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Abstract: The COVID-19 pandemic has posed significant challenges in accurately diagnosing the
disease, as severe cases may present symptoms similar to pneumonia. Real-Time Reverse Tran-
scriptase Polymerase Chain Reaction (RT-PCR) is the conventional diagnostic technique; however, it
has limitations in terms of time-consuming laboratory procedures and kit availability. Radiological
chest images, such as X-rays and Computed Tomography (CT) scans, have been essential in aiding
the diagnosis process. In this research paper, we propose a deep learning (DL) approach based on
Convolutional Neural Networks (CNNs) to enhance the detection of COVID-19 and its variants from
chest X-ray images. Building upon the existing research in SARS and COVID-19 identification using
AI and machine learning techniques, our DL model aims to extract the most significant features from
the X-ray scans of affected individuals. By employing an explanatory CNN-based technique, we
achieved a promising accuracy of up to 97% in detecting COVID-19 cases, which can assist physicians
in effectively screening and identifying probable COVID-19 patients. This study highlights the
potential of DL in medical imaging, specifically in detecting COVID-19 from radiological images.
The improved accuracy of our model demonstrates its efficacy in aiding healthcare professionals and
mitigating the spread of the disease.

Keywords: COVID-19 detection; X-ray images; Canny edge detector; Grad-CAM; deep learning

1. Introduction

Lung abnormalities, including ARDS, lung cancer, pneumothorax, and pneumonia,
pose significant health challenges across all age groups. The emergence of the SARS
coronaviruses, particularly the COVID-19 virus (SARS-CoV-2), has further exacerbated res-
piratory issues, causing lung lesions that impede regular lung function [1–3]. The accurate
and timely detection of COVID-19 infections has become paramount, given the ongoing
global pandemic. Although various diagnostic tools, such as antigen and antibody testing,
are available, they may suffer from lengthy turnaround times and limited availability,
hindering effective disease management [4].

Recent developments in radiology imagery have shown that specific scans, such as
chest X-rays, can provide essential information for COVID-19 detection. However, the
shortage of qualified specialists in remote areas calls for innovative automated detection
solutions [5]. Deep learning (DL) models, particularly Convolutional Neural Networks
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(CNNs), have demonstrated remarkable capabilities in image analysis tasks and present a
promising avenue for automated COVID-19 detection using chest X-ray scans [6].

In this research, we propose a novel DL model for automated COVID-19 detection
from chest X-ray images [7]. Our model aims to perform extensive binary diagnostics,
distinguishing COVID-19 findings from non-COVID-19 findings. To train the model, we
utilize a large dataset of publicly accessible chest radiograph images, which includes clinical
results consistent with COVID-19, along with verified cases of COVID-19 for creating the
test dataset [8]. By leveraging the power of CNN architecture, our DL model can effectively
learn to detect abnormalities in chest X-ray scans and aid healthcare professionals in
triaging high-risk patients, especially in inpatient settings.

This paper serves as a comprehensive exploration of cutting-edge deep learning
techniques utilized for the detection of COVID-19 from chest X-ray images. It not only
showcases the power of this technology in enhancing diagnostic speed and precision but
also underscores its broader impact on healthcare systems. By accelerating the identification
of COVID-19 cases, these techniques play a pivotal role in optimizing resource allocation,
enabling faster isolation and treatment of affected individuals, and ultimately reducing
the risk of transmission. Through this research, we aim to contribute to the growing body
of knowledge that leverages AI-driven solutions to combat the ongoing pandemic, thus
fostering more resilient healthcare systems for the future.

The structure of the paper is as follows: Section 2 provides an overview of related
research in the field and highlights the unique contributions of our work. Section 3 presents
the detailed processing steps of our proposed approach. In Section 4, we present the
experimental findings and performance comparisons. Finally, Section 5 concludes the paper
with a summary of our research findings and outlines potential future research directions.

2. Related Work

The healthcare domain has witnessed significant advancements in image process-
ing, machine learning (ML), deep learning (DL), and computer vision over the past two
decades. The outbreak of the COVID-19 pandemic further accelerated research in these
fields, leading to a surge in studies related to COVID-19 detection and diagnosis using
medical imaging [1,9–13].

During the past decades, many healthcare diagnostic analyses, including X-ray, CT
scan, or MRI research, were confined to image processing [14–22] and ML [9]. Recent
developments in DL, especially Convolutional Neural Networks (CNNs) [23–26], have
shown promising results in various medical imaging tasks, including COVID-19 detection
from chest X-ray images [27–31].

Authors in [26] aimed to classify and detect objects in X-ray baggage imagery using
Convolutional Neural Networks (CNNs) with support vector machines (SVM). This study
highlighted that CNN-based feature extraction outperformed handcrafted Bag-of-Visual-
Words features. The identification of anomalies in chest X-rays, including the detection of
the COVID-19 virus, is presented in [1].

A framework for early-phase identification of COVID-19 using chest X-ray imaging
features is developed in [9]; this research offered an innovative approach to early COVID-19
detection using machine learning. A comprehensive overview of diagnostic methods for
COVID-19, including CT scans, NAAT, RT-PCR, and CRISPR is introduced in [27]. In the
domain of deep learning for medical imaging, Mohan et al. [25] explored the potential of
deep learning in COVID-19 detection, utilizing CNNs and SVMs. Interestingly, their study
compared local descriptors with deep learning, noting that while local descriptors were
effective, they consumed more time.

The authors of [24] investigated the use of stationary wavelets for data augmentation
and abnormality detection in CT scans. Their study proposed a three-phase method
for detecting abnormalities in lung CT scans, classifying them into COVID-positive and
COVID-negative cases. In addition, a comparative analysis of deep learning models,
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including Inception V3, Xception, and ResNeXt, for COVID-19 detection based on chest
X-rays is presented in [23].

In response to the urgent need for effective COVID-19 diagnostic tools, COVID-Net, a
deep Convolutional Neural Network designed for detecting COVID-19 cases from chest
X-ray images, was introduced in [32]. Another knowledge transfer and distillation (KTD)
framework using CNNs for on-device COVID-19 patient triage and follow-up is proposed
in [33]. Finally, a deep learning-based methodology for detecting coronavirus-infected
patients using X-ray images was developed in [34].

Despite the progress, challenges remain in automated COVID-19 detection, such as
text in chest X-rays, dimension mismatch, data imbalance, and the need for large and
diverse datasets. In this research, we propose a novel DL-based COVID-19 diagnostic
method using state-of-the-art architectures. We address the challenges of preprocessing
chest X-ray images from various sources to build a robust classification model.

This study introduces innovative methods in image preprocessing to enhance the accu-
racy of COVID-19 detection. Specifically, we employ the Canny edge detection algorithm,
a technique widely used in computer vision, to effectively reduce noise and emphasize
critical edges within X-ray images. This process results in a more refined and informative
image representation.

Following the Canny edge filter, we apply the Gradient-weighted Class Activation
Mapping (Grad-CAM) method. This approach offers significant advantages by highlighting
essential regions within the X-ray image. The Grad-CAM-generated map serves as an
intermediary step that empowers the neural network to identify infected areas with greater
precision, ultimately boosting the accuracy of COVID-19 detection.

The contributions of this work are stated below:

• We develop a deep learning COVID-19 diagnostic method using state-of-the-art ar-
chitectures, with a focus on addressing the unique challenges posed by chest X-ray
images.

• A comprehensive analysis of various methods used for COVID-19 detection is pre-
sented, highlighting the strengths and limitations of each approach.

• Chest X-rays from different sources are collected to build a robust classification model.
• The developed diagnostic model provided efficient results for an enormous variety of

input images.
• The results produced in this work are validated with existing state-of-the-art works.

By leveraging the capabilities of DL and addressing the research gaps in current
methods, our approach contributes to advancing the field of automated COVID-19 detection
from chest X-ray images.

3. Proposed Methodologies

In various fields, such as malware detection, medicine, information retrieval, and
many others, the use of DL models has seen rapid growth. Recently, a new DL methodology
based on Convolutional Neural Networks (CNNs) [35,36] has shown significant promise in
various image analysis tasks. DL algorithms enable computational models to learn data
representations across multiple abstraction layers, leading to improved performance in
classification tasks. DL models have demonstrated higher accuracy and have the potential
to enhance human performance in various domains [15,37–43].

Our proposed CNN-based COVID-19 detection method consists of a sequence of
phases, as depicted in Figure 1.
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Figure 1. Block diagram of proposed method.

The following five phases summarize the COVID-19 detection process:

1. Data Collection and Pre-processing: In this phase, a dataset containing chest X-ray
scans of COVID-19 patients and healthy individuals is collected. The images may
contain noise and artifacts, and thus, pre-processing techniques are applied to enhance
the quality of the images. Additionally, Canny edge detection is employed to identify
edges in the X-ray images, which can help in feature extraction. In this study, we
utilized a dataset sourced from the Kaggle repository [44], a recognized platform for
medical image datasets. The dataset consists of 6432 chest X-ray images, including
cases of COVID-19, normal chest X-rays, and pneumonia. To ensure a balanced repre-
sentation, we divided the dataset into training and validation sets. The training set
comprises 1345 normal cases, 490 COVID-19 cases, and 3632 pneumonia cases, while
the validation set includes 238 normal cases, 86 COVID-19 cases, and 641 pneumonia
cases. We downscaled the PA (posteroanterior) view scans of COVID-19-affected
patients to 128× 128 pixels to optimize model training and prevent overfitting.

2. Feature Extraction with Gradient-weighted Class Activation Mapping
(Grad-CAM): Grad-CAM is a powerful technique that highlights the regions of the
image that are crucial for the model’s prediction. By applying Grad-CAM, we can visu-
alize the regions in the chest X-ray that contribute the most to the COVID-19 detection
decision. This not only helps in understanding the model’s decision-making process
but also provides insights into relevant areas of the X-ray for COVID-19 identification.

3. Data Splitting: The original dataset is divided into two sets: a training set and a
validation set. The training set is used to train the CNN model, while the validation
set is used to assess the model’s performance and fine-tune hyperparameters.

4. Training the CNN Model: The CNN model is trained on the training dataset using
the extracted features and Grad-CAM visualizations. During training, the model
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learns to identify patterns and features that distinguish COVID-19 cases from healthy
cases in the X-ray images.

5. Performance Evaluation: The trained CNN model’s performance is evaluated on the
validation dataset to measure its accuracy and other relevant metrics. This evaluation
helps determine the model’s effectiveness in detecting COVID-19 cases from chest
X-ray images.

The proposed method aims to leverage the power of CNNs and Grad-CAM visualiza-
tion to improve the accuracy and interpretability of COVID-19 detection from chest X-ray
images. By following these phases, our approach aims to provide an efficient and reliable
tool for assisting medical professionals in screening and diagnosing COVID-19 cases.

3.1. X-ray Diagnosis Using Deep Learning

X-ray devices are widely used in medical imaging to visualize internal body structures
and detect various conditions, such as tumors, lung infections, bone dislocations, and
injuries [15]. The process involves passing light or radio waves through the body, and the
resulting images provide valuable information for diagnosing and monitoring a range of
medical conditions.

Deep learning has shown remarkable success in various image analysis tasks, in-
cluding medical imaging. In the context of X-ray diagnosis, deep learning techniques,
particularly Convolutional Neural Networks (CNNs), have been leveraged to enhance
the accuracy and efficiency of diagnostic procedures. By training CNN models on large
datasets of X-ray images, these models can learn to identify patterns and features indicative
of specific conditions, allowing for automated and accurate diagnosis.

One of the significant advantages of using deep learning in X-ray diagnosis is the
ability to process large volumes of images quickly and accurately. Deep learning models
can analyze X-ray images in real time, providing rapid insights to medical professionals,
thereby expediting the diagnostic process and enabling timely interventions.

Moreover, deep learning models can assist in detecting subtle abnormalities or early-
stage conditions that might be challenging for human experts to identify. The ability of
deep learning models to learn complex representations from data makes them particularly
useful in capturing intricate patterns in X-ray images, enhancing diagnostic accuracy.

While CT scans offer more precise images of soft tissues and organs, X-rays remain a
preferred choice for certain diagnostic scenarios due to their speed, safety, ease of use, and
lower radiation exposure [45,46]. Additionally, the application of deep learning to X-ray
diagnosis complements traditional radiological interpretations, providing an additional
layer of accuracy and consistency to the diagnostic process.

The integration of deep learning techniques into X-ray diagnosis holds tremendous
potential for improving healthcare outcomes by providing reliable and efficient diagnostic
tools for medical professionals.

3.2. Pre-Processing and Canny Edge Detection

In chest X-ray images, the presence of high-intensity or bright-pixel diaphragm regions,
as seen in the posteroanterior view presented in Figure 2, can pose challenges for accurately
differentiating possible disease variations. In the medical context, the letter ’R’ typically
denotes the right side of the patient. This labeling convention is commonly used in
medical imaging to specify the side or location of the body under examination. Here,
’R’ indicates the right side of the chest. This labeling aids healthcare professionals in
accurately interpreting the image, focusing their attention on the specific area of interest,
and identifying any potential abnormalities or conditions on the right side of the chest. The
use of such conventions facilitates precise analysis and diagnosis, ensuring effective patient
care and treatment. To improve the automated diagnosis of lung areas and enhance the
detection of disease-related features, a pre-processing step is applied to the X-ray images
before further analysis [29].
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In this research, we employ the Canny edge detection algorithm as a pre-processing
image technique. Canny edge detection is a popular edge detection algorithm known for
its ability to effectively remove noise and preserve essential edge data, thus enhancing the
clarity of edges in an image. By accentuating sharp edges and producing a smoother image,
the Canny algorithm enables us to extract more meaningful features and information for
subsequent processing steps.

Figure 2. Output image after pre-processing and Canny edge algorithm where ’R’ indicates the right
side of the chest.

Compared to other edge detection methods, such as the Sobel, Prewitt, and Roberts, the
Canny algorithm has demonstrated superior performance in maintaining more usable edge
information while reducing noise. This is especially beneficial in chest X-ray images, where
subtle abnormalities and disease-related features can be critical for accurate diagnosis.

Following the Canny edge detection step, we utilize the GRAD Class Activation
Mapping (Grad-CAM) technique on the pre-processed images. Grad-CAM allows us to
visualize the regions of the image that the CNN model focuses on during the decision-
making process. By overlaying the model’s attention on the image, Grad-CAM provides
insights into the areas that contribute the most to the COVID-19 detection decision. This
interpretable visualization not only aids in understanding the model’s predictions but also
enhances trust and confidence in the diagnostic results.

Figure 2 illustrates the output image after pre-processing with the Canny edge al-
gorithm. The enhanced edges and reduced noise in the image contribute to a clearer
representation of relevant features, ultimately assisting the deep learning model in detect-
ing COVID-19-related patterns with higher accuracy.

3.3. COVID-19 Infection Detection Using Deep Learning

Deep learning (DL) is a field of artificial intelligence focused on teaching computers
to understand and interpret data using mathematical models. In our COVID-19 detection
model, DL techniques are employed to classify chest X-ray scans into two categories:
COVID-19 positive and COVID-19 negative, based on the features learned through the
learning process [22].
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The core architecture of our model consists of convolutional layers responsible for
capturing local features indicative of abnormalities present in the X-ray scans of patients.
Normalization techniques are applied to enhance the processing of the extracted features
obtained from the parallel 3 × 3 Convolutional Neural Network layers. Pooling layers
are then utilized to downsample and standardize distinctive characteristics, reducing
computational complexity and preventing overfitting of the CNN architecture [47–49].

To address overfitting, dropout layers are incorporated into our model. Dropout
randomly deactivates a fraction of neurons during training, promoting generalization and
preventing the model from relying too heavily on specific features. This ensures that the
model can generalize well to unseen data.

Concatenation layers are employed to improve learning accuracy and enable the
discovery of new architectural features. By combining features learned from different parts
of the network, concatenation facilitates the model’s ability to capture complex patterns
and relationships within the data.

The final CNN architecture is depicted in Figure 3. After the pooling layer, all the
layers in our model are flattened to generate the output, which comprises two neurons
representing the binary classification of COVID-19 positive and COVID-19 negative cases.

Figure 3. Convolutional Neural Network architecture.

TensorFlow is used to implement the 1D convolution, achieved by wrapping the 2D
convolution in reshaped layers to add an H dimension before the 2D convolution and
remove it later, adapting the 2D Convolutional Neural Network for 1D data.

The overall methodology combines the power of DL techniques, including normaliza-
tion, pooling, dropout, and concatenation layers, to extract and learn meaningful features
from chest X-ray images, enabling accurate and efficient detection of COVID-19 cases.

3.3.1. ReLU Activation Function

The Rectified Linear Unit (ReLU) is a popular activation function commonly used in
deep learning models, including Convolutional Neural Networks (CNNs). It plays a vital
role in introducing non-linearity to the network, enabling it to learn complex representations
from the input data [23].

The ReLU activation function is defined as half rectified, meaning that when the input
vector x is less than zero, the output f (x) is set to zero, and, when x is greater than or equal



Algorithms 2023, 16, 494 8 of 19

to zero, the output f (x) is equal to the input x. The mathematical representation of the
ReLU activation function is shown in Equation (1).

f (x) = max(0, x) (1)

ReLU activation serves several critical purposes in the CNN architecture for COVID-19
detection from chest X-ray images. Firstly, it introduces non-linearity, allowing the model
to learn and represent complex patterns and relationships in the data. This non-linearity
is essential for capturing the intricate features that distinguish COVID-19 infections from
normal cases in the X-ray scans.

Secondly, ReLU activation helps mitigate the vanishing gradient problem that can
occur in deep neural networks during back-propagation. The vanishing gradient problem
hampers the learning process by causing the gradients of the lower layers to become
extremely small, resulting in slow or stalled learning. By setting negative values to zero and
only propagating positive gradients during forward and backward passes, ReLU activation
helps maintain more informative gradients, speeding up convergence and improving
training efficiency.

Moreover, ReLU activation has been empirically found to be less computationally
expensive than other activation functions, such as sigmoid and tanh. The simple and
efficient nature of ReLU makes it a preferred choice for deep learning models, contributing
to faster training times and lower memory consumption.

Overall, the ReLU activation function is a critical element in the CNN architecture for
COVID-19 detection, enabling the model to learn powerful representations from the chest
X-ray images and improving the overall accuracy and performance of the detection system.

3.3.2. SoftMax Activation Function

The SoftMax v 5.4 function is a widely used activation function in the output layer of
deep learning models, including the Convolutional Neural Network (CNN) architecture
[23]. It plays a crucial role in converting the final layer’s raw scores into probability scores,
allowing the model to make predictions based on class probabilities.

The SoftMax activation function operates by calculating the probabilities of all the
neurons in the output layer and producing a vector of probabilities. The sum of these
probabilities across all classes in the vector is equal to 1, ensuring that the final output
represents a valid probability distribution over the possible classes. The mathematical
representation of the SoftMax function for the i-th element in the output vector is shown in
Equation (2).

S(x)i =
exp(xi)

∑n
x=1 exp(xj)

(2)

where xi is the i-th input vector element, exi is the standard exponential function, and
∑n

j=1 exj is the normalization term.
In the context of our COVID-19 detection model, the SoftMax activation function is

applied to the output layer to obtain the probability scores for each class, i.e., COVID-19
positive and COVID-19 negative. The model then classifies the chest X-ray image as
COVID-19 positive if the corresponding SoftMax probability score is higher than a certain
threshold, and COVID-19 negative otherwise.

By using SoftMax, the model can make confident and calibrated predictions, providing
clear probabilities for each class and enabling more robust decision making. This activation
function is especially crucial in the final layer of the CNN architecture, as it allows the model
to produce meaningful and interpretable output probabilities, aiding medical professionals
in making accurate diagnoses.

3.3.3. Adam Optimizer

The Adam optimizer, short for Adaptive Moment Estimation, is an efficient optimiza-
tion algorithm widely utilized for classification-based problems in deep learning [36]. It
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combines the benefits of two other popular optimization techniques, namely “RMSProp”
and “gradient descent with momentum” [35,36].

The core idea behind the Adam optimizer lies in estimating the first-order moments
(mean) and second-order moments (uncentered variance) of the gradients. These moments,
denoted as mt and st, respectively, are initialized as zeros and then updated during each
iteration using exponential moving averages. Equations (3) and (4) illustrate the update
rules for mt and st.

mt = β1mt−1 + (1− β1)
δL
δwt

(3)

st = β2st−1 + (1− β2)

(
δL
δwt

)2
(4)

Here, β1 and β2 are the decay rates of the gradients, typically set to β1 = 0.9 and
β2 = 0.999. These decay rates control the exponential moving averages and help the
optimizer to remain regulated and unbiased.

To mitigate the bias introduced by the initialization of mt and st as zeros, bias-corrected
estimates m̂t and ŝt are computed as shown in Equations (5) and (6).

m̂t =
mt

1− βt
1

(5)

ŝt =
st

1− βt
2

(6)

With the bias-corrected estimates, the Adam optimizer updates the model’s weights
using the general equation presented in Equation (7):

wt = wt−1 − η

(
m̂t√
ŝt + ε

)
(7)

where wt denotes the weights at a given point in time t; wt−1 denotes the weights at a given
point in time t− 1; η represents the learning rate, typically set to 0.001; and ε is a small
constant (e.g., 10−8) to avoid division by zero when ŝt approaches zero.

The Adam optimizer efficiently combines the benefits of RMSProp and gradient
descent with momentum, leading to faster convergence and better generalization in various
deep learning tasks, including COVID-19 detection from chest X-ray images.

3.3.4. Heatmap Using GRAD Class Activation Mapping

Gradient-weighted Class Activation Mapping (Grad-CAM) is a powerful visualization
technique that enhances the interpretability of deep learning models, particularly Convolu-
tional Neural Networks (CNNs) [31]. Grad-CAM enables us to gain visual insights into the
regions of the X-ray scans most relevant for COVID-19 infection detection, thereby offering
transparency and evidence-based information about the model’s predictions [17,31].

The Grad-CAM technique operates by capturing the gradients of each target class dur-
ing the model’s forward pass. It then uses these gradients to produce a coarse localization
map by traversing through the last convolutional layer. This localization map highlights
the significant regions in the X-ray image that contribute most to the model’s prediction
of COVID-19 infection. An example of the Grad-CAM visualization’s impact is shown in
Figure 4. The arrow marks or arrows added to a chest X-ray image serve as annotations,
which are commonly used to highlight or draw attention to specific structures, abnormal-
ities, or areas of interest within the X-ray image. They can be employed to emphasize
particular abnormalities such as tumors, nodules, fractures, or other conditions that are of
significance for clinical analysis and diagnosis.

Integrating Grad-CAM with our CNN-based COVID-19 detection model, we generate
high-resolution visualizations of class discrimination, providing precise insights into the
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regions affected by the COVID-19 infection in X-ray scans. By superimposing the Grad-
CAM heatmap onto the original X-ray image, medical professionals and researchers can
gain valuable insights into the areas of abnormality detected by the model [17].

This visualization technique offers several advantages for our COVID-19 detection
approach. First, it enhances the model’s transparency, providing visual evidence of the
regions that the model relies on to make its predictions. This transparency is especially
critical in medical applications, where the interpretability of AI-based systems is essential
for building trust among healthcare practitioners.

Figure 4. Example of the Grad-CAM visualization of the affected area.

Second, the Grad-CAM visualization aids in the fine-grained interpretation of the
CNN model’s decisions. By focusing on the localized regions in the X-ray images, medical
experts can gain deeper insights into the specific features that the model identifies as
indicative of COVID-19 infection. This can lead to a better understanding of the disease
and improve the model’s diagnostic accuracy.

Incorporating Grad-CAM into our COVID-19 detection system enhances its inter-
pretability, accuracy, and potential for further research in the medical domain. The ability to
visualize and understand the model’s decision-making process fosters confidence in the sys-
tem’s performance and supports medical professionals in making well-informed decisions.

3.4. Evaluation Metrics

To evaluate the performance of the proposed deep learning-based COVID-19 detector,
we employ several essential evaluation metrics: accuracy, precision, recall (also known as
sensitivity), and F-measure.

Accuracy measures the overall performance of the model across all classes. It is
calculated as the ratio of correctly predicted samples (true positives and true negatives)
to the total number of samples in the dataset. The accuracy can be computed using
Equation (8).

Accuracy =
Truepos + Trueneg

Truepos + Trueneg + Falsepos + Falseneg
(8)
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Precision is a metric that assesses the percentage of positive predictions that are correct.
It quantifies the model’s ability to avoid false positives and is calculated using Equation (9).

Precision =
Truepos

Truepos + Falsepos
(9)

Recall (also known as sensitivity) evaluates the model’s ability to identify all positive
instances, thereby measuring its performance in terms of false negatives. Recall is computed
as the ratio of true positives to the sum of true positives and false negatives, as shown in
Equation (10).

Recall =
Truepos

Truepos + Falseneg
(10)

F-measure, also known as the F1-score, provides a balanced view of the model’s
precision and recall. It is the harmonic mean of precision and recall and is given by
Equation (11).

F−measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(11)

These metrics are computed based on the values of True Positive (Truepos), False
Positive (Falsepos), True Negative (Trueneg), and False Negative (Falseneg) obtained during
the evaluation of the model.

The confusion matrix, as depicted in Figure 5, visually summarizes the performance
of the detector model. It shows the count of true positive, false positive, true negative, and
false negative predictions, providing insights into the model’s strengths and weaknesses.

Figure 5. Confusion matrix and summary of detector model.

The results obtained from the evaluation metrics and the confusion matrix play a
crucial role in understanding the performance of the proposed COVID-19 detector. By
analyzing these metrics, medical practitioners and researchers can assess the model’s
accuracy, reliability, and potential for real-world application in COVID-19 detection from
chest X-ray images.

4. Experimental Result Analysis
4.1. Datasets of Chest X-ray Images

In this paper, we utilized three datasets containing chest X-ray images to conduct our
study. These datasets were sourced from publicly available medical archives and reviewed
in collaboration with renowned institutes. The datasets consist of soft copies of X-ray
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images, specifically the posteroanterior (PA) chest view, which provides crucial visual
information for accurate diagnosis.

Although CT scans offer better accuracy and efficiency in certain cases [24,26,30,31],
the potential long-term effects of exposure to ionizing radiation, such as an increased risk
of cancer, particularly for young individuals, led us to focus on X-ray scans for our study.
The combined dataset consists of a total of 3474 2D X-ray scans [21]. Among these scans,
415 were confirmed COVID-19 cases, 2880 were standard (healthy) cases, and 179 showed
signs of pneumonia.

To ensure consistency and ease of processing, all images in the dataset were resized to
a standardized dimension of 100× 100 pixels. To assess the performance of the proposed
COVID-19 detection model, we randomly split the dataset, using 75% of the data for
training and the remaining 25% for validation.

Figure 6 presents representative X-ray chest images from the dataset, illustrating both
healthy (standard) cases and cases affected by COVID-19 and pneumonia.

Figure 6. Representative X-ray chest images of patients with healthy (standard), COVID-19, and
pneumonia diagnoses.

The utilization of multiple datasets enhances the diversity and generalizability of our
model, enabling it to make accurate predictions across different scenarios. The resized
images provide a consistent input size for the deep learning model, facilitating efficient
training and evaluation. By randomly splitting the dataset into training and validation
sets, we ensure an unbiased assessment of the model’s performance during the evaluation
phase.

4.2. Experimental Results

For our experiments, we employed a dataset generated from three publicly available
chest X-ray datasets [26,30]. The combined dataset contains four different labels: Normal,
Bacterial, Non-COVID Viral, and COVID-19. As the main goal of our study was to identify
positive COVID-19 cases, we binarized the labels as either positive or negative. The entire
dataset was then used to develop a COVID-19 detection model based on Convolutional
Neural Networks (CNN).

All chest X-ray scans in the dataset were resized to a standardized dimension of
100× 100 pixels. The first layer of the CNN model served as the input layer, with a size of
128× 128× 3, representing RGB images. The subsequent layers consisted of Convolutional
ReLU and Max Pooling layers, which were trained on thousands of images from the dataset.
We then applied transfer learning by using pre-trained models on the COVID-19 dataset.
The flattened layer was employed to convert the tensor to a vector, which was then passed
to a fully connected neural network classifier.
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To prevent overfitting, a dropout of 0.5 was applied. The output layer used the Adam
Optimizer for continued optimization of the model. The original dataset was randomly
divided into training and testing datasets using random sampling. Data augmentation was
carried out during training, which included random rotations, translations, and flips of the
training images. The model was implemented using the PyTorch toolbox. The batch size
was set to 32, and each model was trained for 50 epochs, with these values determined
empirically. The learning rate for the Adam optimizer was also determined empirically.

The performance of the COVID-19 detection model was evaluated using a confusion
matrix, which was obtained from testing over 200 accurate X-ray scans. The confusion
matrix indicated that 147 scans were correctly classified as COVID-19 positive, and 45 scans
were correctly classified as COVID-19 negative. The CNN-based COVID-19 detection
model achieved an overall weighted F-measure of 97%, showcasing its effectiveness in
identifying positive COVID-19 cases.

The Rectified Linear Unit (ReLU) activation function was used for the model, which is
beneficial due to its non-saturation property, leading to faster convergence during training
compared to sigmoid or tanh functions. The ReLU function and its derivative are both
monotonic, providing an output in the range of zero to infinite, making it suitable for
classification tasks.

The training parameters, including the number of layers, the shape of each layer, and
the types of convolutional layers used, are summarized in Table 1.

Table 1. Detector model summary for “sequential_1”.

Layer (Type) Output Shape Param
model_1 (Model) (None, 100, 100, 384) 11,008

conv2d_4 (Conv2D) (None, 98, 98, 64) 221,248
activation_1 (Activation) (None, 98, 98, 64) 0

max_pooling2d_1 (MaxPooling2) (None, 49, 49, 64) 0
conv2d_5 (Conv2D) (None, 47, 47, 32) 18,464

activation_2 (Activation) (None, 47, 47, 32) 0
max_pooling2d_2 (MaxPooling2) (None, 23, 23, 32) 0

flatten_1 (Flatten) (None, 16928) 0
dropout_1 (Dropout) (None, 16928) 0

dense_1 (Dense) (None, 128) 2,166,912
dropout_2 (Dropout) (None, 128) 0

dense_2 (Dense) (None, 64) 8256
dropout_3 (Dropout) (None, 64) 0

dense_3 (Dense) (None, 2) 130
Total params: 2,426,018; trainable params: 2,426,018; non-trainable params: 0.

Additionally, we compared the performance of our COVID-19 detection model with
other currently developed methods in Table 2. The model exhibited superior recall, pre-
cision, and F-measure metrics, making it stable and effective in identifying COVID-19
cases. This development contributes to providing expert radiologists in health centers
with a valuable second opinion, improving diagnostic accuracy and aiding in the timely
identification and management of COVID-19 cases.

The performance of the developed CNN-based COVID-19 detection model is depicted
in Figure 7. The figure shows the accuracy and loss trends during the training process. As
observed, the accuracy of the model steadily increases with each epoch, demonstrating that
the model effectively learns from the training data. On the other hand, the loss decreases
significantly during the initial epochs, indicating that the model is reducing its prediction
errors. The convergence of accuracy and loss further validates the effectiveness of the
model in learning and generalizing from the training data. Overall, the performance of the
CNN model is highly satisfactory, achieving a weighted F-measure of 97%, which confirms
its potential to accurately identify COVID-19 cases from chest X-ray images.
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Table 2. Comparison between currently developed COVID-19 detection methods.

Paper Aim Methodology Evaluation Metrics Accuracy

[32]

Investigating how COVID-Net makes
predictions using an explainability
method to gain deeper insights into
critical factors associated with COVID
cases and validate COVID-Net

Tailored CNN Confusion matrix and
accuracy 92.60%

[34]

Proposal of using a deep feature plus
support vector machine (SVM)
methodology for detecting
coronavirus-infected patients using
X-ray images

ResNet50 + SVM Confusion matrix and
accuracy 95.38%

[35]

Designing an automated diagnosis
system of the Coronavirus disease, an
X-ray image collection from patients
with common bacterial pneumonia,
verified COVID-19 disease, and
normal occurrences were used

CNN based on transfer
learning

Accuracy, sensitivity,
and specificity

Accuracy 96.78%,
sensitivity 98.66%, and
specificity 96.46%

[36]

Using the publicly available
COVID-19 chest X-ray dataset,
quantify uncertainty using deep
learning methods to improve the
diagnostic performance of the
human–machine combination

Drop-weights-based
Bayesian convolutional
network

Accuracy and
uncertainty prediction 95% confidence interval

[39]
Proposal of using 5 pre-trained DL
models to identify coronavirus- and
pneumonia-infected patients

DL Models -
InceptionV3 and
Inception-ResNetV2
along with ResNet50

Confusion matrix and
accuracy

ResNet50 with the
highest accuracy value
of 96.1%

[50]

Presenting an alternative modeling
framework based on Capsule
Networks (COVID-CAPS) capable of
handling small datasets due to the
rapid emergence of COVID-19

CNN-based Capsule
Networks

Confusion matrix and
accuracy 95.70%

[51]

Using drop-weights-based Bayesian
Convolutional Neural Networks
(BCNN) to estimate uncertainty in
deep learning solutions for improving
diagnostic performance with
COVID-19 chest X-ray dataset

Bayesian CNN
(ResNet50)

Confusion matrix and
accuracy 88.39%

In Figure 8, we present the performance metrics results of our proposed CNN model.
This figure includes key metrics such as sensitivity, specificity, accuracy, and the F1 score,
which are essential for a comprehensive evaluation of the diagnostic tool. These metrics
offer insights into the model’s ability to correctly identify COVID-19 cases and its ability to
accurately classify non-COVID-19 cases.

In contrast to using pre-trained models, which often demand significant computational
resources due to their deep and complex architectures, we opted to design a customized
Convolutional Neural Network (CNN) for our COVID-19 detection system. This cus-
tomized CNN is intentionally lighter in structure, resulting in faster processing times
and reduced computational demands. During testing, our proposed model demonstrated
promising results, outperforming computationally expensive alternatives. Detailed discus-
sions and comparative analyses are provided in the following section. We recommend our
customized model for its efficient performance and streamlined architecture.



Algorithms 2023, 16, 494 15 of 19

Figure 7. Performance of the CNN model.

Algorithms 2023, 1, 0 15 of 20

Figure 7. Performance of the CNN model.

Figure 8. Performance metrics results.

In contrast to using pre-trained models, which often demand significant computational
resources due to their deep and complex architectures, we opted to design a customized
Convolutional Neural Network (CNN) for our COVID-19 detection system. This cus-
tomized CNN is intentionally lighter in structure, resulting in faster processing times
and reduced computational demands. During testing, our proposed model demonstrated
promising results, outperforming computationally expensive alternatives. Detailed discus-
sions and comparative analyses are provided in the following section. We recommend our
customized model for its efficient performance and streamlined architecture.

4.3. Discussion

The experimental results demonstrate the successful development of a deep learning-
based COVID-19 detection model using chest X-ray images. The model achieved high
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tinguish between COVID-19 positive and negative cases. The use of multiple publicly
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generalizable model.
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4.3. Discussion

The experimental results demonstrate the successful development of a deep learning-
based COVID-19 detection model using chest X-ray images. The model achieved high
accuracy, precision, recall, and F-measure metrics, indicating its ability to effectively dis-
tinguish between COVID-19 positive and negative cases. The use of multiple publicly
available datasets enhanced the diversity of the training data, leading to a more robust and
generalizable model.

The decision to work with X-ray scans instead of CT scans was driven by concerns
about the potential long-term effects of ionizing radiation, especially for young individuals.
X-ray scans are widely available and cost-effective, making them a practical choice for
large-scale COVID-19 screening and diagnosis.

The CNN architecture, with its convolutional layers, ReLU activation function, and
pooling layers, proved to be effective in extracting meaningful features from the X-ray
images. The use of transfer learning further boosted the model’s performance by leveraging
pre-trained weights from relevant datasets.

Data augmentation techniques, such as random rotations and flips, contributed to
preventing overfitting and improving the model’s ability to generalize to unseen data.
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The Adam optimizer, with its adaptive learning rate and momentum, facilitated efficient
optimization and convergence during training.

Comparing our model’s performance with other state-of-the-art methods, our COVID-19
detection model demonstrated competitive results, highlighting its potential as a valuable
tool in the fight against the pandemic. By providing a second opinion to radiologists, the
model can assist in speeding up the diagnosis process and aid in early detection and patient
management.

However, there are certain limitations to our study. The performance of the model
heavily relies on the quality and diversity of the training data. As such, access to larger
and more diverse datasets would further improve the model’s accuracy and generalization
capabilities. Additionally, the current study focuses on binary classification (COVID-19
positive or negative), and future research could explore the possibility of multi-class
classification to distinguish between different respiratory conditions, including other viral
infections and bacterial pneumonia.

Another limitation of the proposed work is the relatively small size of the dataset used
for training and validation. The size of the dataset significantly influences the reliability and
generalization of the model. We acknowledge that a larger dataset would have enhanced
the robustness of our findings and strengthened the generalizability of the proposed model.

While the focus of this study is on binary classification, distinguishing COVID-19-
positive cases from negatives, it is important to clarify our motivation for this choice.
During the initial stages of the COVID-19 pandemic, the urgent need for accurate and
rapid diagnosis of COVID-19 cases prompted our decision to develop a reliable binary
classification model. This binary approach serves as a fundamental building block, allowing
us to rigorously evaluate our model’s performance in this critical task. We acknowledge the
potential for multi-class classification to distinguish between various respiratory diseases,
and we intend to explore this avenue in our future research, thereby extending the scope of
our diagnostic framework.

In addition, while our study has achieved promising results in distinguishing be-
tween positive and negative cases in chest X-ray images using the available dataset, we
acknowledge the limited scale and scope of the dataset. It is important to note that our
primary objective was to develop a robust binary classification model. We recognize the
potential benefits of incorporating external datasets to further validate and enhance the
generalizability of our model. In future research, we plan to collaborate with medical
institutions to access larger and more diverse datasets, allowing us to extend the scope of
our work and address the concerns regarding dataset scale and representativeness.

In conclusion, our deep learning-based COVID-19 detection model has shown promis-
ing results and has the potential to be a valuable tool in the medical field. With further
advancements in technology and access to more comprehensive datasets, AI-driven diag-
nostic systems can play a critical role in pandemic management and public health.

5. Conclusions and Future Work

In this research, we have presented a Convolutional Neural Network (CNN)-based
deep learning approach for the detection of COVID-19 infections from chest X-ray imagery.
The proposed model achieved a high accuracy of up to 97%, demonstrating its potential
as an effective tool to assist doctors and lab technicians in improving the screening of
probable COVID-19 patients. The CNN model utilizes an explanatory approach, which
allows it to learn and detect significant features indicative of COVID-19 infection, leading
to accurate predictions.

However, it is important to note that the developed model is not a fully deploy-
able solution and requires further refinement and evaluation in clinical settings. Future
work should focus on conducting extensive validation studies with diverse and larger
datasets to ensure the model’s robustness and generalizability across different popula-
tions and imaging settings. Additionally, it is essential to integrate the proposed method
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with real-world clinical practices and workflows to assess its practical utility in real-time
COVID-19 screening.

Moreover, ongoing research and developments in deep learning and medical imaging
should be leveraged to enhance the COVID-19 infection detection system continuously.
Incorporating domain knowledge and expert annotations can further refine the model’s
performance and improve its diagnostic accuracy. Furthermore, considering the evolving
nature of the COVID-19 virus and potential variations in X-ray image patterns over time,
the model should be regularly updated and retrained to adapt to new challenges and
emerging variants.

Looking ahead, the proposed approach could also be extended for risk detection in
survival analysis, predicting patient hospitalization times, and assessing individualized
treatment plans. By integrating this technology into healthcare systems, it has the potential
to assist in population control, early intervention, and personalized patient care. However,
it is essential to acknowledge a major limitation of the proposed work: the unavailability
of a large number of images for COVID-19, which could have aided in the training of the
pre-trained network architectures used.

In future research, it would be beneficial to explore the applicability of the proposed
method to detect other lung disorders, such as ARDS, lung cancer, pneumothorax, and
pneumonia. This would expand the utility of the developed model and make it a versatile
tool for diagnosing a wide range of pulmonary conditions.

Furthermore, we are committed to conducting comprehensive clinical trials in collab-
oration with healthcare professionals and institutions. These trials will provide a robust
evaluation of the model’s sensitivity, specificity, and practical utility in aiding health-
care providers. We believe that this crucial step will further enhance the reliability and
applicability of our diagnostic tool.

In conclusion, this study demonstrates the effectiveness of deep learning-based ap-
proaches in COVID-19 detection, and, with continuous research and refinement, it holds
promise to significantly impact medical diagnostics and patient care in the fight against the
ongoing COVID-19 pandemic and beyond.
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