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Abstract: While first-order methods are popular for solving optimization problems arising in deep
learning, they come with some acute deficiencies. To overcome these shortcomings, there has been
recent interest in introducing second-order information through quasi-Newton methods that are able
to construct Hessian approximations using only gradient information. In this work, we study the
performance of stochastic quasi-Newton algorithms for training deep neural networks. We consider
two well-known quasi-Newton updates, the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(BFGS) and the symmetric rank one (SR1). This study fills a gap concerning the real performance of
both updates in the minibatch setting and analyzes whether more efficient training can be obtained
when using the more robust BFGS update or the cheaper SR1 formula, which—allowing for indefinite
Hessian approximations—can potentially help to better navigate the pathological saddle points
present in the non-convex loss functions found in deep learning. We present and discuss the results
of an extensive experimental study that includes many aspects affecting performance, like batch
normalization, the network architecture, the limited memory parameter or the batch size. Our results
show that stochastic quasi-Newton algorithms are efficient and, in some instances, able to outperform
the well-known first-order Adam optimizer, run with the optimal combination of its numerous
hyperparameters, and the stochastic second-order trust-region STORM algorithm.

Keywords: stochastic optimization; quasi-Newton methods; trust-region methods; BFGS; SR1; deep
neural networks training
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1. Introduction

Deep learning (DL), as a leading technique of machine learning (ML), has attracted
much attention and has become one of the most popular directions of research. DL ap-
proaches have been applied to solve many large-scale problems in different fields, e.g., auto-
matic machine translation, image recognition, natural language processing, fraud detection,
etc., by training deep neural networks (DNNs) over large available datasets. DL problems
are often posed as unconstrained optimization problems. In supervised learning, the goal
is to minimize the empirical risk:

min
w∈Rn

F(w) ,
1
N

N

∑
i=1

L(yi, h(xi; w)) ,
1
N

N

∑
i=1

Li(w), (1)

by finding an optimal parametric mapping function h(·; w) : Rd −→ RC, where w ∈ Rn

is the vector of the trainable parameters of a DNN and (xi, yi) denotes the ith sample
pair in the available training dataset {(xi, yi)}N

i=1 with converted input xi ∈ Rd and a
one-hot true target yi ∈ RC. Moreover, Li(., .) ∈ R is a loss function defining the prediction
error between yi and the DNN’s output h(xi; .). Problem (1) is highly nonlinear and often
non-convex and, thus, applying traditional optimization algorithms is ineffective.

Algorithms 2023, 16, 490. https://doi.org/10.3390/a16100490 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16100490
https://doi.org/10.3390/a16100490
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-2937-9654
https://orcid.org/0000-0003-4826-1114
https://doi.org/10.3390/a16100490
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16100490?type=check_update&version=1


Algorithms 2023, 16, 490 2 of 26

Optimization methods for problem (1) can be divided into first-order and second-order
methods, where the gradient and Hessian (or a Hessian approximation) are used, respec-
tively. These methods, in turn, fall into two broad categories, stochastic and deterministic,
in which either one sample (or a small subset of samples called minibatch) or a single
batch composed of all samples are, respectively, employed in the evaluation of the objective
function or its gradient.

In DL applications, both N and n can be very large; thus, computing the full gradient
is expensive, and computations involving the true Hessian or its approximation may not be
practical. Recently, much effort has been devoted to the development of DL optimization al-
gorithms. Stochastic optimization methods have become the usual approach to overcoming
the aforementioned issues.

1.1. Review of the Literature

Stochastic first-order methods have been widely used in many DL applications, due to
their low per-iteration cost, optimal complexity, easy implementation, and proven efficiency
in practice. The preferred method is the stochastic gradient descent (SGD) method [1,2],
and its variance-reduced [3–5] and adaptive [6,7] variants. However, due to the use of
first-order information only, these methods come with several issues, such as relatively
slow convergence, high sensitivity to the choice of hyperparameters (e.g., step length and
batch size), stagnation at high training loss, difficulty in escaping saddle points [8], the
limited benefits of parallelism, due to the usual implementation with small minibatches,
and suffering from ill-conditioning [9].

On the other hand, second-order methods can often find good minima in fewer steps,
due to their use of curvature information. The main second-order method incorporating
the inverse Hessian matrix is Newton’s method [10], but it presents serious computational
and memory usage challenges involved in the computation of the Hessian, in particular for
large-scale DL problems; see [11] for details.

Quasi-Newton [10] and Hessian-free Newton methods [12] are two techniques aimed
at incorporating second-order information without computing and storing the true Hessian
matrix. Hessian-free methods attempt to find an approximate Newton direction, using
conjugate gradient methods [13–15]. The major challenge of these methods is the linear
system with an indefinite subsampled Hessian matrix and (subsampled) gradient vector to
be solved at each Newton step. This problem can be solved in the trust region framework
by the CG–Steihaug algorithm [16]. Nevertheless, whether true Hessian matrix–vector
products or subsampled variants of them (see, e.g., [15]) are used, the iteration complexity
of a (modified) CG algorithm is significantly greater than that of a limited-memory quasi-
Newton method, i.e., stochastic L-BFGS; see the complexity table in [15]. Quasi-Newton
methods and their limited memory variants [10] attempt to combine the speed of Newton’s
method and the scalability of first-order methods. They construct Hessian approximations,
using only gradient information, and they exhibit superlinear convergence. All these meth-
ods can be implemented to benefit from parallelization in the evaluations of the objective
function and its derivatives, which is possible, due to their finite sum structure [11,17,18].

Quasi-Newton and stochastic quasi-Newton methods to solve large optimization
problems arising in machine learning have been recently extensively considered within the
context of convex and non-convex optimization. Stochastic quasi-Newton methods use a
subsampled Hessian approximation or/and a subsampled gradient. In [19], a stochastic
Broyden–Fletcher–Goldfarb–Shanno (BFGS) and its limited memory variant (L-BFGS) were
proposed for online convex optimization in [19]. Another stochastic L-BFGS method
for solving strongly convex problems was presented in [20] that uses sampled Hessian-
vector products rather than gradient differences, which was proved in [21] to be linearly
convergent by incorporating the SVRG variance reduction technique [4] to alleviate the
effect of noisy gradients. A closely related variance-reduced block L-BFGS method was
proposed in [22]. A regularized stochastic BFGS method was proposed in [23], and an
online L-BFGS method was proposed in [24] for strongly convex problems and extended
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in [25] to incorporate SVRG variance reduction. For the solution of non-convex optimization
problems arising in deep learning, a damped L-BFGS method incorporating SVRG variance
reduction was developed and its convergence properties were studied in [26]. Some of these
stochastic quasi-Newton algorithms employ fixed-size batches and compute stochastic
gradient differences in a stable way, originally proposed in [19], using the same batch at
the beginning and at the end of the iteration. As this can potentially double the iteration
complexity, an overlap batching strategy was proposed, to reduce the computational cost
in [27], and it was also tested, in [28]. This strategy was further applied in [29,30]. Other
stochastic quasi-Newton methods have been considered that employ a progressive batching
approach in which the sample size is increased as the iteration progresses; see, e.g., [31,32]
and references therein. Recently, in [33], a Kronecker-factored block diagonal BFGS and
L-BFGS method was proposed, which takes advantage of the structure of feed-forward
DNN training problems.

1.2. Contribution and Outline

The BFGS update is the most widely used type of quasi-Newton method for general
optimization and the most widely considered quasi-Newton method for general machine
learning and deep learning. Almost all the previously cited articles considered BFGS,
with only a few exceptions using the symmetric rank one (SR1) update instead [29]. How-
ever, a clear disadvantage of BFGS occurs if one tries to enforce the positive-definiteness of
the approximated Hessian matrices in a non-convex setting. In this case, BFGS has the diffi-
cult task of approximating an indefinite matrix (the true Hessian) with a positive-definite
matrix which can result in the generation of nearly singular Hessian approximations.

In this paper, we analyze the behavior of both updates on real modern deep neural
network architectures and try to determine whether more efficient training can be obtained
when using the BFGS update or the cheaper SR1 formula that allows for indefinite Hessian
approximations and, thus, can potentially help to better navigate the pathological saddle
points present in the non-convex loss functions found in deep learning. We would like
to determine whether better training results could be achieved by using SR1 updates, as
these allow for indefinite Hessian approximations. We study the performance of both
quasi-Newton methods in the trust region framework for solving (1) in realistic large-size
DNNs. We introduce stochastic variants of the two quasi-Newton updates, based on an
overlapping sampling strategy which is well-suited to trust-region methods. We have
implemented and applied these algorithms to train different convolutional and residual
neural networks, ranging from a shallow LeNet-like network to a self-built network with
and without batch normalization layers and the modern ResNet-20, for image classification
problems. We have compared the performance of both stochastic quasi-Newton trust-
region methods with another stochastic quasi-Newton algorithm based on a progressive
batching strategy and with the first-order Adam optimizer running with the optimal values
of its hyperparameters, obtained by grid searching.

The rest of the paper is organized as follows: Section 2 provides a general overview of
trust-region quasi-Newton methods for solving problem (1) and introduces the stochas-
tic algorithms sL-BFGS-TR and sL-SR1-TR, together with a suitable minibatch sampling
strategy. The results of an extensive empirical study on the performance of the considered
algorithms in the training of deep neural networks are presented and discussed in Section 3.
Finally, some concluding remarks are given in Section 4.

2. Materials and Methods

We provide in this section an overview of quasi-Newton trust-region methods in the
deterministic setting and introduce suitable stochastic variants.

Trust-region (TR) methods [34] are powerful techniques for solving nonlinear uncon-
strained optimization problems that can incorporate second-order information, without re-
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quiring it to be positive-definite. TR methods generate a sequence of iterates, wk + pk, such
that the search direction pk is obtained by solving the following TR subproblem,

pk = arg min
p∈Rn

Qk(p) ,
1
2

pT Bk p + gT
k p s.t. ‖p‖2 ≤ δk, (2)

for some TR radius δk > 0, where

gk , ∇F(wk) =
1
N

N

∑
i=1
∇Li(wk) (3)

and Bk is a Hessian approximation. For quasi-Newton trust-region methods, the symmetric
quasi-Newton (QN) matrices Bk in (2) are approximations to the Hessian matrix constructed
using gradient information, and they satisfy the following secant equation:

Bk+1sk = yk, (4)

where
sk = pk, yk = gt − gk, (5)

in which gt is the gradient evaluated at wt = wk + pk. The trial point is subject to the value
of the ratio of actual to predicted reduction in the objective function of (1), that is:

ρk =
fk − ft

Qk(0)−Qk(pk)
, (6)

where ft and fk are the objective function values at wt and wk, respectively. Therefore,
since the denominator in (6) is non-negative, if ρk is positive then wk+1 , wt; otherwise,
wk+1 , wk. Based on the value of (6), the step may be accepted or rejected. Moreover,
it is safe to expand δk ∈ (δ0, δmax) with δ0, δmax > 0 when there is very good agreement
between the model and function. However, the current δk is not altered if there is good
agreement, or it is shrunk when there is weak agreement. Algorithm 1 describes the TR
radius adjustment.

Algorithm 1 Trust region radius adjustment

1: Inputs: Current iteration k, δk, ρk, 0 < τ2 < 0.5 < τ3 < 1, 0 < η2 ≤ 0.5, 0.5 < η3 < 1 <
η4

2: if ρk > τ3 then
3: if ‖pk‖ ≤ η3δk then
4: δk+1 = δk
5: else
6: δk+1 = η4δk
7: end if
8: else if τ2 ≤ ρk ≤ τ3 then
9: δk+1 = δk

10: else
11: δk+1 = η2δk
12: end if

A primary advantage of using TR methods is their ability to work with both positive-
definite and indefinite Hessian approximations. Moreover, the progress of the learning
process will not stop or slow down even in the presence of occasional step rejection,
i.e., when wk+1 , wk.

Using the Euclidean norm (2-norm) to define the subproblem (2) leads to characterizing
the global solution of (2) by the optimality conditions given in the following theorem from
Gay [35] and Moré and Sorensen [36]:



Algorithms 2023, 16, 490 5 of 26

Theorem 1. Let δk be a given positive constant. A vector pk , p∗ is a global solution of the trust
region problem (2) if and only if ‖p∗‖2 ≤ δk and there exists a unique σ∗ ≥ 0, such that Bk + σ∗ I
is positive semi-definite with

(Bk + σ∗ I)p∗ = −gk, σ∗(δk − ‖p∗‖2) = 0. (7)

Moreover, if Bk + σ∗ I is positive-definite, then the global minimizer is unique.

According to [37,38], the subproblem (2) or, equivalently, the optimality conditions (7)
can be efficiently solved if the Hessian approximation Bk is chosen to be a QN matrix.
In the following sections, we provide a comprehensive description of two methods in a TR
framework with limited memory variants of two well-known QN Hessian approximations,
i.e., L-BFGS and L-SR1.

2.1. The L-BFGS-TR Method

BFGS is the most popular QN update in the Broyden class; that is, it provides a Hessian
approximation Bk, for which (4) holds. It has the following general form:

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k
yT

k sk
, k = 0, 1, . . . , (8)

which is a positive-definite matrix, i.e., Bk+1 � 0 if B0 � 0 and the curvature condition holds,
i.e., sT

k yk > 0. The difference between the symmetric approximations Bk and Bk+1 is a
rank-two matrix. In this work, we bypass updating Bk if the following curvature condition
is not satisfied for τ = 10−2:

sT
k yk > τ‖sk‖2. (9)

For large-scale optimization problems, using the limited-memory BFGS (L-BFGS)
would be more efficient. In practice, only a collection of the most recent pairs

{
sj, yj

}
is

stored in memory: for example, l pairs, where l � n (usually l < 100). In fact, for k ≥ l,
the l recent computed pairs are stored in the following matrices Sk and Yk:

Sk ,
[
sk−l sk−(l−1) . . . sk−1

]
, Yk ,

[
yk−l yk−(l−1) . . . yk−1

]
. (10)

Using (10), the L-BFGS matrix Bk can be represented in the following compact form:

Bk = B0 + Ψk MkΨT
k , k = 1, 2, . . . , (11)

where B0 � 0 and

Ψk =
[
B0Sk Yk

]
, Mk =

[
−ST

k B0Sk −Lk
−LT

k Dk

]−1

. (12)

We note that Ψk and Mk have at most 2l columns. In (12), matrices Lk, Uk, and Dk are,
respectively, the strictly lower triangular part, the strictly upper triangular part, and the
diagonal part of the following matrix splitting:

ST
k Yk = Lk + Dk + Uk. (13)

Let B0 = γk I. A heuristic and conventional method of choosing γk is

γk =
yT

k−1yk−1

yT
k−1sk−1

, γh
k . (14)

The quotient of (14) is an approximation to an eigenvalue of ∇2F(wk) and appears to
be the most successful choice in practice [10]. Evidently, the selection of γk is important
in generating Hessian approximations Bk. In DL optimization, the positive-definite L-
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BFGS matrix Bk has the difficult task of approximating the possibly indefinite true Hessian.
According to [29,30], an extra condition can be imposed on γk, to avoid false negative cur-
vature information, i.e., to avoid pT

k Bk pk < 0 whenever pT
k∇

2(wk)pk > 0. Let, for simplicity,
the objective function of (1) be a quadratic function:

F(w) =
1
2

wT Hw + gTw, (15)

where H = ∇2F(w), which results in ∇F(wk+1) −∇F(wk) = H(wk+1 − wk) and, thus,
yk = Hsk for all k. Thus, we obtain ST

k Yk = ST
k HSk. For the quadratic model, and using (11),

we obtain
ST

k HSk − γkST
k Sk = ST

k Ψk MkΨT
k Sk. (16)

According to (16), if H is not positive-definite, then its negative curvature information
can be captured by ST

k Ψk MkΨT
k Sk as γk > 0. However, false curvature information can

be produced when the γk value chosen is too large while H is positive-definite. To avoid
this, γk is selected in (0, λ̂), where λ̂ is the smallest eigenvalue of the following generalized
eigenvalue problem:

(Lk + Dk + LT
k )u = λST

k Sku, (17)

with Lk and Dk defined in (13). Therefore, if λ̂ ≤ 0, then γk is the maximum value of 1 and
γh

k defined in (14). Given γk, the compact form (11) is applied in (7), where both optimality
conditions together are solved for pk , p∗k through Algorithm A1 included in Appendix B.
Then, according to the value of (6), the step wk + pk may be accepted or rejected.

2.2. The L-SR1-TR Method

Another popular QN update in the Broyden class is the SR1 formula, which generates
good approximations to the true Hessian matrix, often better than the BFGS approxi-
mations [10]. The SR1 updating formula verifying the secant condition (4) is given by

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)

T

(yk − Bksk)Tsk
, k = 0, 1, . . . . (18)

In this case, the difference between the symmetric approximations Bk and Bk+1 is a rank-
one matrix. To prevent the vanishing of the denominator in (18), a simple safeguard that
performs well in practice is to simply skip the update if the denominator is small [10],
i.e., Bk+1 = Bk. Therefore, the update (18) is applied only if

|sT(yk − Bksk)| ≥ τ‖sk‖‖yk − Bksk‖, (19)

where τ ∈ (0, 1) is small, say τ = 10−8. In (18), if Bk is positive-definite, Bk+1 may not have
the same property. Regardless of the sign of yT

k sk for each k, the SR1 method generates a
sequence of matrices that may be indefinite. We note that the value of the quadratic model
in (2) evaluated at the descent direction p∗ is always less if this direction is also a direction
of negative curvature. Therefore, the ability to generate indefinite approximations can
actually be regarded as one of the chief advantages of SR1 updates in non-convex settings,
like in DL applications.

In the limited-memory version of the SR1 (L-SR1) update, as in L-BFGS, only the l
most recent curvature pairs are stored in matrices Sk and Yk defined in (10). Using Sk and
Yk, the L-SR1 matrix Bk can be represented in the following compact form:

Bk = B0 + Ψk MkΨT
k , k = 1, 2, , . . . , (20)

where B0 = γk I for some γk 6= 0 and

Ψk = Yk − B0Sk, Mk = (Dk + Lk + LT
k − ST

k B0Sk)
−1. (21)
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In (21), Lk and Dk are, respectively, the strictly lower triangular part and the diagonal part
of ST

k Yk. We note that Ψk and Mk in the L-SR1 update have, at most, l columns.
In [29], it was proven that the trust region subproblem solution becomes closely

parallel to the eigenvector corresponding to the most negative eigenvalue of the L-SR1
approximation Bk. This shows the importance of Bk to be able to capture curvature informa-
tion correctly. On the other hand, it was highlighted how the choice of B0 = γk I affects Bk;
in fact, not choosing γk judiciously in relation to λ̂, the smallest eigenvalue of (17), can have
adverse effects. Selecting γk > λ̂ can result in false curvature information. Moreover, if γk
is too close to λ̂ from below, then Bk becomes ill-conditioned. If γk is too close to λ̂ from
above, then the smallest eigenvalue of Bk becomes negatively large arbitrarily. According
to [29], the following lemma suggests selecting γk near but strictly less than λ̂, to avoid
asymptotically poor conditioning while improving the negative curvature approximation
properties of Bk.

Lemma 1. For a given quadratic objective function (15), let λ̂ denote the smallest eigenvalue of the
generalized eigenvalue problem (17). Then, for all γk < λ̂, the smallest eigenvalue of Bk is bounded
above by the smallest eigenvalue of H in the span of Sk, i.e.,

λmin(Bk) ≤ min
Skv 6=0

vTST
k HSkv

vTST
k Skv

.

In this work, we set γk = max{10−6, 0.5λ̂} in the case where λ̂ > 0; otherwise, the γk
is set to γk = min{−10−6, 1.5λ̂}. Given γk, the compact form (20) is applied in (7), where
the optimality conditions together are solved for pk through Algorithm A2 included in
Appendix B, using the spectral decomposition of Bk as well as the Sherman–Morrison–
Woodbury formula [38]. Then, according to the value of (6), the step wk + pk may be
accepted or rejected.

2.3. Stochastic Variants of L-BFGS-TR and L-SR1-TR

The main motivation behind the use of stochastic optimization algorithms in deep
learning may be traced back to the existence of a special type of redundancy due to similarity
between the data points in (1). In addition, the computation of the true gradient is expensive
and the computation of the true Hessian is not practical in large-scale DL problems. Indeed,
depending on the available computing resources, it could take a prohibitive amount of
time to process the whole set of data examples as a single batch at each iteration of a
deterministic algorithm. That is why most of the optimizers in DL work in the stochastic
regime. In this regime, the training set {(xi, yi)}N

i=1 is divided randomly into multiple—e.g.,
N̄—batches. Then, a stochastic algorithm uses a single batch Jk at iteration k to compute
the required quantities, i.e., stochastic loss and stochastic gradient, as follows:

f Jk
k , F Jk (wk) =

1
|Jk| ∑

i∈Jidx
k

Li(wk), gJk
k , ∇F Jk (wk) =

1
|Jk| ∑

i∈Jidx
k

∇Li(wk), (22)

where bs , |Jk| and Jidx
k denote the size of Jk and the index set of the samples belonging

to Jk, respectively. In other words, the stochastic QN extensions (sQN) are obtained by
replacement of the full loss fk and gradient gk in (3) by f Jk

k and gJk
k , respectively, throughout

the iterative process of the algorithms. The process of randomly taking Jk, computing the
required quantities (22) for finding a search direction, and then updating wk constitutes one
single iteration of a stochastic algorithm. This process is repeated for a given number of
batches until one epoch (i.e., one pass through the whole set of data samples) is completed.
At that point, the dataset is shuffled and new batches are generated for the next epoch;
see Algorithms 2 and 3 for a description of the stochastic algorithms sL-BFGS-TR and
sL-SR1-TR, respectively.
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Algorithm 2 sL-BFGS-TR
1: Inputs: w0 ∈ Rn, os, epochmax , l, γ0 > 0, c, S0 = Y0 = [.], 0 < τ, τ1 < 1
2: for k = 0, 1, . . . do
3: Take a random and uniform multi-batch Jk of size bs and compute f Jk

k , gJk
k by (22)

4: if epoch > epochmax then
5: Stop training
6: end if
7: Compute pk using Algorithm A1
8: Compute wt = wk + pk and f Jk

t , gJk
t by (22)

9: Compute (sk , yk) = (wt − wk , gJk
t − gJk

k ) and ρk =
f Jk
t − f Jk

k
Q(pk)

10: if ρk ≥ τ1 then
11: wk+1 = wt
12: else
13: wk+1 = wk
14: end if
15: Update δk by Algorithm 1
16: if sT

k yk > τ‖sk‖2 then
17: Update storage matrices Sk+1 and Yk+1 by l recent {sj, yj}k

j=k−l+1

18: Compute the smallest eigenvalue λ̂ of (17) for updating B0 = γk I
19: if λ̂ > 0 then
20: γk+1 = max{1, cλ̂} ∈ (0, λ̂)
21: else
22: Compute γh

k by (14) and set γk+1 = max{1, γh
k}

23: end if
24: Update Ψk+1, M−1

k+1 by (11)
25: else
26: Set γk+1 = γk , Ψk+1 = Ψk and M−1

k+1 = M−1
k

27: end if
28: end for

Algorithm 3 sL-SR1-TR
1: Inputs: w0 ∈ Rn, os, epochmax , l, γ0 > 0, c, c1, S0 = Y0 = [.], 0 < τ, τ1 < 1
2: for k = 0, 1, . . . do
3: Take a random and uniform multi-batch Jk of size bs and compute f Jk

k , gJk
k by (22)

4: if epoch > epochmax then
5: Stop training
6: end if
7: Compute pk using Algorithm A2
8: Compute wt = wk + pk and f Jk

t , gJk
t by (22)

9: Compute (sk , yk) = (wt − wk , gJk
t − gJk

k ) and ρk =
f Jk
t − f Jk

k
Q(pk)

10: if ρk ≥ τ1 then
11: wk+1 = wt
12: else
13: wk+1 = wk
14: end if
15: Update δk by Algorithm 1
16: if |sT(yk − Bksk)| ≥ τ‖sk‖‖yk − Bksk‖ then
17: Update storage matrices Sk+1 and Yk+1 by l recent {sj, yj}k

j=k−l+1

18: Compute the smallest eigenvalue λ̂ of (17) for updating B0 = γk I
19: if λ̂ > 0 then
20: γk+1 = max{c, c1λ̂}
21: else
22: γk+1 = min{−c, c2λ̂}
23: end if
24: Update Ψk+1, M−1

k+1 by (21)
25: else
26: Set γk+1 = γk , Ψk+1 = Ψk and M−1

k+1 = M−1
k

27: end if
28: end for

Subsampling Strategy and Batch Formation

In a stochastic setting, as batches change from one iteration to the next, differences
in stochastic gradients can cause the updating process to yield poor curvature estimates
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(sk, yk). Therefore, updating Bk, whether as (11) or (20), may lead to unstable Hessian
approximations. To address this issue, the following two approaches have been proposed
in the literature. As a primary remedy [19], one can use the same batch, Jk, for computing
curvature pairs, as follows:

(sk, yk) = (pk, gJk
t − gJk

k ), (23)

where gJk
t , ∇F Jk (wt). We refer to this strategy as full-batch sampling. In this strategy,

the stochastic gradient at wt is computed twice: once in (23) and again to compute the
subsequent step, i.e., gJk+1

t if wt is accepted; otherwise, gJk+1
k is computed. As a cheaper

alternative, an overlap sampling strategy was proposed in [27], in which only a common
(overlapping) part between every two consecutive batches Jk and Jk+1 is employed for
computing yk. Defining Ok = Jk ∩ Jk+1 6= ∅ of size os , |Ok|, the curvature pairs are
computed as

(sk, yk) = (pk, gOk
t − gOk

k ), (24)

where gOk
t , ∇FOk (wt). As Ok, and thus Jk, should be sizeable, this strategy is called multi-

batch sampling. Both these approaches were originally considered for a stochastic algorithm
using L-BFGS updates without and with line search methods, respectively. Progressive
sampling approaches to use L-SR1 updates in a TR framework were instead considered, to
train fully connected networks in [29,39]. More precisely, in [29], the curvature pairs and
the model goodness ratio are computed as

(sk, yk) = (pk, gJk
t − gJk

k ), ρk =
f Jk
t − f Jk

k
Qk(pk)

, (25)

such that Jk = Jk ∩ Jk+1. Progressive sampling strategies may avoid acquiring noisy
gradients by increasing the batch size at each iteration [31], which may lead to increased
costs per iteration. A recent study of a non-monotone trust-region method with adaptive
batch sizes can be found in [40]. In this work, we use fixed-size sampling for both methods.

We have examined the following two strategies to implement the considered sQN
methods in a TR approach, in which the subsampled function and gradient evaluations
are computed using a fixed-size batch per iteration. Let Ok = Jk ∩ Jk+1 6= ∅; then, we can
consider one of the following options:

• (sk, yk) = (pk, gJk
t − gJk

k ), ρk =
f

Jk
t − f

Jk
k

Qk(pk)
.

• (sk, yk) = (pk, gOk
t − gOk

k ), ρk =
f

Ok
t − f

Ok
k

Qk(pk)
.

Clearly, in both options, every two successive batches have an overlapping set (Ok),
which helps to avoid extra computations in the subsequent iteration. We have performed
experiments with both sampling strategies and have found that the L-SR1 algorithm fails
to converge when using the second option. As this fact deserves further investigation, we
have only used the first sampling option in this paper. Let Jk = Ok−1 ∪Ok, where Ok−1 and
Ok are the overlapping samples of Jk with batches Jk−1 and Jk+1, respectively. Moreover,
the fixed-size batches are drawn without replacement, to ensure the whole dataset is visited
in one epoch. We assume that |Ok−1| = |Ok| = os and, thus, overlap ratio or , os

bs = 1
2 (half

overlapping). It is easy to see that N̄ =

⌊
N
os

⌋
− 1 indicates the number of batches in one

epoch, where bac rounds a to the nearest integer less than or equal to a. To create N̄ batches,
we can consider the two following cases: rs , mod(N, os) = 0 and rs , mod(N, os) 6= 0,
where the mod (modulo operation) of N and os returns the remainder after division of
N and os. In the first case, all N̄ batches are duplex, composed by two subsets, Ok−1 and
Ok, as Jk = Ok−1 ∪Ok, while in the second case, the N̄-th batch is a triple batch, defined
as Jk = Ok−1 ∪ Rk ∪Ok, where Rk is a subset of size rs 6= 0 and other N̄ − 1 batches are
duplex. In the former case, the required quantities for computing yk and ρk at iteration k
are determined as

f Jk
k = or( f Ok−1

k + f Ok
k )
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and
gJk

k = or(gOk−1
k + gOk

k ),

where or = 1
2 . In the latter case, the required quantities with respect to the last triple batch

Jk = Ok−1 ∪ Rk ∪Ok are computed as

f Jk
k = or( f Ok−1

k + f Ok
k ) + (1− 2or) f Rk

k

and
gJk

k = or(gOk−1
k + gOk

k ) + (1− 2or)gRk
k ,

where or =
os

2os + rs
. In this work, we have considered batches corresponding to the first

case. Figure 1 schematically shows batches Jk and Jk+1 at iterations k and k + 1, respectively,
and the overlapping parts in this case:

Figure 1. Fixed-size batches strategy scheme.

The stochastic loss value and gradient (22) are computed at the beginning (at wk) and
at the end of each iteration (at trial point wt). In iteration k + 1, these quantities have to be
evaluated with respect to the sample subset represented by white rectangles only. In fact,
the computations with respect to subset Ok at wk+1 depend on the acceptance status of wt
at iteration k. In the case of acceptance, the loss function and gradient vector have been
already computed at wt; in the case of rejection, these quantities are set equal to those
evaluated at wk, with respect to subset Ok.

3. Results

We present in this section the results of extensive experimentation to assess the ef-
fectiveness of the two described stochastic QN algorithms at solving the unconstrained
optimization problems arising from the training of DNNs to accomplish image classi-
fication tasks. The deep learning toolbox of MATLAB provides a framework for de-
signing and implementing a deep neural network, to perform image classification tasks
using a prescribed training algorithm. We have exploited the deep learning custom
training loops of MATLAB (https://www.mathworks.com/help/deeplearning/deep-
learning-custom-training-loops.html, accessed on 15 October 2020 ), to implement Al-
gorithms 2 and 3 with half-overlapping subsampling. The implementation details of the
two stochastic QN algorithms considered in this work, using the DL toolbox of MATLAB
(https://it.mathworks.com/help/deeplearning/, accessed on 15 October 2020), are pro-
vided in https://github.com/MATHinDL/sL_QN_TR/, where all the codes employed to
obtain the numerical results included in this paper are also available.

To find an optimal classification model by using a C-class dataset, the generic prob-
lem (1) is solved by employing the softmax cross-entropy function, defined as

Li(w) = −
C

∑
k=1

(yi)k log(h(xi; w))k,

https://www.mathworks.com/help/deeplearning/deep-learning-custom-training-loops.html
https://www.mathworks.com/help/deeplearning/deep-learning-custom-training-loops.html
https://it.mathworks.com/help/deeplearning/
https://github.com/MATHinDL/sL_QN_TR/
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for i = 1, . . . , N. One of the most popular benchmarks for making informed decisions using
data-driven approaches in DL is the MNIST dataset [41], as {(xi, yi)}70,000

i=1 , consisting of
handwritten gray-scale images of digits xi with 28× 28 pixels taking values in [0, 255] and
its corresponding labels converted to one-hot vectors. Fashion-MNIST [42] is a variant of
the original MNIST dataset, which shares the same image size and structure. Its images
are assigned to fashion items (clothing) belonging also to 10 classes, but working with
this dataset is more challenging than working with MNIST. The CIFAR-10 dataset [43]
has 60,000 RGB images xi of 32× 32 pixels taking values in [0, 255] in 10 classes. Every
single image of the MNIST and Fashion-MNIST datasets is xi ∈ R28×28×1, while the one of
CIFAR10 is xi ∈ R32×32×3. In all the datasets, 10,000 of the images are set aside as a testing
set during training.

In this work, inspired by LeNet-5—mainly used for character recognition tasks [44]—
we have used a LeNet-like network with a shallow structure. We have also employed a
modern ResNet-20 residual network [45], exploiting special skip connections (shortcuts) to
avoid possible gradient vanishing that might happen due to its deep architecture. Finally,
we also consider a self-built convolutional neural network (CNN) named ConvNet3FC2
with a larger number of parameters than the two previous networks. To analyze the effect
of batch normalization [46] on the performance of the stochastic QN algorithms, we have
considered also variants of the ResNet-20 and ConvNet3FC2 networks, named ResNet-20
(No BN) and ConvNet3FC2 (No BN), in which the batch normalization layers have been
removed. Table 1 describes the networks’ architecture in detail. In this table, the syntax
(Conv(5× 5@32, 1, 2)/BN/ReLu/MaxPool(2× 2, 1, 0))) indicates a simple convolutional
network (convnet) including a convolutional layer (Conv) using 32 filters of size 5× 5, stride
1, padding 2, followed by a batch normalization layer (BN), a nonlinear activation function
(ReLu) and, finally, a max-pooling layer with a channel of size 2× 2, stride 1, and padding
0. The syntax FC(C/So f tmax) indicates a layer of C fully connected neurons followed
by the softmax layer. Moreover, the syntax addition(1)/Relu indicates the existence of an
identity shortcut such that the output of a given block, say B1 (or B2 or B3), is directly fed to
the addition layer and then to the ReLu layer while addition(2)/Relu in a block shows the
existence of a projection shortcut by which the output from the two first convnets is added to
the output of the third convnet and then the output is passed through the ReLu layer.

Table 2 shows the total number of trainable parameters, n, for different image classifi-
cation problems. We have compared algorithms sL-BFGS-TR and sL-SR1-TR in training
tasks for these problems. We have used the hyperparameters c = 0.9 and τ = 10−2 in
sL-BFGS-TR, c1 = 0.5, c2 = 1.5, c = 10−6, and τ = 10−8 in sL-SR1-TR, and τ1 = 10−4,
γ0 = 1, τ2 = 0.1, τ3 = 0.75, η3 = 0.8, η2 = 0.5, and η4 = 2 in both ones. We have also used
the same initial parameter w0 ∈ Rn by specifying the same seed to the MATLAB random
number generator for both methods. All deep neural networks have been trained for at
most 10 epochs, and training was terminated if 100% accuracy was reached.

The accuracy is the ratio of the number of correct predictions to the number of total
predictions. In our study, we report the accuracy in percentage and overall loss values for
both the train and the test datasets. Following prior published works in the optimization
community (see, e.g., [28]) we use the whole testing set as the validation set: that is, at the
end of each iteration of the training phase (after the network parameters have been updated)
the prediction capability of the recently updated network is evaluated, using all the samples
of the test dataset. The computed value is the measured testing accuracy corresponding to
iteration k. Consequently, we report accuracy and loss across epochs for both the training
samples and the unseen samples of the validation set (=the test set) during the training phase.

To facilitate visualization, we plot the measurement under evaluation versus epochs,
using a determined frequency of display, which is reported at the top of the figures. Dis-
play frequency values larger than one indicate the number of iterations that are not re-
ported, while all the iterations are considered if the display frequency is one. All the
figures report the results of a single run; see also the additional experiments in the
Supplementary Material.
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Table 1. Networks.

LeNet-like

Structure (Conv(5× 5@20, 1, 0)/ReLu/MaxPool(2× 2, 2, 0))
(Conv(5× 5@50, 1, 0)/ReLu/MaxPool(2× 2, 2, 0))
FC(500/ReLu)
FC(C/So f tmax)

ResNet-20

Structure (Conv(3× 3@16, 1, 1)/BN/ReLu)

B1

{
(Conv(3× 3@16, 1, 1)/BN/ReLu)
(Conv(3× 3@16, 1, 1)/BN) + addition(1)/Relu

B2

{
(Conv(3× 3@16, 1, 1)/BN/ReLu)
(Conv(3× 3@16, 1, 1)/BN) + addition(1)/Relu

B3

{
(Conv(3× 3@16, 1, 1)/BN/ReLu)
(Conv(3× 3@16, 1, 1)/BN) + addition(1)/Relu

B1


(Conv(3× 3@32, 2, 1)/BN/ReLu)
(Conv(3× 3@32, 1, 1)/BN)

(Conv(1× 1@32, 2, 0)/BN) + addition(2)/Relu

B2

{
(Conv(3× 3@32, 1, 1)/BN/ReLu)
(Conv(3× 3@32, 1, 1)/BN) + addition(1)/Relu

B3

{
(Conv(3× 3@32, 1, 1)/BN/ReLu)
(Conv(3× 3@32, 1, 1)/BN) + addition(1)/Relu

B1


(Conv(3× 3@64, 2, 1)/BN/ReLu)
(Conv(3× 3@64, 1, 1)/BN)

(Conv(1× 1@64, 2, 0)/BN) + addition(2)/Relu

B2

{
(Conv(3× 3@64, 1, 1)/BN/ReLu)
(Conv(3× 3@64, 1, 1)/BN) + addition(1)/Relu

B3

{
(Conv(3× 3@64, 1, 1)/BN/ReLu)
(Conv(3× 3@64, 1, 1)/BN) + addition(1)/g.AvgPool/ReLu)

FC(C/So f tmax)

ConvNet3FC2

Structure (Conv(5× 5@32, 1, 2)/BN/ReLu/MaxPool(2× 2, 1, 0))
(Conv(5× 5@32, 1, 2)/BN/ReLu/MaxPool(2× 2, 1, 0))
(Conv(5× 5@64, 1, 2)/BN/ReLu/MaxPool(2× 2, 1, 0))
FC(64, /BN/ReLu)
FC(C/So f tmax)

Table 2. The total number of the networks’ trainable parameters (n).

LeNet-5 ResNet-20 ResNet-20 (No BN) ConvNet3FC2 ConvNet3FC2 (No BN)

MNIST 431,030 272,970 271,402 2,638,826 2,638,442
F.MNIST 431,030 272,970 271,402 2,638,826 2,638,442
CIFAR10 657,080 273,258 271,690 3,524,778 3,525,162

We have performed extensive testing to analyze different aspects that may influence
the performance of the two considered stochastic QN algorithms: mainly, the limited
memory parameter and the batch size. We have also compared the performance of both
algorithms from the point of view of CPU time. Finally, we have provided a comparison
with first- and second-order methods. All experiments were performed on a Ubuntu Linux
server virtual machine with 32 CPUs and 128 GB RAM.
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3.1. Influence of the Limited Memory Parameter

The results reported in Figure 2 illustrate the effect of the limited memory parameter
value (l = 5, 10 and 20) on the accuracy achieved by the two stochastic QN algorithms in
training ConvNet3FC2 on CIFAR10 within a fixed number of epochs. As is clearly shown
in this figure, in particular for ConvNet3FC2 (No BN), the effect of the limited memory
parameter is more pronounced when large batches are used (bs = 5000). For large batch
sizes, the larger the value of l, the higher the accuracy. No remarkable differences in the
behavior of both algorithms with a small batch size (bs = 500) are observed. It seems that
incorporating more recently computed curvature vectors (i.e., larger l) does not increase
the efficiency of the algorithms in training DNNs with BN layers, while it does when BN
layers are removed. Finally, we remark that we have found that using larger values of l
(l ≥ 30) is not helpful, having led to higher over-fitting in some of our experiments.
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Figure 2. The performance of sL-BFGS-TR (left) and sL-SR1-TR (right) with different limited memory
values (l).
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3.2. Influence of the Batch Size

In this subsection, we analyze the effect of the batch size on the performance of
the two considered sQN methods, while keeping fixed the limited memory parameter
l = 20. We have considered different values of the batch size (bs) in {100, 500, 1000, 5000}
or, equivalently, overlap size (os) in {50, 250, 500, 2500} for all the problems and all the
considered DNNs. Based on Figure 3, the general conclusion is that when training the
networks for a fixed number of epochs, the achieved accuracy decreases when the batch
size increases. This is due to the reduction in the number of parameter updates. We
have summarized in Table 3 the relative superiority of one of the two stochastic QN
algorithms over the other for all problems. With “both”, we indicate that both algorithms
display similar behavior. From the results reported in Table 3, we conclude that sL-SR1-TR
performs better than sL-BFGS-TR for training networks without BN layers, while both QN
updates exhibit comparable performances when used for training networks with BN layers.
More detailed comments for each DNN are given below.
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(c) F-MNIST with ResNet-20
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(d) F-MNIST with ResNet-20(no BN)
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(e) CIFAR10 with ResNet-20
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(f) CIFAR10 with ResNet-20(no BN)
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(g) MNIST with ConvNet3FC2
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(h) MNIST with ConvNet3FC2(no BN)
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(i) F-MNIST with ConvNet3FC2

0 0.5 1 1.5 2

Epoch

0

20

40

60

80

100

A
c

c
u

ra
c

y

Batch size: 100, Display frequency: 20

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

0 2 4 6 8 10

Epoch

0

20

40

60

80

100

A
c

c
u

ra
c

y

Batch size: 1000, Display frequency: 10

sL-SR1-TR (train)

sL-SR1-TR (test)

sL-BFGS-TR (train)

sL-BFGS-TR (test)

(j) F-MNIST with ConvNet3FC2(no BN)
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Figure 3. Evolution of the training and testing accuracy for batch sizes 100 and 1000 (l = 20).
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Table 3. Summary of the best sQN approach for each combination problem/network architecture.

LeNet-5 ResNet-20 ResNet-20 (No BN) ConvNet3FC2 ConvNet3FC2 (No BN)

MNIST sL-SR1-TR both sL-SR1-TR both both
F.MNIST sL-SR1-TR both sL-SR1-TR both sL-SR1-TR
CIFAR10 sL-SR1-TR sL-BFGS-TR sL-SR1-TR sL-BFGS-TR sL-SR1-TR

3.2.1. LeNet-like

The results on top of Figure 3 show that both the algorithms perform well, in training
LeNet-like within 10 epochs to classify MNIST and Fashion-MNIST datasets, respectively.
Specifically, sL-SR1-TR provides better classification accuracy than sL-BFGS-TR.

3.2.2. ResNet-20

Figure 3 shows that the classification accuracy on Fashion-MNIST increases when
using ResNet-20 instead of LeNet-like, as expected. Regarding the performance of the
two algorithms of interest, both algorithms exhibit comparable performances when BN
is used. Nevertheless, we point out the fact that sL-BFGS-TR using bs = 100 achieves
higher accuracy than sL-SR1-TR, in less time. This comes with some awkward oscillations
in the testing curves. We attribute these oscillations to a sort of inconsistency between the
updated parameters and the normalized features of the testing set samples. This is due to
the fact that the inference step by testing samples is done using the updated parameters
and the features that are normalized by the most recently computed mean and variance
moving average values obtained by the batch normalization layers in the training phase [46].
The numerical results on ResNet-20 without the BN layers confirm this assumption can
be true. These results also show that sL-SR1-TR performs better than sL-BFGS-TR in this
case. Note that the experiments on LeNet-like and ResNet-20 with and without BN layers
show that sL-SR1-TR performs better than sL-BFGS-TR when batch normalization is not
used, but, as can be clearly seen from the results, the elimination of the BN layers causes a
detriment to all the methods’ performances.

3.2.3. ConvNet3FC2

Figure 3 shows that sL-BFGS-TR still produces better testing/training accuracy than
sL-SR1-TR on CIFAR10, while both algorithms behave similarly on the MNIST and Fashion-
MNIST datasets. In addition, sL-BFGS-TR with bs = 100 within 10 epochs achieves the
highest accuracy faster than sL-SR1-TR (see Figure 3k).

3.3. Comparison with Adam Optimizer

Adaptive moment estimation (Adam) [7] is a popular efficient first-order optimizer
used in DL. Due to the high sensitivity of Adam to the value of its hyperparameters, it is
usually used after the determination of near-optimal values through grid searching strate-
gies, which is a very time-consuming task. It is worth noting that sL-QN-TR approaches
do not require step-length tuning, and this particular experiment offers a comparison to
optimized Adam. To compare sL-BFGS-TR and sL-SR1-TR to Adam, we have performed
a grid search on learning rates and batch sizes, to select the best value of Adam’s hyper-
parameters. We have considered learning rates values in {10−5, 10−4, 10−3, 10−2, 10−1, 1}
and batch size in {100, 500, 1000, 5000}, and we have selected the pair of values that allows
Adam to achieve the highest testing accuracy. The gradient and squared gradient decay
factors are set as β1 = 0.9 and β2 = 0.999, respectively. The small constant for preventing
divide-by-zero errors is set to 10−8.

Figure 4 illustrates the results obtained with the two considered sQN algorithms
and the tuned Adam. We have analyzed which algorithm achieves the highest training
accuracy within, at most, 10 epochs for different batch sizes. In networks using BN layers,
all methods achieve comparable training and testing accuracy within 10 epochs with
bs = 1000. However, this cannot be generally observed when bs = 100. The figure
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shows that tuned Adam provides higher testing accuracy than sL-SR1-TR. Nevertheless,
sL-BFGS-TR is still faster at achieving the highest training accuracy, as we also previously
observed. It also provides testing accuracy comparable to tuned Adam. On the other hand,
for networks without BN layers, sL-SR1-TR is the clear winner.
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Figure 4. Comparison of sL-BFGS-TR, sL-SR1-TR (both with l = 20) and tuned Adam (with optimal
learning rate lr) for different batch sizes (bs). Learning rates equal to 10−4 and 10−3 are indicated as
lr: 1e-3 and lr: 1e-4, respectively.
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A final remark is that Adam’s performance seems to be more negatively affected by
large minibatch size than QN methods. For this reason, QN methods can increase their
advantage over Adam when using large batch sizes to enhance the parallel efficiency of
distributed implementations.

3.4. Comparison with STORM

We have performed a comparison between our sQN training algorithms and the algo-
rithm STORM (Algorithm 5 in [47]). STORM relies on an adaptive batching strategy aimed
at avoiding inaccurate stochastic function evaluations in the TR framework. Note that the
real reduction of the objective function is not guaranteed in a stochastic-trust-region ap-
proach. In [32,47], the authors claim that if the stochastic functions are sufficiently accurate,
this will increase the number of true successful iterations. Therefore, they considered a
progressive sampling strategy with sample size

bk = min(N, max(b0 · k + b1, d 1
δk

2 e)),

where δk is the trust region radius at iteration k, N is the total number of samples, and b0, b1
are b0 = 100, b1 = 32× 32× 3 for CIFAR10, and b1 = 28× 28× 1 for Fashion-MNIST.

We have applied STORM with both L-SR1 and L-BFGS updates. We have compared
the performances of the sL-SR1-TR and sL-BFGS-TR algorithms employing different over-
lapping batch sizes running for 10 epochs with the performance provided by STORM with
progressive batch size bk running for 50 epochs. We allowed STORM to execute for more
epochs, i.e., 50 epochs, since, due to its progressive sampling behavior it passed 10 epochs
very rapidly. The largest batch size reached by STORM within this number of epochs is
near bk = 25,000 (i.e., 50 percent of the total number of training samples).

The results of this experiment are summarized in Figure 5. In both Fashion-MNIST
and CIFAR10 problems, the algorithms with bs = 500 and bs = 1000 produce comparable or
higher final accuracy than STORM at the end of their respective training phases. Even if we
set a fixed budget of time corresponding to the one needed by STORM to perform 50 epochs,
sL-QN-TR algorithms with bs = 500 and bs = 1000 provide comparable or higher accuracy.
The results corresponding to the smallest and largest batch sizes need a separate discussion.
When bs = 100, the stochastic QN algorithms are not better than STORM with any fixed
budget of time; however, they provide higher final training accuracy and testing accuracy,
except for the Fashion-MNIST problem on ResNet-20 trained by sL-BFGS-TR.

By contrast, when bs = 5000, sL-BFGS-TR algorithms produce higher or comparable
training accuracy but not a testing accuracy comparable to the one provided by STORM.
This seems quite logical, as using such a large batch size causes the algorithms to perform
a small number of iterations and then to update the parameter vector only a few times;
allowing longer training time or more epochs can compensate for this lower accuracy.
Finally, this experiment shows also that the sL-BFGS-TR algorithm with bs = 5000 yields
higher accuracy within less time than that obtained when bs = 100 is used.
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Figure 5. The performance of sL-BFGS-TR and sL-SR1-TR with different fixed batch sizes (bs),
in comparison to STORM. Left and right columns display the Training and Testing accuracies,
respectively.
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4. Conclusions

We have studied stochastic QN methods for training deep neural networks. We have
considered both L-SR1 and L-BFGS updates in a stochastic setting in a trust region frame-
work. Extensive experimental work—including the effect of batch normalization (BN),
the limited memory parameter, the sampling strategy, and batch size—has been reported
and discussed. Our experiments show that BN is a key factor in the performance of stochas-
tic QN algorithms and that sL-BFGS-TR behaves comparably to or slightly better than
sL-SR1-TR when BN layers are used, while sL-SR1-TR performs better in networks without
BN layers. This behavior is in accordance with the property of L-SR1 updates allowing
for indefinite Hessian approximations in non-convex optimization. However, the exact
reason for the different behavior of the two stochastic QN algorithms with networks not
employing BN layers is not completely clear and would deserve further investigation.

The reported experimental results have illustrated that employing larger batch sizes
within a fixed number of epochs produces lower training accuracy, which can be recovered
by longer training. Regarding training time, our results have also shown a slight superiority
in the accuracy reached by both algorithms when larger batch sizes are used within a fixed
budget of time. This suggests the use of large batch sizes also in view of the parallelization
of the algorithms.

The proposed sQN algorithms, with the overlapping fixed-size sampling strategy,
revealed to be more efficient than the adaptive progressive batching algorithm STORM,
which naturally incorporates a variance reduction technique.

Finally, our results show that sQN methods are efficient in practice and, in some
instances, outperform tuned Adam. We believe that this contribution fills a gap concerning
the real performance of the SR1 and BFGS updates in realistic large-size DNNs, and it
is expected to help steer the researchers in this field towards the option of the proper
quasi-Newton method.
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Appendix A. Solvers for the TR Subproblem

Appendix A.1. Computing with an L-BFGS Matrix

This section describes how to solve the TR subproblem (2), using L-BFGS through
Algorithm A1; see [30,38,48] for more details. Let Bk be an L-BFGS compact matrix (11). Us-
ing Theorem 1, the global solution of the TR subproblem (2) can be obtained by exploiting
the following two strategies:

Spectral Decomposition of Bk

By the thin QR factorization of the matrix Ψk, Ψk = QkRk, or the Cholesky factorization
of the matrix ΨT

k Ψk, ΨT
k Ψk = RT R, and then spectral decomposition of the small matrix

Rk MkRT
k as Rk MkRT

k = UkΛ̂UT
k , we have

Bk = B0 + QkRk MkRT
k QT

k = γk I + QkUkΛ̂UT
k QT

k ,

where Uk and Λ̂, respectively, are orthogonal and diagonal matrices. Now, let P‖ , QkUk

(or let P‖ , (ΨkR−1
k Uk)

T) and P⊥ , (QkUk)
⊥, where ⊥ is an orthogonal complement

(perpendicular). By Theorem 2.1.1 in [49], we obtain PT P = PPT = I, where

P ,
[
P‖ P⊥

]
∈ Rn×n. (A1)

Therefore, the spectral decomposition of Bk is obtained as

Bk = PΛPT , Λ ,
[

Λ1 0
0 Λ2

]
=

[
Λ̂ + γk I 0

0 γk I

]
, (A2)

where Λ = diag(λ̂1, . . . , λ̂n) = diag(λ̂1 + γk, . . . , λ̂k + γk, γk, . . . , γk) ∈ Rn×n with Λ1 ∈
R2l×2l and Λ2 ∈ R(n−2l)×(n−2l) when k > 2l. We note that Λ1 ∈ Rk×k and Λ2 ∈
R(n−k)×(n−k) when k ≤ 2l. We also assume the eigenvalues in Λ1 are ordered in increasing
values. Notice that Λ1 includes, at most, 2l elements with limited memory parameter l.

Inversion by Sherman–Morrison–Woodbury Formula

By dropping subscript k in (11) and using the Sherman–Morrison–Woodbury formula
to compute the inverse of the coefficient matrix in (7), we obtain

p(σ) = −(B + σI)−1g = − 1
τ

(
I −Ψ

(
τM−1 + ΨTΨ

)−1
ΨT
)

g, (A3)

where τ = γ + σ. By using (A2), the first optimality condition in (7) can be written as

(Λ + σI)v = −PT g, (A4)

where

v = PT p, PT g ,
[

g‖
g⊥

]
=

[
PT
‖ g

PT
⊥g

]
, (A5)
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and, therefore,

‖p(σ)‖ = ‖v(σ)‖ =

√√√√{ k

∑
i=1

(g‖)2
i

(λi + σ)2

}
+
‖g⊥‖2

(γ + σ)2 , (A6)

where ‖g⊥‖2 = ‖g‖2 − ‖g‖‖2. This makes the computation of ‖p‖ feasible without com-
puting p explicitly. Let pu , p(0) as an unconstrained minimizer for (2) be the solution of
the first optimality condition in (7), for which σ = 0 makes the second optimality condition
hold. Now, we consider the following cases. If ‖pu‖ ≤ δ, the optimal solution of (2)
using (A3) is computed as

(σ∗, p∗) = (0, pu) = (0, p(0)). (A7)

If ‖pu‖ > δ, then p∗ must lie on the boundary of the TR, to hold the second optimality con-
dition. To impose this, σ∗ must be the root of the following equation, which is determined
by the Newton method proposed in [38]:

φ(σ) ,
1

‖p(σ)‖ −
1
δ
= 0. (A8)

Therefore, using (A3), the global solution is computed as

(σ∗, p∗) = (σ∗, p(σ∗)). (A9)

Appendix A.2. Computing with an L-SR1 Matrix

For solving (2), where Bk is a compact L-SR1 matrix (20), the efficient Algorithm A2,
called the Orthonormal Basis L-SR1 (OBS), was proposed in [38]. Let (A2) be the eigenvalue de-
composition of (20), where Λ = diag(λ̂1, . . . , λ̂n) = diag(λ̂1 + γk, . . . , λ̂k + γk, γk, . . . , γk) ∈
Rn×n with Λ1 ∈ Rl×l and Λ2 ∈ R(n−l)×(n−l) when k > l. We note that Λ1 ∈ Rk×k and
Λ2 ∈ R(n−k)×(n−k) when k ≤ l. We also assume the eigenvalues in Λ1 are ordered in in-
creasing values. Note that Λ1 includes, at most, l elements with limited memory parameter
l. The OBS method exploits the Sherman–Morrison–Woodbury formula in different cases
for L-SR1 Bk; by dropping subscript k in (20), these cases are:

B is positive-definite

In this case, the global solution of (2) is (A7) or (A9).

B is positive semi-definite (singular)

As γ 6= 0 and B is positive semi-definite with all non-negative eigenvalues, then
λmin = min{λ1, γ} = λ1 = 0. Let r be the multiplicity of λmin; therefore,

0 = λ1 = λ2 = · · · = λr < λr+1 ≤ λr+2 ≤ · · · ≤ λk.

For σ > −λmin = 0, the matrix (Λ + σI) in (A4) is invertible and, thus, ‖p(σ)‖ in (A6) is
well defined. For σ = −λmin = 0, we consider the two following sub-cases to have a well-
defined expression in (A6); we will discuss in the limit setting at −λ+

min. If limσ→0+ φ(σ) <
0, then limσ→0+ ‖p(σ)‖ > δ. Here, the OBS algorithm uses Newton’s method to find σ∗ ∈
(0, ∞), so that the global solution p∗ lies on the boundary of the trust region, i.e., φ(σ∗) = 0.
This solution p∗ = p(σ∗) is computed using (A3), by which, the global pair solution
(σ∗, p∗) satisfies the first and second optimal conditions in (7). If limσ→0+ φ(σ) ≥ 0, then
limσ→0+ ‖p(σ)‖ ≤ δ. It can be proved that φ(σ) is strictly increasing for σ > 0 (see
Lemma 7.3.1 in [34]). This makes φ(σ) ≥ 0 for σ > 0, as it is non-negative at 0+ and, thus,
φ(σ) can only have a root σ∗ = 0 in σ ≥ 0. Here, we should note that even if φ(σ) > 0,
the solution σ∗ = 0 makes the second optimality condition in (7) hold. As matrix B + σI
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at σ∗ = 0 is not invertible, the global solution p∗ for the first optimality condition in (7) is
computed by

p∗ = p(σ∗) = −(B + σ∗ I)†g = −P(Λ + σ∗ I)†PT g

= −P‖(Λ1 + σ∗ I)†PT
‖ g− 1

γ + σ∗
P⊥PT

⊥g

= −ΨR−1U(Λ1 + σ∗ I)†g‖ −
1

γ + σ∗
P⊥PT

⊥g,

(A10)

where (g‖)i = (PT
‖ g)i = 0 for i = 1, . . . , r if σ∗ = −λmin = −λ1 = 0, and

P⊥PT
⊥g = (I − P‖P

T
‖ )g = (I −ΨR−1R−TΨT)g.

Therefore, both optimality conditions in (7) hold for the pair solution (σ∗, p∗).

B is indefinite

Let r be the algebraic multiplicity of the leftmost eigenvalue λmin. As B is indefinite
and γ 6= 0, we obtain λmin = min{λ1, γ} < 0.

Evidently, for σ > −λmin, the matrix (Λ + σI) in (A4) is invertible and, thus, ‖p(σ)‖
in (A6) is well defined. For σ = −λmin, we discuss the two following cases. If limσ→−λ+

min
φ(σ)

< 0, then limσ→−λ+
min
‖p(σ)‖ > δ. The OBS algorithm uses Newton’s method, to find

σ∗ ∈ (−λmin, ∞) as the root of φ(σ) = 0, so that the global solution p∗ lies on the boundary
of the trust region. By using (A3) to compute p∗ = p(σ∗), the pair (σ∗, p∗) satisfies both
the conditions in (7). If limσ→−λ+

min
φ(σ) ≥ 0, then limσ→−λ+

min
‖p(σ)‖ ≥ δ. For σ > −λmin,

we obtain φ(σ) ≥ 0, but the solution σ∗ = −λmin as the only root of φ(σ) = 0 is a positive
number, which cannot satisfy the second optimal condition when φ(σ) is strictly positive.
Hence, we should consider the cases of equality and inequality separately:

Equality. Let limσ→−λ+
min

φ(σ) = 0. As matrix B + σI at σ∗ = −λmin is not invertible,
the global solution p∗ for the first optimality condition in (7) is computed using (A10) by

p∗ =

−ΨR−1U(Λ1 + σ∗ I)†g‖ −
1

γ + σ∗
P⊥PT

⊥g, σ∗ 6= −γ,

−ΨR−1U(Λ1 + σ∗ I)†g‖, σ∗ = −γ,
(A11)

where g⊥ = PT
⊥g = 0 and, thus, ‖g⊥‖ = 0 if σ∗ = −λmin = −γ. For i = 1, . . . , r, we obtain

(g‖)i = (PT
‖ g)i = 0 if σ∗ = −λmin = −λ1.

We note that both optimality conditions in (7) hold for the computed (σ∗, p∗).

Inequality. Let limσ→−λ+
min

φ(σ) > 0; then, limσ→−λ+
min
‖p(σ)‖ < δ. As mentioned

above, σ = −λmin > 0 cannot satisfy the second optimality condition. In this case, a
so-called hard case, we attempt to find a solution that lies on the boundary. For σ∗ = −λmin,
this optimal solution is provided by

p∗ = p̂∗ + z∗, (A12)

where p̂∗ = −(B + σ∗ I)†g is computed by (A11) and z∗ = αumin. Vector umin is a unit
eigenvector in the subspace associated with λmin, and α is obtained so that ‖p∗‖ = δ, i.e.,

α =
√

δ2 − ‖ p̂∗‖2. (A13)
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The computation of umin depends on λmin = min{λ1, γ}. If λmin = λ1, then the first
column of P is a leftmost eigenvector of B and, thus, umin is set to the first column of P‖.
On the other hand, if λmin = γ, then any vector in the column space of P⊥ will be an
eigenvector of B corresponding to λmin. However, we avoid forming matrix P⊥ to compute
P⊥PT

⊥g in (A11) if λmin = λ1. By definition (A1), we have that

Range(P⊥) = Range(P‖)
⊥, Range(P‖) = Ker(I − P‖P

T
‖ ).

To find a vector in the column space of P⊥, we use I − P‖PT
‖ as a projection matrix mapping

onto the column space of P⊥. For simplicity, we can map one canonical basis vector at a
time onto the column space of P⊥ until a nonzero vector is obtained. This practical process,
repeated, at most, k + 1 times, will result in a vector that lies in Range(P⊥), i.e.,

umin , (I − P‖P
T
‖ )ej, (A14)

for j = 1, 2, . . . k + 1 with ‖umin‖ 6= 0; because ej ∈ Range(P‖) and

rank(P‖) = dim Range(P‖) = dim Kerl(I − P‖P
T
‖ ) = k.

In this process, we start with e1 ∈ Range(P‖), such that

(I − P‖P
T
‖ )e1 ∈ Range(P⊥).

If ‖(I − P‖PT
‖ )e1‖ 6= 0, the vector umin is found; otherwise, we map the next canonical basis

vector, e2. If (I − P‖PT
‖ )ej = 0 and, thus, ‖(I − P‖PT

‖ )ej‖ = 0, for j = 1, . . . , k, then umin is
obtained in the attempt j = k + 1.

Appendix B. Trust-Region Subproblem Solution Algorithms

Algorithm A1 TR subproblem solution with an L-BFGS compact matrix.
1: Inputs:

Current iteration k, δ , δk, g , gk and B , Bk : Ψ , Ψk, M−1 , M−1
k , γ , γk

2: Compute the thin QR factors Q and R of Ψ or the Cholesky factor R of ΨTΨ
3: Compute the spectral decomposition of matrix RMRT , i.e., RMRT = UΛ̂UT

4: Set Λ̂ = diag(λ̂1, . . . , λ̂k) such that λ̂1 ≤ . . . ≤ λ̂k and λmin = min{λ1, γ}
5: Compute the spectral of Bk as Λ1 = Λ̂ + γI
6: Compute P‖ = QU or P‖ = (ΨR−1U)T and g‖ = PT

‖ g
7: if φ(0) ≥ 0 then
8: Set: σ∗ = 0
9: Compute p∗ with (A3) as solution of (Bk + σ∗ I)p = −g

10: else
11: Compute a root σ∗ ∈ (0, ∞) of (A8) by Newton method [38]
12: Compute p∗ with (A3) as solution of (Bk + σ∗ I)p = −g
13: end if
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Algorithm A2 TR subproblem solution with an L-SR1 compact matrix.
1: Inputs:

Current iteration k, δ , δk, g , gk and B , Bk : Ψ , Ψk, M−1 , M−1
k , γ , γk

2: Compute the thin QR factors Q and R of Ψ or the Cholesky factor R of ΨTΨ
3: Compute the spectral decomposition of matrix RMRT , i.e., RMRT = UΛ̂UT

4: Set Λ̂ = diag(λ̂1, . . . , λ̂k) such that λ̂1 ≤ . . . ≤ λ̂k and λmin = min{λ1, γ}
5: Compute the spectral of Bk as Λ1 = Λ̂ + γI
6: Compute P‖ = QU or P‖ = (ΨR−1U)T and g‖ = PT

‖ g
7: if Case I: λmin > 0 and φ(0) ≥ 0 then
8: Set: σ∗ = 0
9: Compute p∗ with (A3) as solution of (Bk + σ∗ I)p = −g

10: else if Case II: λmin ≤ 0 and φ(−λmin) ≥ 0 then
11: Set: σ∗ = −λmin
12: Compute p∗ with (A10) as solution of (Bk + σ∗ I)p = −g
13: if Case III: λmin < 0 then
14: Compute α and umin with (A12) for z∗ = αumin
15: Update: p∗ = p∗ + z∗

16: end if
17: else
18: Compute a root σ∗ ∈ (max{−λmin, 0}, ∞) of (A8) by Newton method [38]
19: Compute p∗ with (A3) as solution of (Bk + σ∗ I)p = −g
20: end if
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