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Abstract: Snow parameters have traditionally been retrieved using discontinuous, multi-band sen-
sors; however, continuous hyperspectral sensors are now being developed as an alternative. In this
paper, we investigate the performance of various sensor configurations using machine learning neural
networks trained on a simulated dataset. Our results show improvements in the accuracy of retrievals
of snow grain size and impurity concentration for continuous hyperspectral channel configurations.
Retrieval accuracy of snow albedo was found to be similar for all channel configurations.

Keywords: snow; neural networks; remote sensing; hyperspectral; machine learning; MODIS; SGLI;
SBG DO

1. Introduction

Long-term global mapping of snow albedo and snow property parameters plays
an important role in monitoring of the Earth climate system. Satellite remote sensing has
offered a very valuable and powerful way to record the extent of the evolution of global
snow and properties with high temporal and spatial resolution [1–3]. The visible and
near-infrared bands can be used to obtain snow coverage, broadband albedo, and snow
physical parameters [4–7].

The Surface Biology and Geology (SBG) Designated Targeted Observable (DO) [8] is
a proposed sensor based on the need for capabilities to acquire global, high spatial reso-
lution, visible to shortwave infrared (VSWIR; 380–2500 nm; 30 m pixel resolution, 10 nm
spectral resolution) hyperspectral (imaging spectroscopy) and multispectral midwave and
thermal infrared (MWIR: 3–5 µm; TIR: 8–12 µm; ∼60 m pixel resolution) measurements
with sub-monthly temporal revisits. These specifications were proposed to meet the goals
laid out by the 2017–2027 Decadal Survey, Thriving on our Changing Planet [9], which places
a high-priority emphasis on global-scale inquiries into hydrology, ecosystems, weather, cli-
mate, and solid earth. An SBG Algorithms Working Group of multidisciplinary researchers
was formed to review and evaluate the algorithms applicable to the SBG DO across a wide
range of Earth science disciplines, including terrestrial and aquatic ecology, atmospheric
science, geology, and hydrology.

Traditionally, data from the MODIS and SGLI sensors have been used to provide global
maps of snow cover [10–12]. However, both MODIS and SGLI are discontinuous multi-
band radiometers with isolated 50–100 nm-wide spectral bands, whereas the SBG VSWIR
instrument is envisioned to provide continuous spectral coverage from 380 to 2500 nm
with 10 nm spectral resolution. The combination of improved spectral resolution and
continuous spectral coverage has been shown to increase information content and spectral
dimensionality leading to improvements in atmospheric correction when compared to
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multi-band approaches [13]. It has been proposed that hyperspectral data can leverage the
entire spectrum to more accurately determine snow albedo, grain size, cloud cover over
snow, and unmixed pixels containing both vegetation and snow [14].

Key features of our methodology for snow parameter retrieval (SPR) include (i) use
of a coupled atmosphere–surface radiative transfer (RT) model to create a large simulated
dataset of top of the atmosphere (TOA) reflectances as a function of snow and aerosol
physical parameters; (ii) use of this simulated dataset to train a multi layer neural network
(MLNN) for the retrieval, which has led to significant improvements in both retrieval
accuracy and speed; and (iii) use of an aaNN filtered (instead of a random) distribution of
snow and aerosol parameters to generate the synthetic dataset used for MLNN training,
which mimics a more realistic snow situation, and leads to significantly improved retrievals.

Our goal is to explore the possible improvements to our SPR algorithms from leverag-
ing continuous spectral coverage from 380 to 2500 nm. Section 2 describes the motivation
and formation of our snow dataset. Section 3 details our scientific machine learning (SciML)
neural network algorithm methodology and training. Section 4 presents our sensitivity
study findings and a discussion of results. Concluding remarks are provided in Section 5.

2. Models and Data
2.1. Motivation

Snow interacts strongly with the global climate system, serving as an energy bank [15,16],
radiation shield [17], insulator [18], reservoir [19], and transport medium [20–22]. For these
reasons, it is vitally important to understand and accurately measure the physical properties
of snow.

An important parameter in climate research is the ratio of reflected light to the in-
coming global shortwave radiation, also know as the albedo [23]. For a given spectral
distribution of the incoming solar radiation, the albedo of a homogeneous sufficiently thick
snow layer depends mainly on snow quality, which can be described by the type of snow
(snow density and grain size) [24] and its impurity concentration (concentration of light
absorbing particles in the snow, such as black carbon or dust) [25]. Since snow grain size
and impurity content change over time, the albedo of a snow-packed region often decreases
with time until it is refreshed by new snowfall [26]. This cycle can be used to determine the
melting processes of a snow-packed region as well as the monitoring of snow accumulation
from remote sensing data collected by sensors deployed on satellites.

Light from the sun will be absorbed and scattered in predictable ways depending
on the snow’s physical and optical properties. Remote sensing instruments deployed on
satellites can collect reflected radiances at the top of the atmosphere. These TOA radiances
depend on snow properties as well as the sun-satellite geometry, i.e., the solar zenith angle,
the sensor polar viewing angle, and the relative azimuth angle. A radiative transfer tool
can be used to model these TOA radiances as a function of wavelength. A flowchart
summarizing the methods used in data formation, modeling, and algorithm formation is
shown in Figure 1.

2.2. Radiative Transfer Model: AccuRT

AccuRT is an accurate, efficient, and easy-to-use radiative transfer simulation tool
that can be used to generate radiance and irradiance data at user-defined vertical locations
in a coupled atmosphere–water system [27]. Note here that “water” refers to both the
liquid and solid phase (snow and ice). The physical properties of each of the two slabs
that constitute the coupled system, the radiative energy input at the top of the upper slab
(TOA), and the boundary conditions at the bottom of the lower slab (water bottom) must
be specified. To facilitate these specifications, AccuRT uses a set of radiatively significant
constituents called “materials” that account for the wavelength dependence of inherent op-
tical properties (IOPs). For our simulated dataset, we include the earth_atmospheric_gases,
aerosols, and snow materials in our main configuration file. The wavelength range was
specified to be 380–2500 nm with 10 nm spacing to meet the needs of NASA’s Ames Global
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Hyperspectral Synthetic Data [28]. Once the input parameters have been specified, the
AccuRT code will solve the radiative transfer equation and provide irradiances at desired
vertical locations as well as radiances at desired vertical locations and in desired directions
in the coupled atmosphere–snow system. In our case, the desired location for irradiances is
the top of the snow layer, where the ratio of the upward and downward spectral irradiance
is used to compute the spectral snow albedo. The input solar spectrum at the top-of-the-
atmosphere (TOA) is ATLAS-3 (shifted to air wavelengths) for 200 nm to 407 nm, ATLAS-2
for 407.8 nm to 419.9 nm, and MODTRAN (v3.5) for 419.9 nm to 800 nm [29,30]. Between
200 and 800 nm, the solar irradiance has a spectral resolution of 0.05 nm. For wavelengths
of 800 nm, the ASTM G173-03 [31] spectrum is adopted with a spectral resolution of 1 nm
between 800 nm and 1700 nm and 5 nm between 1700 nm and 4000 nm. For radiances, we
want the upward radiance at the TOA in specified directions that would correspond to
a desired sun-satellite geometry (solar zenith angle, observation polar angle, and relative
azimuth angle) and snow grain size and impurity concentration. A pixel in a satellite image
obtained over a snow surface is defined by these five parameters.

Figure 1. Framework used in data formation, modeling, and algorithm formation. Descriptions of
each step are provided in the following sections.

2.2.1. Atmospheric Gases

The earth_atmospheric_gases material allows the user to choose from six model at-
mospheres. For our purposes, we have chosen the US 1976 standard [32] model. All
of the models are based on the best information available when they were published
and contain altitude profiles of temperature, pressure, and concentrations of the bulk
atmospheric molecules (N2 and O2), as well as many radiatively significant trace gases
including H2O, CO2, O3, CH4, and NO2. From this material, we obtain the specifications of
absorption coefficients for the radiatively significant atmospheric gases based on the Low-
Tran/ModTran band model. Molecular (Rayleigh) scattering coefficients are also provided
by the earth_atmospheric_gases material.

2.2.2. Atmospheric Aerosols

The aerosols material provides a convenient way to specify the aerosol properties as
a function of wavelength based on a bi-modal particle size distribution including a fine
and a coarse mode. The user specifies the vertical profile of the aerosols in the atmosphere,
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as well as the refractive index (real and imaginary parts), the effective radii, and the
variances of the two modes. Then, a Mie scattering code is used to compute the IOPs of
aerosol particles and a numerical integration is employed to integrate over the log-normal
size distributions to obtain the absorption and scattering coefficients and the scattering
phase function. For our configuration, fine mode aerosols have an optical depth of 0.212
and a single-scattering albedo of 0.948, while coarse mode aerosols have an optical depth
of 0.026 and a single-scattering albedo of 1 at a reference wavelength λ = 500 nm. These
values are consistent with values typically measured in the atmosphere [33].

2.2.3. Snow Properties

We assume a spherical particle shape for snow grains, which allows us to obtain their
IOPs from a parameterized Mie scattering model. We use the ISIOP tool [34] to generate
ice/snow IOPs for any desired wavelength from ice/snow physical parameters: real and
imaginary parts of the ice/snow refractive index, asymmetry factors for scattering by snow
grains, and the snow layer thickness. The parameterized Mie scattering model relies on
the assumptions that the snow particles (i) can be characterized by an effective radius,
(ii) are weakly absorbing, and (iii) are large compared to the wavelength of light. These
assumptions imply that the calculations of the absorption and scattering coefficients and the
scattering asymmetry factor can be greatly simplified. Also, the scattering phase function
is approximated by the Henyey–Greenstein function, which depends only on the scattering
asymmetry factor, and snow impurities are included to account for absorbing material
deposited in the snowpack. This approach leads to the computed snow albedo values in
agreement with available observations [35].

2.3. Synthetic Snow Dataset
2.3.1. Random Data

Fifty-thousand values for the relative azimuth angle, viewing zenith angle, solar
zenith angle, snow grain size, and impurity concentration were used to generate a synthetic
training dataset. The angular data were formed with a uniform random distribution in the
solar zenith angle, viewing polar angle, and relative azimuth angle, while the grain size and
the impurity concentration were formed with a log-normal random distribution. The log-
normal distributions were chosen to cluster random data around values that are more likely
to be found in nature. A summary of the dataset is shown in Table 1. This dataset was used
to simulate radiances and irradiances, employing the AccuRT computational tool.

Table 1. Summary of parameters used to generate the synthetic training dataset.

Parameter Data Range Distribution Mean

Relative azimuth angle 0 to 180 (degrees) Uniform 89.87◦

Viewing zenith angle 0 to 45 (degrees) Uniform 22.55◦

Solar zenith angle 20 to 75 (degrees) Uniform 47.62◦

Snow grain size 50 to 2500 (µm) Log-normal 835 µm
Snow impurity concentration 10−9 to 10−5 (ratio) Log-normal 9.27 × 10−8

2.3.2. Illustrative Examples

To gain a sense of how the various parameters affect radiances and the albedo, several
computations were carried out at designated 10 nm increments of the parameter values.
To this end, radiance versus wavelength plots for upward radiances at the TOA are provided
in Figure 2. Also, albedo versus wavelength plots for varying solar zenith angle, snow
grain size, and impurity concentration are provided in Figure 3. Figure 2 shows that
variability in radiance is largely affected by the solar zenith angle and snow grain size,
with the impurity concentration also having a significant impact in the visible part of the
spectrum. Changes to the relative azimuth and viewing zenith angle have a relatively
minimal observable effect on the TOA radiance; however, the forward reflection (BRDF)
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is generally stronger, especially along the principal in NIR, which can lead to significant
differences depending on the viewing/azimuth angles. Figure 3 shows that these findings
are also true for the snow surface albedo. It is worth noting that only snow grain size seems
to have a significant impact on radiance past 1500 nm, and only when the grain size is
quite small, in the 50–300 µm range. Impurity concentration has the biggest impact on
the albedo for wavelengths in the visible part of the spectrum, while a decrease in snow
grain size caused the albedo to increase. This albedo enhancement is most dramatic in the
near-infrared nm range. Changes in the solar zenith angle cause noticeable changes in the
albedo across all wavelengths.

Figure 2. Radiance vs. wavelength plots at TOA, the black lines in all plots have constant relative
azimuthal angle of 90◦, viewing zenith angle of 22.5◦, solar zenith angle of 45◦, grain size of 300 µm,
and impurity concentration of 10−8. In all plots, four of the parameters are held to the constant values
listed above, while the fifth is varied. (A) Varied relative azimuthal angles from 0 to 180◦. (B) Varied
viewing zenith angles from 0◦ to 45◦. (C) Varied solar zenith angles from 20◦ to 75◦. (D) Varied snow
grain size from 50 to 2500 µm. (E) Varied impurity concentration from 10−9 to 10−5.

Figure 3. Albedo vs. wavelength plots for a variety of conditions. The black lines in all plots have
constant relative azimuthal angle of 90◦, viewing zenith angle of 22.5◦, solar zenith angle of 45◦, grain
size of 300 µm, and impurity concentration of 10−8. In all plots, four of the parameters are held to the
constant values listed above, while the fifth is varied. (A) Varied solar zenith angles from 20 to 75◦.
(B) Varied snow grain size from 50 to 2500 µm. (C) Varied impurity concentration from 10−9 to 10−5.
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3. Methods
3.1. Multi-Layer Neural Networks

We want to use the synthetic dataset to retrieve snow parameters based on the TOA
radiances. For this purpose, we created a neural network that takes as input the sun-satellite
geometry angles as well as the TOA radiances. The output will be the corresponding snow
grain size, snow impurity concentration, visible albedo (VIS, 380–700 nm), near-infrared
(NIR, 700–2500 nm) albedo, and visible shortwave infrared (VSWIR, 380–2500 nm) albedo.
A multi-layer neural network (MLNN) is a feedforward artificial neural network used for
pattern classification, recognition, prediction, and function approximation. It has been
demonstrated that MLNNs with one or more hidden layers and a non-linear activation
function can approximate nonlinear functions [36,37]. Therefore, it is suitable for solving
our inverse problem, which is to derive the snow parameters and the VIS, NIR, and VSWIR
albedo from the TOA radiances measured at a given set of wavelength bands for a specific
sun-satellite geometry configuration, i.e., the solar zenith angle, the sensor observation
angle, and the relative azimuth angle between the sun and the satellite sensor. When
constructing an MLNN, one important issue is to find the optimum number of hidden
layers and neurons. This determination depends on many variables, such as the number of
neurons of the input and output layer, the number of training samples, the complexity of
the function to be approximated, the type of activation function, and the training algorithm.
This circumstance makes it difficult to find the best solution in many cases. Drawing
on previous experience [38], we were able to find a suitable MLNN configuration, as
described below.

3.1.1. Neural Network Setup

We used a network with five layers: one input layer, one output layer, and three
hidden layers with 50, 30, and 20 neurons, respectively. The input layer uses three geometry
angles and TOA radiances as inputs. The output layer contains a total of five outputs:
snow grain size, snow impurity concentration, VIS albedo, NIR albedo, and VSWIR albedo.
Three MLNNs were configured to employ TOA radiance channels similar to those used
by the SBG, MODIS, and SGLI sensors. The continuous hyperspectral SBG MLNN used
all 213 TOA radiance bands from 380 nm to 2500 nm, in 10 nm increments. To enable
comparisons with existing multispectral sensors, such as MODIS and SGLI, a MODIS
MLNN was constructed with seven TOA radiance bands (470 nm, 560 nm, 650 nm, 860 nm,
1240 nm, 1640 nm, and 2130 nm). Similarly, an SGLI MLNN was constructed with thirteen
TOA radiance bands (380 nm, 410 nm, 440 nm, 490 nm, 530 nm, 570 nm, 670 nm, 760 nm,
870 nm, 1050 nm, 1380 nm, 1630 nm, and 2210 nm). A fourth Max-Min MLNN was
formed using local maxima and minima of the radiance vs. wavelength and the albedo
vs. wavelength (Figures 2 and 3). This approach led to an MLNN with forty-nine unique
TOA radiance bands, with the majority of bands located between 600 nm and 1200 nm.
Because we are using supervised learning, predictor inputs and desired output values
were used to train the MLNN. Hence, we expect that the selection of predictor inputs
for wavelengths producing the largest contrast in desired outputs (the local maxima and
minima) should lead to an MLNN that easily learns the training data [39,40]. All MLNNs
produced the same five parameters as outputs.

A hyperbolic tangent function was used as the neuron transfer (activation) function.
A stochastic gradient descent method was used to minimize the cost function to obtain
optimized weights and biases [41]. An adaptive learning rate, initially set to 0.001, was
used for weight updates. A tolerance for optimization was set to 10−8. When the loss
function did not improve by at least this tolerance amount after ten consecutive iterations,
convergence was considered to be reached and the training was terminated.

3.1.2. Training Results

From the 50,000 values in the synthetic snow dataset, 45,000 were used for MLNN
training while the other 5000 were used for performance evaluation. Snow parameter
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retrieval MLNN training completed with an average R2 score across all parameters of 0.997
and a minimum band R2 score of 0.992. The snow impurity parameter had the largest
average percent error (APE) and bias of all the retrieval parameters. Training for albedo
parameters and snow grain size performed well with all four MLNNs producing high R2

scores (0.996 on average) and low APEs and bias. A different configuration of neurons in the
hidden layers might have yielded better results, but the average R2 scores already indicated
that we had obtained an acceptable fit. MLNN training performance versus model synthetic
data are shown in Figures 4–7 for the SBG, MODIS, SGLI, and Max-Min MLNNs.

Figure 4. Results of SBG MLNN snow parameter training performance versus model synthetic data
(N = 45,000).

Figure 5. Results of MODIS MLNN snow parameter training performance versus model synthetic
data (N = 45,000).
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Figure 6. Results of SGLI MLNN snow parameter training performance versus model synthetic data
(N = 45,000).

Figure 7. Results of Max-Min MLNN snow parameter training performance versus model synthetic
data (N = 45,000).

3.1.3. Inversion Model

Weights and biases obtained from the training were saved and used to create approxi-
mation algorithms. The transfer (activation) function of the neurons was taken to be the
hyperbolic tangent function:

f (x) =
2

1 + exp[−2x]
− 1 =

ex − e−x

ex + e−x = tanh(x). (1)
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In the output layer, a linear transfer function was used to link the hidden layers to the
output. The exact expression of this MLNN approximation algorithm can be written as:

ym = b4,m +
N3

∑
l=1

w4,ml · f

{
b3,l +

N2

∑
k=1

w3,lk · f
[

b2,k +
N1

∑
j=1

w2,kj · f
(

b1,j +
N0

∑
i=1

w1,ji · xi

)]}
(2)

where xi, i = 1, . . . , N0 is an element in the input layer.
In Equation (2), w1,ji are the weights of the input layer, w2,kj, w3,lk, and w4,ml are the

weights of the three hidden layers, b1,j is the bias of the input layer, b2,k, b3,l , and b4,m are
the biases of the three hidden layers. f is the hyperbolic tangent function in Equation (1).
ym is the mth element in the output layer, which in our case contains the snow grain size,
snow impurity concentration, VIS albedo, NIR albedo, and VSWIR albedo.

4. Results and Discussion
4.1. Results

The main criterion used to evaluate the performance of each algorithm is accuracy,
which we define based on how close each predicted (retrieved) value is to its corresponding
synthetic model value. To determine accuracy, we use the average percent difference (APD),
the difference between our predicted value and the model value in comparison to the model
value (relative error), and the mean absolute error (MAE), based on the difference between
the predicted value and the synthetic model value. A summary of the performance of the
four snow parameter retrieval algorithms is shown in Table 2. Overall, all of the algorithms
performed well for retrievals of the albedo and snow grain size. The SBG algorithm offers
improvements over the other algorithms for retrieval of the snow impurity concentration,
having the best R2 score and the lowest average percent difference (5.6% for SBG, versus
14%, 9.4%, and 7.8% for MODIS, SGLI, and Max-Min) and mean absolute error. The SGLI,
MODIS, and Max-Min algorithms struggled to reliably estimate snow impurities in the
10−9 to 10−8 ranges, leading to a worse performance than the SBG algorithm in this range.
Evaluation of the performance of SBG, MODIS, SGLI, and Max-Min prediction algorithms
against synthetic data is shown in Figures 8–11.

Figure 8. Performance of SBG snow parameter retrieval algorithm predictions versus model synthetic
data (N = 5000).
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Table 2. A summary of the performance of the three snow parameter retrieval algorithms based on
R2 score, APD, and MAE.

SBG Algorithm R2 Score APD MAE

Albedo VIS 0.999 0.660 % 0.004
Albedo NIR 0.999 0.673 % 0.001

Albedo VSWIR 0.999 0.670 % 0.002
Snow grain size 0.999 1.135 % 10.33 µm
Snow impurity 0.998 5.586 % 4.754 × 10−8

MODIS algorithm R2 Score APD MAE

Albedo VIS 0.999 1.025 % 0.006
Albedo NIR 0.999 0.914 % 0.001

Albedo VSWIR 0.999 0.943 % 0.002
Snow grain size 0.998 1.602 % 14.78 µm
Snow impurity 0.997 13.99 % 8.907 × 10−8

SGLI algorithm R2 Score APD MAE

Albedo VIS 0.999 0.699 % 0.004
Albedo NIR 0.999 0.809 % 0.001

Albedo VSWIR 0.999 0.744 % 0.002
Snow grain size 0.998 1.610 % 14.52 µm
Snow impurity 0.997 9.34 % 6.148 × 10−8

Max-Min algorithm R2 Score APD MAE

Albedo VIS 0.999 0.618 % 0.004
Albedo NIR 0.999 0.688 % 0.001

Albedo VSWIR 0.999 0.641 % 0.002
Snow grain size 0.998 1.545 % 14.02 µm
Snow impurity 0.998 7.829 % 5.336 × 10−8

Figure 9. Performance of MODIS snow parameter retrieval algorithm predictions versus model
synthetic data (N = 5000).
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Figure 10. Performance of SGLI snow parameter retrieval algorithm predictions versus model
synthetic data (N = 5000).

Figure 11. Performance of Max-Min snow parameter retrieval algorithm predictions versus model
synthetic data (N = 5000).

4.2. Discussion

Our sensitivity study’s findings indicate that using continuous (hyperspectral) chan-
nels when developing an SPR algorithm offers some improvements over selecting specific
(multispectral) wavelengths like those available for sensors such as MODIS and SGLI. It
is likely that the SBG algorithm outperformed the other three algorithms when it comes
to snow impurity because of its channel configuration. Figure 2E shows that for impurity
values in the 10−9 to 10−8 range, radiances in the 380–600 nm range are significantly af-
fected by the impurity, while the impact is insignificant at longer wavelengths. The SBG
algorithm has twenty-three channels in this spectral range, while the Min-Max and SGLI
algorithms have six channels and the MODIS algorithm has only two. Both the MODIS,
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Figure 9, and SGLI, Figure 10, algorithms tended to overestimate very low impurity values
and underestimate values near and around 10−8, leading to an S-like curve in the plots.
This tendency is most noticeable for the MODIS algorithm where the underestimation
continues past 10−8 up to 10−7. To a lesser extent, this S-like curving is also present in
the Max-Min plots shown in Figure 11. The SBG algorithm, Figure 8, performed better
in these ranges with an APD of 14.1% compared to 30.3%, 23.3%, and 18.5% for MODIS,
SGLI, and Max-Min, respectively. However, the SBG algorithm still overestimates very low
impurities near 10−9.

The use of channels based on a continuous spectrum configuration also shows small
improvements in predicting snow grain size. When comparing the SBG algorithm to the
other algorithms, we observe a tighter grouping of data in the SBG plots (Figure 8). This
tighter clustering becomes more noticeable as snow grain size increases, with the SBG algo-
rithm having an MAE of 31.9 µm for snow grains ranging from 1500 to 2500 µm compared
to 48.7 µm, 45.8 µm, and 43.9 µm for the MODIS, SGLI, and Max-Min algorithms. Figure 2D
shows that the variation in radiance across all wavelengths becomes less pronounced as
the grain size increases. We observe a much larger shift when grain sizes increase from
50 to 300 µm than for when it increases from 900 to 2500 µm. This behavior likely made
it harder for the MLNNs to precisely evaluate changes in radiance caused by large snow
grains, leading to a larger deviation of prediction values from the model data for large
grain sizes for the three multi-band algorithms.

All four algorithms were able to accurately predict the albedo in the visible, near-
infrared, and shortwave infrared spectral ranges. The reason is likely that the variation of
albedo vs. wavelengths is much smoother than the variation of radiance vs. wavelength,
making the albedo easy to predict from only a few wavelength channels. However, since
the albedo mainly depends on the physical properties of snow, to get an understanding
of the global climate system it is not enough to solely predict this value. It is possible that
a snow sample with small grain size and high impurity could produce the same albedo
as a different snow sample with large grain size and low impurity. An illustration of
this circumstance is shown in Figure 12. Despite the large differences in grain sizes and
impurity concentrations, the two very different snow configurations are shown to yield the
same VSWIR (380–2500 nm) albedo.

Figure 12. Radiance vs. wavelength (A) and albedo vs. wavelength (B) for two simulated samples,
both with the same relative azimuthal angle of 90◦, viewing zenith angle of 22.5◦, and solar zenith
angle of 45◦. The blue line has grain size of 2500 µm and impurity concentration of 10−8, while the
red line has grain size of 640 µm, and impurity concentration of 10−6. Both samples have the same
VSWIR (380–2500 nm) albedo of 0.231, shown by the dashed black line.

The Max-Min algorithm contains channels at all of the peaks and valleys observed in
our illustration plots, Figures 2 and 3. These channels should contain the most contrasting
values and make it easy for a neural network to identify differences in retrieval parameters.
If a continuous spectrum then contained redundant channels, we would expect the SBG



Algorithms 2023, 16, 493 13 of 15

algorithm and Max-Min algorithm to perform similarly. However, there appears to be
a marked improvement in accuracy when using continuous spectral coverage. While the
Max-Min algorithm performed better than the other two multi-band approaches, it shares
their discrepancies between predicted values and model data for large snow grain sizes
and the same tendency to overestimate small impurity concentrations.

Since changes in grain size, impurity, and geometry angles all affect the TOA radiance
in unique ways, it is perhaps not surprising that having more spectral channels leads to
increased accuracy. Our results point to better neural network training and prediction algo-
rithm performance when continuous spectral coverage is utilized. However, equidistant
spectral sampling, such as that proposed/envisioned for SBG, does not necessarily guaran-
tee optimum performance. It seems reasonable to expect that placing more sampling points
in spectral regions with steep gradients than in regions where the spectrum is relatively flat
could be beneficial.

5. Conclusions

We have explored the impact of physical snow properties on TOA spectral radiance
and how machine learning neural networks could be used to form a snow parameter
retrieval algorithm utilizing multi-band and continuous (hyperspectral) coverage. We
have determined that employing continuous spectral coverage, such as that offered by
the planned SBG VSWIR instrument, seems to offer some improvements to the quality of
snow parameter retrievals when compared with multi-band approaches, used by sensors
such as MODIS and SGLI, by lowering the APD and MAE for snow grain size and snow
impurity concentration. While our study focused on snow parameter retrieval in a single
homogeneous snow layer, continuous (hyper) spectral coverage will likely show even more
improvements for a vertically inhomogeneous snow-pack consisting of multiple dissimilar
layers. An area of future research could be exploring how the improvements observed in
our sensitivity study offered by continuous spectral coverage affects parameter retrieval
in more diverse systems, such as systems with vertically inhomogeneous snow grain size
and impurity profiles, as well as snow systems containing “contaminants” such as algae
and mineral particles. Another avenue of research could be exploring benefits offered to
cloud screening of optical imagery involving snow. Continuous spectral coverage offers
increased degrees of freedom for machine learning algorithms to understand and quantify
complex systems, which makes sensors with continuous spectral coverage a good choice
for future remote sensing endeavors. The hyperspectral SPR algorithm developed and
tested in this study showed promising results when used with simulated data. However,
it must be developed further and tested against real snow spectral data. The JPL AVIRIS,
AVIRIS-NG, and PRISM airborne imaging spectrometers have collected such data. It would
be a logical next step to use such data to test the capabilities of our SPR algorithm.
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