
with obstacles, is discussed in detail in a later section of this review. We examine simple,
complex path-planning problems in this article. The broader issue of task planning has
several sub-problems, one of which is motion planning. Giving a robot high-level tasks,
such as “vacuuming the room”, and then letting the robot decide how to carry them out is
desirable. Planning motions, the sequence in which to complete sub-tasks, and other things
fall within this category.

Methodology: This is a brief review of the intersection of CG and mobile robot
path planning. To provide a structured overview, this paper adopts a systematic review
methodology as discussed below:

1. First, the scope of path planning is clearly demarcated into two primary areas: single-
robot and multi-robot systems;

2. The review predominantly focuses on the literature published between 2016 and 2023,
considering papers using CG in mobile robots, ensuring relevance and incorporation
of the latest advancements in the field; however, to discuss the foundational work on
computational geometry, we have considered pioneering works from the years 1969
to 2008;

3. We also have taken articles from the winners of CG-SHOP 2021, as they are the most
relevant and recent works on the discussed topic;

4. During the literature search, keywords such as “computational geometry in robot
path planning”, “single-robot path planning”, “multi-robot coordination”, and “kino-
dynamic path planning” were employed. These were searched across renowned
databases like IEEE Xplore, Google Scholar, and ScienceDirect;

5. Subsequently, the selected literature was examined based on specific criteria such as
relevance to the topic, citation count, and the novelty of the proposed solutions;

6. The extracted information was then organized and synthesized to offer a comparative
analysis, using features such as algorithmic complexity, optimality, scalability, and real-
world applicability for comparing various solutions.

Through this methodical approach, this review aims not only to present a thorough
understanding of existing solutions, but also to highlight the gaps and potential avenues
for future research, underscoring the authors’ contributions to this evolving domain.

This review primarily focuses on CG-based complex optimization solutions for path-
planning problems in single- and multi-robot systems.

1.1. Computational Geometry

Currently, computational geometry concerns the computational complexity of geo-
metric problems within algorithm analysis. However, the phrase has also been used in
at least two other contexts. Forrest refers to this field as “computational geometry” in his
study [4] since Riesenfeld [5] investigated geometric modeling using spline curves and
surfaces. However, this subject is more closely related to numerical analysis than geometry.

The term “Computational Geometry” has already been used in at least two other
situations by Lee et al. [6], and geometric algorithms have been created in various settings
such as B-spline curves and surfaces [7]. Here, we try to examine these related activities
from a proper perspective and compare them to the connotation that is currently in use:

• Bézier, Forrest, and Riesenfeld have successfully handled the problem of geomet-
ric modeling using spline curves and surfaces [7], which is more closely related to
numerical analysis than geometry in terms of spirit;

• Many computer scientists believe that Michael Shamos’ Ph.D. thesis at Yale University
in 1978 [8] or perhaps his earlier paper on geometric complexity [9] are the two works
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that gave rise to the field of computational geometry, which is frequently referred to
as a new one in the area of computing science;

• Others would argue that it started 10 years earlier with Robin Forrest’s Ph.D. thesis at
Cambridge University in 1968 [10], or possibly with his later papers on computational
geometry [4];

• Finally, others would argue that the formal examination of Minsky and Papert [11]
into which geometric properties of a figure can and cannot be identified (computed)
using different neural network models of computation is where it all started.

Fundamental theories and algorithms mentioned in the Handbook on Computational
Geometry [2] are convex hull computations, Voronoi diagrams, Delaunay triangulation,
arrangements, triangulation and mesh generation, polygons, shortest paths, proximity
algorithms, visibility graphs, geometric reconstruction, curve and surface reconstruction,
computational convexity, and computational and quantitative real algebraic geometry.
Here, we demonstrate the application of computational geometry in robotics to solve
specific path-planning problems for single- and multi-robotic systems.

To solve a problem using computational geometry, the following components are re-
quired:

• Size of input to the algorithm;
• Dimension of the problem;
• Properly defined constraints;
• Objective functions;
• Modality of the algorithm.

Figure 1 depicts the overview of CG-based problem-solving specific to robotics and
path-planning problems. The CG-based solutions can be extended to a path-planning
problem for multiple robots by considering a distributed algorithm running on each robot
for achieving common objectives.

Problem in
application domain

Specific geometric
problem

Algorithms to solve
geometric problem

Single robot system
Multi-robot system

Path planning
Obstacle Avoidance

Optimal/Randomized/
Sampling based

planners

Formulate Desgin

Modify Method for problem solving

Figure 1. An overview of the computational geometric way of solving a problem.

1.2. Robotics

Creating autonomous robots—robots that can be instructed on what to do without
being trained on how to do it—is one of robotics’ ultimate objectives. This necessitates a
robot having the ability to arrange its movements.

A robot needs to have some understanding of the environment through which it is
passing to be able to plan its motion. A mobile robot moving around in a plant, for instance,
needs to be aware of where impediments are. A floor plan can provide information, such as
where walls and equipment are situated. The robot will have to rely on its sensors for more
details. It should recognize barriers that are not shown on the floor plan, such as humans.
The robot must move to its objective position using the environment’s information without
encountering any obstacles.

Whenever a robot of any kind wishes to move to a physical location, this path-planning
problem must be resolved. The explanation above presupposes that we have an au-
tonomous robot roaming a manufacturing setting.
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2. Path Planning

Mobile robots, unmanned aircraft, and autonomous vehicles use path-planning algo-
rithms to find the safest, most effective, collision-free, and most minor expensive routes
between two points. Point-to-point navigation can be made safe and efficient by se-
lecting the correct path-planning algorithm. However, the best algorithm depends on
the robot geometry and computing constraints, including statically/holonomically and
dynamically/non-holonomically constrained systems, and it necessitates a thorough un-
derstanding of current solutions.

A continuous path connecting a robot from an initial to a final goal configuration must
be found in path planning, a non-deterministic polynomial-time (“NP”) hard problem [12].
As the robot’s degrees of freedom rise, the problem becomes more difficult. Then, the best
course of action (the optimal path) will be chosen based on restrictions and requirements,
such as the shortest distance between two points or the shortest time to travel without
colliding. Sometimes, goals and limits coexist, such as when attempting to reduce energy
use without increasing journey time past a certain point. Figure 2 delineates the path
planning with obstacle avoidance along with the computational geometric planners.

(xo,yo)

Obstacle

Obstacle

Goal

(xob,yob)

(xob,yob)

(xg,yg)

CG Guided Path

Direct Path

Optimal Path
Planner

Sampling based
path planner

Randomized path
planner

Computational Geometric Path Planners

Figure 2. Pictorial view of robotic path planning and obstacle avoidance using computational geometry.

Four requirements must be met for a path-planning algorithm to be effective. First,
in realistic static situations, the motion-planning technique must always be able to identify
the best path. Second, it also needs to be scalable to dynamic contexts. Third, it must con-
tinue to be beneficial to and compatible with the selected self-referencing strategy. Finally,
the complexity, data storage, and computing time must all be kept to a minimum [13].
The most prevalent path-planning algorithms for robots and AVs are presented in this
paper, and we examine which method is best suited for static and dynamic environments.
A taxonomy of different CG-based algorithms applied to mobile robot path planning is
illustrated in Figure 3.
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Computational Geometry for Robotics

Convex hull
computations Voronoi Diagrams Triangulation Polygon Proximity

AlgorithmsMesh Generation

Shortest Path Planner

Single Robot Path
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Based
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Figure 3. Taxonomy of robotic algorithms using computational geometry for path planning.

2.1. CG-Based Single-Robot Path Planning

Due to the difficulty in path planning for robots with multiple degrees of freedom
(more than 4 or 5), sampling-based algorithms have been created that compromise com-
pleteness and practical application. Using such methods avoids the explicit geometric
depiction of the open space. Instead, in their most basic form, they generate a sizable
number of configuration sample sets and exclude samples that reflect the robot in an
unallowable configuration.

Then, an effort is made to connect close configurations using a metric set across
the configuration space. Finally, a roadmap-like graph structure is created as a result of
this construction. It has the property that every path connecting any two of its vertices
corresponds to an accessible path connecting the corresponding configurations in the
configuration space. Although these methods are intrinsically imperfect, it is frequently
possible to demonstrate that they are probabilistically complete—guaranteed, given enough
samples, to identify a solution with a high probability if one exists.

Problem Statement: In single-robot path planning, our primary objective is to find
a feasible and optimal path for a robot navigating a given environment. This entails
determining a path within a configuration space C, a subset of the n-dimensional Euclidean
space, denoted as C ⊂ Rn. Within this space, there exists an obstacle space Cobs, such
that Cobs ⊂ C. For a given starting configuration qstart, which belongs to C but not to Cobs,
and a goal configuration qgoal, which also belongs to C but outside Cobs, the challenge is
to determine a continuous path π : [0, 1] → C. This path must start at the given starting
configuration, π(0) = qstart, and end at the goal configuration, π(1) = qgoal, ensuring that,
for every t ∈ [0, 1], π(t) /∈ Cobs. An optimal path is typically characterized by minimizing



Algorithms 2023, 16, 498 6 of 15

the integral
∫ 1

0 ||π
′(t)||dt, where ||π′(t)|| signifies the velocity or rate of change of the

robot’s configuration.
Optimal Planners: The shortest path evaluation for the known static environment is a

two-level problem that entails the selection of feasible node pairs. The most straightforward
path evaluation is based on the obtained possible node pairs [14]. Therefore, A* and re-
planner are used for shortest path evaluation based on the information regarding the
obstacles present in the environment. However, the approach is ineffective and unworkable
in dynamic contexts since neither of the above conditions exists. The algorithm uses a
heuristic to estimate the cost from the current node to the goal. Let G = (V, E) be a graph
where V is the set of vertices and E is the edges. For a given node n, let g(n) denote the
cost of the shortest path from the start node to n and h(n) be the heuristic estimate of the
cost from node n to the goal. The A* algorithm evaluates nodes by combining g(n) and
h(n) to form f (n), defined as

f (n) = g(n) + h(n). (1)

The objective of the A* algorithm is to minimize f (n), ensuring that the algorithm is
both complete (it will find a solution if one exists) and optimal (it will find the shortest
possible path), provided that the heuristic h(n) is admissible (never overestimates the
actual cost to reach the goal) and consistent (satisfies the triangle inequality).

D* [15] and its variants are suggested practical tools for speedy re-planning in con-
gested contexts to facilitate path planning in dynamic environments.

Randomized Planners: Rapidly exploring random trees (RRTs) [16], and a hybrid
strategy that combines Relaxed A* (RA*) [17] with one meta-heuristic algorithm as D*, and
its variations do not guarantee solution quality in significant dynamic contexts. In RRT,
given a configuration space C, the algorithm iteratively builds a tree T rooted at the starting
configuration qstart. For each iteration, a random sample qrand is drawn from C, and the
nearest node qnear from the tree T to qrand is determined. A new node qnew is then added
to the tree T by moving from qnear towards qrand by a specified distance. The process is
repeated until a termination condition is met, e.g., reaching qgoal or after a certain number
of iterations.

The hybrid technique consists of two phases: an initialization phase where the al-
gorithm is initialized using RA* and a post-optimization degree where the quality of the
solution identified in the earlier stage is improved using one heuristic method. Like A*,
RA* maintains a heuristic function h(n) for estimating the cost from node n to the goal.
The function f (n) in RA* is defined similarly as in A*:

f (n) = g(n) + h(n) (2)

However, RA* can operate in two phases: the search phase and the repair phase. In the
search phase, RA* behaves like A*, finding an initial path. During the repair phase,
if the costs of edges change, RA* updates the costs in its open list and re-plans, repairing
the path without re-exploring the entire space. The Genetic, Ant colony, and Firefly
algorithms—three meta-heuristic algorithms—are also counted as randomized planners.
These seek to offer valuable features in support of a hybrid approach to path planning.

Sampling-based Planners: A sampling-based method of path planning [18] elimi-
nates non-free configurations from a set of randomly chosen configurations. The edges
are utilized to represent edges and are placed on the roadmap as collision-free paths.
The sampling density can be increased in certain areas to hasten the roadmap connection.
For instance, the oft-employed RRT generates a random configuration at each step and
identifies the configuration most similar to the sample in the current tree. Other sampling
techniques, such as expansive-space trees (EST) [19] and rapidly exploring random trees
(RRTs) [16], presuppose that the initial and target configurations are known. EST evenly
distributes samples in the undiscovered regions of the configuration space and then at-
tempts to connect them to the tree, in contrast to RRTs’ quick exploration of the space by
extending from a tree towards random samples.
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The EST algorithm aims to grow a tree in the configuration space C by placing more
samples in less-explored regions. Let T be a tree rooted at the starting configuration qstart.
The algorithm proceeds with the following general steps:

1. Select a random sample qrand from C;
2. Determine a region R in C such that the probability of selecting a sample from R is

inversely proportional to the volume of C already explored by T in R;
3. If qrand lies in R, attempt to connect qrand to the nearest node qnear in the tree T;
4. Add qrand to T if a valid connection is established.

Mathematically, the probability P(R) of selecting a sample in region R can be repre-
sented as

P(R) =
Vunexplored(R)

Vtotal(R)
(3)

where Vunexplored(R) denotes the volume of the region R that remains unexplored by T and
Vtotal(R) is the total volume of R.

Conventional sampling-based planners cannot determine the absence of a solution to
a given problem. Disconnection proofs, which can establish that two given configurations
dwell in two different free-space components in specific circumstances, are the subject of
several works [20].

Optimal Sampling-based Planners: Probabilistic Roadmap (PRM) and RRT*, varia-
tions of PRM, are discussed, demonstrating their asymptotical optimality, in [21]. Addi-
tional neighbors for connection and a rewiring strategy are needed for RRT to be converted
into an optimal planner. This guarantees that the resulting roadmap has a tree structure.
A general paradigm for the asymptotic analysis of sampling-based planners is described in
a recent paper [22].

PRM constructs a roadmap in the configuration space C by randomly sampling con-
figurations and attempting to connect them. Let G = (V, E) be a graph where V is the set
of vertices (sampled configurations) and E is the set of edges (valid paths).

1. For i = 1 to n, sample a configuration qrand from C;
2. If qrand is collision-free, add it to V;
3. For each q ∈ V, attempt to connect q to k nearest neighbors in V that are collision-free;
4. Add valid connections to E.

After constructing the roadmap, search algorithms like A* can be used to find a path
from qstart to qgoal.

On the other hand, RRT* is an optimization over the traditional RRT to ensure asymp-
totic optimality. Given a tree T rooted at qstart:

1. Sample a random configuration qrand from C;
2. Find the nearest node qnear in T to qrand;
3. Attempt to connect qrand to T through qnear, resulting in qnew;
4. If the connection is valid, look for nodes in T within a radius r of qnew and attempt to

rewire the tree to minimize the path cost.

The rewiring ensures that T not only spans the configuration space, but also converges
to an optimal solution as the number of samples increases.

The framework takes advantage of a connection between such planners and conven-
tional models of random geometric graphs, which have been thoroughly studied for many
years and have many of their characteristics figured out by this point. Asymptotic features,
or those with a high probability as the number of samples goes to infinity, are the focus
of most analyses for sampling-based algorithms. For example, recent research [23] offers
bounds on the likelihood of obtaining a PRM* solution that is close to optimal after a
finite number of iterations. Additionally, we point out that the Fast Marching Technique
(FMT*) [24] examines a setup comparable to this one for the algorithm, albeit for a specific
situation of an obstacle-free workspace.
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2.2. Transitioning from a Single-Robot to Multi-Robot Path Planning

As delineated in the single-robot path-planning problem, the objective revolves around
the generation of an optimal and feasible path in a given configuration space. The essence
of this approach lies in the computation of paths in the presence of obstacles, ensuring the
absence of any intersection with the obstacle space Cobs. With a clear understanding of the
single-robot paradigm, transitioning to the realm of multi-robot path planning necessitates
the recognition and accommodation of additional complexities.

Constraints and Challenges: While the foundational principles of single-robot path
planning can be employed in the multi-robot scenario, several key constraints emerge:

1. Inter-Robot Collisions: Unlike the single-robot scenario, the risk of collisions is not
limited to static obstacles. Dynamic collisions between robots present a substantial
challenge. The movement of one robot might obstruct the path of another, necessitat-
ing continuous reevaluation and adaptation;

2. Coordinated Movement: Ensuring that all robots reach their respective destinations
within optimal time frames demands a high degree of coordination. This often
involves sacrificing individual robot efficiency for collective efficiency;

3. Increased Configuration Complexity: The configuration space exponentially grows
with the addition of each robot. This expansion augments the computational overhead
and complicates the search for optimal paths.

A Bridge: CG serves as a bridge to extend single-robot path-planning solutions to
cater to multiple robots. Several techniques come into play:

• Minkowski Sum [25]: This can be employed to compute the configuration space
obstacles when dealing with moving robots. By considering one robot as the primary
agent and treating other robots as moving obstacles, the problem can be reduced to a
single-robot scenario in an augmented environment;

• Voronoi Diagrams [26]: These can assist in partitioning the workspace, providing
each robot with a distinct region to navigate. This ensures a degree of separation
between the robots, minimizing potential collisions;

• Visibility Graphs [27]: For environments with multiple robots and obstacles, visibility
graphs can be extended to incorporate dynamic inter-robot constraints. This ensures
that, while navigating from source to destination, the robot considers both static and
dynamic elements in its path.

Role of Kinematics and Dynamics: In multi-robot systems, purely geometric consid-
erations, although fundamental, may not suffice for effective path planning, especially in
scenarios involving intricate robotic systems such as autonomous cars. The kinematic and
dynamic parameters, including velocities and accelerations, play a pivotal role. Ignoring
these parameters can lead to unrealistic path solutions that a physical robot cannot exe-
cute due to constraints in acceleration, turning radius, or speed limitations. For instance,
two autonomous cars approaching an intersection may need to adjust their speeds to avoid
collision, even if their geometric paths do not intersect. This emphasizes the need for
path-planning algorithms to be kinodynamically aware, accounting for both the geometric
constraints of the environment and the kinematic/dynamic constraints of the robots. Inte-
grating these considerations ensures the generated paths are not only collision-free but also
feasible, given the robots’ physical characteristics and capabilities. Thus, a more holistic
path-planning approach for multi-robot systems incorporates both geometric algorithms,
as provided by computational geometry, and kinodynamic considerations to cater to the
real-world complexities and constraints of robotic systems. The solutions discussed below
consider both CG and kinodynamic systems for multi-robot path planning.

In essence, while multi-robot path planning inherently possesses greater complexities,
the principles of computational geometry provide a framework to effectively leverage
single-robot strategies, adapting and extending them for multi-agent scenarios.
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2.3. Multi-Robot Path Planning

Several robots work together in a common workspace during multi-robot motion
planning. The objective is to transfer the robots to their designated target positions without
colliding with obstacles or other robots by keeping the overall schedule optimal concerning
objective functions (minimize the makespan and minimize the total distance traveled by
all robots). The issue can be seen as a single-robot scenario where the robot comprises
multiple independent elements (robots). Let us say, for example, that the goal is to plan
the movements of n robots; let Si represent the configuration space of the ith robot. This
can thus be rephrased as “planning the motion of a single robot” with a configuration space of
S = {S1, S2, ..., Sn}. This discovery enables the direct application of single-robot tools to the
multi-robot case. Such a simplistic approach, however, tends to be ineffective in theory and
practice since it ignores the unique aspects of the current problem. Algorithm 1 generalizes
the pseudocode of multi-robot path planning in different approaches. Different methods
were created, especially for this issue. Table 1 depicts the comparative performance and
complexity analysis of state-of-the-art multi-robot path planners.

Algorithm 1 Generalized Algorithmic Overview for Multi-Robot Path Planning

1: procedure MULTIROBOTPATHPLANNER(robots, environment)
2: for each robot ri in robots do
3: starti ← starting position of ri
4: goali ← goal position of ri
5: end for
6: while not all robots have reached their goals do
7: for each robot ri in robots do
8: if ri has not reached goali then
9: pathi ← PATHPLANNER(starti, goali, environment)

10: MOVEROBOTALONGPATH(ri, pathi)
11: end if
12: end for
13: HANDLECOLLISIONS(robots, environment)
14: end while
15: end procedure
16: procedure PATHPLANNER(start, goal, environment)
17: Centralized/Decentralized/Distributed path planners
18: Anealing for UNIST [28]
19: Path optimization for Gitastrophe [29] . Generate a path for a single robot from

start to goal
20: return path
21: end procedure
22: procedure MOVEROBOTALONGPATH(robot, path) . Move the robot along the

generated path
23: end procedure
24: procedure HANDLECOLLISIONS(robots, environment) . Resolve any potential

collisions among robots
25: end procedure

Centralized Planner (labeled/colored): The robots are divided into k groups (colors),
with each group having replaceable robots, and a centralized algorithm for k-color multi-
robot motion planning is given in [30]. Each robot must go to one of the target positions
designated for its group, ensuring that, after the motion, precisely one robot occupies each
target position. The continuous multi-robot issue and a discrete variation of it known as
pebble motion on graphs are related in this study.

Consider that the robots are partitioned into k groups or colors. Robots within each
group are interchangeable. The motion-planning problem for these k-colored robots is
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presented in [30]. Each robot aims to move to one of the target positions designated for its
group, ensuring that

∀ target positions p, ∃ exactly one robot r, such that r → p (4)

The multi-robot motion-planning problem in continuous space is closely related to its
discrete counterpart: pebble motion on graphs, as discussed in [31]. In this discrete problem,
the challenge is to navigate pebbles from a set of source vertices to a set of target vertices,
respecting certain movement rules. The method to solve the continuous multi-robot motion
planning problem is decomposing the k-color problem into multiple smaller pebble motion
problems. Solutions to these sub-problems can then be merged to derive a solution to the
original continuous problem.

Table 1. Comparative performance analysis of multi-robot path planners.

Algorithm Category Best Case Worst Case Average Case Optimality Update Cost Abbreviations

Labeled [30] Centralized O(n×m) O(2n×m) O(b× n×m) complete low
b—no. of obstacles,
m—no. of robots,

n—no. of cells

Unlabeled [32] Centralized O(logn) O(n3) O(n2/3) complete low n—number of cells

Reciprocal [33] Decentralized O(µ× n×m) O(µ× n×m) - sub high µ—makespan factor

Game-theoretic [34] Decentralized O(ε× n) O(ε× n) - sub high ε—depth factor

Shadok [35] Distributed O(w2) O(w2) - sub high w—number of
labeled units

UNIST [28] Distributed O(w3) O(w3) - sub high w—maximum space
dimension

Gitastrophe k-opt [29] Distributed O(k× w) O(k× w) - complete moderate

k—number of
robots and

w—number of
squares

Centralized Planner (unlabeled): Unlabeled multi-robot motion planning refers to
the specific situation of the k-color issue with k = 1. When a sampling-based algorithm
was originally proposed, it was first examined in [32]. This suggests that all robots in set R
have the same potential target positions, represented by set P. Each target position should
be occupied by one and only one robot at the end of the movement:

|R| = |P| (5)

∀p ∈ P, ∃!r ∈ R, such that r → p (6)

The first exploration of this problem using a sampling-based algorithm was docu-
mented in [32]. Over the years, more efficient solutions were introduced, as highlighted
in [36]. However, the inherent complexity of this problem was proven to be PSPACE-hard,
according to [37]. Many solution algorithms operate on simplified assumptions, with com-
mon ones related to constraints between the start and target positions of the robots.

Recent years have introduced effective and comprehensive algorithms for the unla-
beled problem [36]. For the problem to be proven to be PSPACE-hard [37], these methods
simplify assumptions regarding the distance between the start and goal positions.

Decentralized Planner: A decentralized strategy that contends robot disputes should
be settled locally and without centralized coordination. In the reciprocal technique [33],
the individual robots compute their future trajectories while considering other robots’
current position and velocity to prevent collisions. The research in [34] adopts a game-
theoretical methodology. It produces a reward function that minimizes the time and
resources required for coordination and increases the time between disputes. Based on
the sociology of pedestrian interaction, several publications [38] create collision-avoidance
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strategies. Most recent approaches use CG for multi-robot path planning while considering
kino-dynamic constraints. For instance, Agarwal et al. [39] introduced a novel approach to
multi-robot motion planning for unit discs utilizing revolving areas. Leveraging computa-
tional geometry, their strategy effectively handles robots as moving discs, focusing on the
dynamic rearrangement of space while avoiding collisions. Although the approach excels
in handling dynamic obstacles, its complexity tends to grow rapidly with the number of
robots, posing scalability challenges.

On the other hand, Şenbaşlar and Sukhatme [40] proposed an asynchronous real-
time decentralized planner that emphasizes the real-time nature of multi-robot systems.
By avoiding central synchronization, their approach offers significant speedups, but at the
potential cost of suboptimal paths. Choi et al. [41] explored parabolic relaxation techniques
for motion planning, providing a unique intersection between computational geometry and
optimization. However, the method may struggle with environments having numerous
narrow passages due to its relaxed nature. Wang et al. [42] presented a coordination-free
approach that integrates topological reasoning. By focusing on congestion reduction, their
strategy ensures smoother navigation even in crowded scenarios, though it may sometimes
lead to longer paths. Lastly, Zhang et al. [43] delved into an MIP-based approach for both
geometric tasks and motion planning, offering a comprehensive solution. While their
method stands out for addressing both task allocation and motion planning, it demands
high computational resources, especially for larger teams of robots. These approaches are
considered geometric as well as physical constraints of the multi-robot systems and are
applicable under certain conditions. The following are the distributed approaches used in
CG-SHOP 2021 for multi-robot path planning.

2.4. Distributed Approaches from CG-SHOP 2021

The 2021 CG-SHOP Challenge [44] was centered on the issue of calculating polygons
with minimum areas whose vertices were a predetermined set of points in the plane. Nu-
merous research teams from the computational geometry and combinatorial optimization
communities responded enthusiastically to this challenge, which led to an active discussion
of potential solutions. The challenge has two objective functions: minimize the makespan
and minimize the total distance traveled by all nodes. There were three apparent front-
runners: Team GITASTROPHE finished first in the total distance traveled objective and
third in the makespan objective and, followed by Team UNIST in the second place in both
the makespan and total distance objectives. Team SHADOKS achieved first place in the
makespan and third place in total distance traveled.

Shadoks Approach to Low-Makespan: The Shadoks approach [35] utilized a few
algorithms considering a coordinated motion planning issue in the two-dimensional grid
Z2. The objective is to transport a collection of robots, a set of n labeled unit squares,
between the specified start and target grid cells without causing any collisions. The goal
of the problem is to reduce the makespan as much as possible. The longest L1 distance a
robot can travel between its starting point and objective while avoiding obstacles is a trivial
lower bound to the makespan. The objective function we maximize is the sum of all the
variables with weight defined as

weight(r, P) = (δr(p(0))− δr(p(k)))×
(

δr(p(0))2 + 1
)

, (7)

Therein, p(0) and p(k) are the first and last positions of the path P, and δr(p) is the obstacle-
avoiding distance from a point p to the target of the robot r. We can always swap start-target
positions and reverse the pathways, preserving the best solution identified, because the
problem is symmetric over time. Their strategy begins with transforming path planning
into SAT problems to make it tractable, then applying A* for trivial optimization along
with the cross, Cotty catcher, dichotomy, and escape strategies. Later, they improved their
solution by using feasible and conflict optimizers. All the strategies work in parallel; overall
computation complexity is polynomial.
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UNIST Simulated Annealing Approach: The UNIST method [28] consists of three
components. A feasible solution is first calculated to move each robot from its beginning
to its goal point through a middle point. This is performed by setting intermediate points
outside the minimum bounding box created by the input positions of the robots and
obstacles. The second uses a straightforward local search strategy that involves regularly
deleting and inserting a random robot along an ideal path. As a result of the robots no
longer having to pass through the midway locations, the quality of the solution is improved.
Finally, simulated annealing is used to enhance this workable solution further. To improve
the feasible solution, UNIST has picked a robot i, deleted it from G, and inserted it again
using the feasible solution. It may greatly improve this robot, as it no longer has to go
through its middle-point mi. UNIST calls this operation a tightening move (see Figure 4).
UNIST used two alternative types of moves: either tightening the robot’s whole trajectory
or stretching it between two places by having the robot pass through a third intermediate
point that was randomly created. They have run the deletion and insertion procedures
2w times and obtained a feasible solution in O(w3) time, where w is the maximum-sized
dimension of world space.

Figure 4. UNIST’s tightening and stretching moves.

Gitastrophe Randomized k-Opt: An excellent initial solution is found during the
initialization phase of the Gitastrophe technique [29], and this solution is then optimized
during the k-opt local search phase. Gitastrophe’s main contribution was to approximate
the joint optimization using k unique single-path optimizations. The sorting analogy
inspired this: given a set of k robots, route them, one at a time, to their destinations,
with the jth robot routing respecting the path of robots 1, 2, . . . , j− 1. Routing each robot
sequentially from start to target prevents the exponential expansion of the state space,
which is crucial. Finding a suitable ordering for the k robots to redirect becomes the only
issue to solve. Simply arranging the robots to decrease completion time was where we
had the most results. An ordering was abandoned if it was impossible (for instance, if
a portion of the k robots entirely blocked the passage for the remaining robots) or not
an improvement.
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3. Future Directions

CG has excellent potential for optimally solving robotic path-planning problems,
as evidenced by the approaches above. However, there is still space to work on exploiting
CG for multi-robotic systems. Future studies should concentrate on the following areas:

Optimality and time complexity tradeoff: Optimal methods, such as DFS, A*, and D*,
have a high computational cost in achieving optimal answers; randomized and sampling-
based algorithms, on the other hand, produce sub-optimal and approximation solutions
in less time. To achieve overall path-planning efficiency, the correct balance between
optimality and execution time is essential;

Robot adaptability and cost efficiency: The dynamic environmental parameters of
the robot may impact its movements and cause unwanted performance reduction. Robots
may lack adaptability and become stuck in classic deadlock scenarios. To seek a collision-
free path in an unknown environment with uncertain obstacles, a robot with the ability
to change operating behavior over time is required. In addition to increasing the number
of onboard sensors when dealing with complicated surroundings, the computation cost
may be considerable, due to their high memory needs and processing expense. As a
result, the computation cost considerations must be addressed when creating a proper
CPP environment model. The hybrid algorithm is an intriguing invention for managing
environmental change at the lowest possible cost;

Path Smoothness: In networked multi-robotic systems, communication dependability
and connectivity coverage are critical. Because of its limited communication and sensory
capabilities, the robot cannot regenerate the optimum path if the unexpected occurs, low-
ering the effective planning ratio. One of the issues that must be handled is a kinematic
constraint of the robot, such as path curvature. Trajectory smoothing on a quick turn
enables fast-moving robots such as drones to deliver an effective inertia motion transfer
to decrease power consumption and prevent premature mechanical damage. As a result,
a smooth path must be projected while adhering to the planned route;

Open Questions: There are open questions that can be addressed through the ex-
ploitation of CG in robotics. For example, we can use CG to determine if it is appropriate
to employ an optimizing sampling-based planner or a non-optimizing sampling-based
planner. Further, CG-based optimization techniques can be applied to optimize the re-
sulting path for low computationally powered robots. We can also analyze convergence
rates for sampling-based algorithms and give a defined length of time. Finally, CG can be
helpful in solving the problems related to path planning for controlling non-holonomic and
under-controlled robots.

4. Conclusions

Practical algorithms for addressing geometric input and output problems are devised,
examined, and applied in the mathematical field of CG. It can also describe the solid
modeling techniques for modifying surfaces and curves and allude to pattern recognition.
CG is a broad field that includes ideas to address challenging optimization issues like path
planning for robotic systems. The foundations of CG are discussed, along with how it
can be used to solve well-known automated path-planning problems in both single-robot
and multi-robot systems. We also go over three CG-SHOP 2021 competition winners’
algorithms to demonstrate the applicability of CG in multi-robotic systems and highlight
open CG-/robotics-related problems.
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Abbreviations
The following abbreviations are used in this manuscript:

CG Computational Geometry
PRM Probabilistic Road Map
DFS Depth First Search
RRT Rapidly-exploring Random Tree
EST Expansive-Space Tree
FM Fast Marching
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