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Abstract: Glaciers are important indictors of climate change as changes in glaciers physical features
such as their area is in response to measurable evidence of fluctuating climate factors such as
temperature, precipitation, and CO2. Although a general retreat of mountain glacier systems has
been identified in relation to centennial trends toward warmer temperatures, there is the potential
to extract a great deal more information regarding regional variations in climate from the mapping
of the time history of the terminus position or surface area of the glaciers. The remote nature of
glaciers renders direct measurement impractical on anything other than a local scale. Considering
the sheer number of mountain glaciers around the globe, ground measurements of terminus position
are only available for a small percentage of glaciers and ground measurements of glacier area are
rare. In this project, changes in the terminal point and area of Franz Josef and Gorner glaciers
were quantified in response to climate factors using satellite imagery taken by Landsat at regular
intervals. Two supervised learning methods including a parametric method (multiple regression)
and a nonparametric method (generalized additive model) were implemented to identify climate
factors that impact glacier changes. Local temperature, CO2, and precipitation were identified as
significant factors for predicting changes in both Franz Josef and Gorner glaciers. Spatiotemporal
quantification of glacier change is an essential task to model glacier variations in response to global
and local climate factors. This work provided valuable insights on quantification of surface area of
glaciers using satellite imagery with potential implementation of a generic approach.

Keywords: mountain glaciers; supervised learning; generalized additive models; cryosphere; Landsat
satellite imagery; climate change; terminus; Gorner glacier; Franz Josef glacier

1. Introduction

The mountain cryosphere and the glaciers found around the globe have a non-trivial
impact on humanity. On a fundamental level, the glaciers scattered throughout the globe,
provide a large segment of the world’s residents with a source of freshwater. Populations
residing in arid regions, typically near mountains often depend on run off from melting
glaciers for their water during the drier and warmer parts of the year. River systems
meandering through portions of Asia are sustained from ice and snowmelt located in
the Himalayas and the glaciers within the mountain range, this is particularly true in
late summer when a predominant factor contributing to river flow comes from melting
glaciers [1] provides a supplementary source of water during the sustained dry periods
experienced in this urban region [2]. The socio-political impacts due to the loss of mountain
glaciers have the potential to be significant on both the ecological and global political
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level [3]. The recognition of these contingencies has spurred increased interest and research
into the study of the mountain cryosphere and the health of the glacier it contains.

Stepping into the issue of glacier recession one quickly realizes the enormity of the
undertaking this problem set. The first roadblock is the substantial number of glaciers
that can be found around the globe (Figure 1). The Global Land Ice Measurements from
Space (GLIMS) Glacier Database currently has 604,986 unique glacier outline entries [4,5].
Investigation of the spatial data demonstrates that many individual glaciers are but one
component of a complex subsection of a larger glacier network (Figure 1). Additionally, the
remote, and in some cases, denied locations, coupled with austere conditions found in the
vicinity of glaciers places emphasis on finding alternatives to the in-situ measurements of
changes taken on the ground. An example would be the country of North Korea, obtaining
access to glaciers here may prove challenging or impossible.
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Figure 1. Regional Glacier Network Overview.

One candidate for a collection method which finds extensive use in the existing
literature is remote sensing, and more specifically the use of satellite imagery. Remote
sensing is a broad-based term that encompasses a diverse number of platforms which
include both spaceborne platforms on orbit and air breathing aerial platforms which
include assets like drones or aircraft equipped with different sensor technology. The
existing datasets and databases contain multiple decades of useful images from which to
extract information. Within these images the features of principal interest are the location of
the glacier’s terminal point (Figure 2) and its change through time. The proper identification
of which allows for the estimation of the recession velocity along with the changing area of
the glacier or glaciers of interest. Found within the extant literature, are numerous methods
for estimating changes in the location of a glacier’s terminus using optical based image
data and for estimating changes in glacial area [6–9].
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Previous research on methods of glacial recession and on the identification of glacial
termini are vast. The work has produced numerous methodological processes using a
variety of diverse techniques (Figure 2). Surveying these efforts, one can glean that while
some of the methods will work well on single efforts or one-off projects, for instance
a study of one particular glacier, others are more suitable for larger scale analysis and
have the potential to be easily automated and generalizable. Given the size of the global
glacier inventory is a desirable quality for global scale of modeling. Previous research
using commonly employed methods to track changes in the termini of glaciers has shown
a common theme. This commonality is the reduction of what is in the final analysis, a
three- dimensional (3-D) spatial phenomena being projected down to a zero-dimensional
(0-D) spatial value for the terminus location to evaluate the distance the glacier has ad-
vanced/retreated along its path of motion. This dimensionality reduction provides a level
of efficiency in the analysis of the glacier motion and is a useful model simplification
when it is appropriate. A comparison of standard methods including the center-line, bow,
rectilinear-box, curvilinear-box, and extrapolated is provided by Lea et al. 2014. Each of the
above-mentioned methodologies is subject to its own advantages and weaknesses and the
use of any one of the methods involves considerations of glacial geometry along with the
aim of the study being undertaken [10].

Other work applies a more general approach to terminus estimation which relies heav-
ily on optical imagery. An advantage of which is to avoid specific geometric dependencies
of a particular glacier. The method exploits the properties of the multiband attributes of
satellite imagery and the flexibility of Nonparametric Regression [7]. Taking advantage
of the return times of the LANDSAT satellite platform, this method uses selected spectral
bands of the images to identify which regions of the spectrum produce the largest intensity
changes along the path of the glacier. This intensity change is indicative of the transition
from soil, vegetation, and debris of the mountain landscape to the ice of the glacier. These
intensity changes are collected through time as this process is repeated on a series of im-
ages. On each image a glacier path is manually drawn, this path is simply a hand drawn
curve. Then along the length of this path the intensity of each pixel is collected. Using the
derivatives and the inflection points of the collected intensity values to identify the terminal
points of the glacier, the method can capture the glacier movement against a ground truth,
based on direct measurements.

A major drawback to this method is its dependency on an investigator drawing the
path of the glacier manually. As was mentioned previously this would make the method
problematic in large scale glacier networks, or global glacier studies. It would also prevent,
in its current state, an automated implementation given the dependency on a human drawn
path to derive the intensity profile. It is with the final goal of limiting or eliminating manual
input that this papers current methodology was developed. In addition to increasing ease
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of automation, robust and flexible models for estimating glacier variations in response to
global and local climate factors is developed by either detection of the glacier terminal
point or quantification of the glacier area.

The objectives of this research are to implement a generic method for quantifying
glacier area and locating its terminus and model their variations in response to climate
factors using both parametric and nonparametric supervised techniques. The geometry of
individual glaciers has been estimated using remote sensing techniques to include various
semi-automated image analysis techniques such as supervised classification, edge detection,
and region segmentation in an attempt to develop a pipeline for quantification of glacier
changes that could be potentially applicable to a large set of glaciers around the globe.

2. Data Collection and Preprocessing

Two distinct types of data were employed to study the glacier recession by quantifying
changes in the terminal point and area of Gorner and Franz Josef glaciers (Figure 3). These
are two similar but spatially distant mountain glaciers. One set of data consists of satellite
imagery, multiple images of spatial locations taken over time. The other data type is
a univariate time series of environmental sensor recordings of multiple climate factors
collected by various international agencies. Each of the data sets presents its own challenges
from a data wrangling perspective given the diversity of values, measurement scales, and
potential usefulness of the attributes unique to each data type.
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2.1. Landsat Imagery

The main source of imagery used in this study is satellite imagery of the glaciers
of interest gathered exclusively via the Landsat program publicly available through the
National Aeronautics and Space Administration’s (NASA) [11]. The Landsat data is stored
in online databases and is freely accessible and downloadable via the web. The Landsat
images along with the metadata (and much more) are available via the United States
Geological Survey’s Earth Explorer webpage found at https://earthexplorer.usgs.gov/
(accessed on 16 February 2021). It must be pointed out that, Sentinel program sponsored by
European Space Agency provides satellite imagery with better resolution (in some spectral
bands) taken by Sentinel-2 satellite. However, the Sentinel program began in 2015 and
an inventory of only about 8 years of satellite imagery is available through this program.
In contrast, the Landsat program started in 1972, provides more than 5 decades of data
available. Moreover, satellite imagery with better resolutions is only available commercially
for a much shorter period than a decade.

The images of each glacier are captured at specific dates based on the glacier’s ge-
ographic coordinates. Landsat has a 16-day return time, and the data is collected over

https://earthexplorer.usgs.gov/
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several decades. The data has been publicly available since 2008 which has made it an
attractive database of satellite imagery for scientists performing multidecade studies. In
the preprocessing step of this study, we removed those scenes where the glaciers were
obscured by clouds or mountain shades, and scenes with degraded imaging due to sensor
malfunctioning. An example of image degradation can be found in the Landsat 7 (one
of the multiple Landsat platforms with available data) image products. After launch, the
Scan Line Corrector (SLC) went off line and due to this malfunction images will contain
a zig-zag pattern. This becomes an issue when the pattern intersects with the object of
interest as it is depicted in Figure 4.
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The Landsat images are collected with a multispectral sensor. This capability implies
that each of the images contains several spectral bands. Each of these spectral bands has its
own wavelength range of the electromagnetic spectrum. Multispectral imaging capability
enables different views of the same scene highlighting features of interest that could be
better viewed in created image in a specific band.

Figure 5 shows the specific breakdown of a typical multispectral Landsat 7 image
into its spectral bands as well as band specific images in false color along with terminus
localization process. In this analysis the dataset was created from a collection of Landsat 7
and 8 images for both glaciers under consideration. The initial data pull consisted of 511
images in total for both glaciers, 263 for Franz Josef and 248 for Gorner. All of the original
images fall in the date range January 2000 through November 2021. After cleaning the data
for images where the glacier was obscured by clouds or shadows the final data sets for each
glacier were as follows: Franz Josef data range is August 2000 through August 2021 and
in this time frame 93 useful images were retained, while for Gorner the date range is May
2000 through October 2021 with 97 useful images retained.
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2.2. Climate Factor Data

The climate factor data, which is used extensively in the modeling and prediction of
the glacier variations, is time series data collected by several different sensors. The specific
factors selected for the analysis were temperature in degrees Celsius, Carbon Dioxide
(CO2) concentration in parts per million (ppm) and Precipitation in millimeters (mm). Each
of these factors were collected by the appropriate national agencies with daily sampling
frequency in the regions containing the glaciers in this study.

Daily climate data was collected from the weather station closest to Franz Josef and
Gorner glaciers from the National Oceanic and Atmospheric Administration Climate Data
Online platform available at https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/
stations/GHCND:NZ000936150/detail (accessed on 7 July 2022). The data for Franz Josef
was taken from the Hokitika Aerodrome weather station in New Zealand and spans the two
decades from 1989 to 2009. For the Gorner glacier, the dataset was from the Sion weather
station in Switzerland spanning from 1985 to 2009. The dataset contains daily information
on minimum, maximum, and average temperate, and precipitation. To attain comparable
resolution for the response, i.e., glacier variations estimated using spatiotemporal satellite
imagery, and the predictors, i.e., climate factors, monthly data was calculated by averaging
observed daily climate factors in the data preprocessing phase.

To assess the predictive viability of CO2 on glacier variations in the modeling process,
the monthly Mauna Loa CO2 average data was sourced from NOAA. The sourced data
contains monthly average CO2 levels from March 1958 to May 2021 recorded at the Mauna
Loa station in Hawaii. The data is a proxy for many other human activities that contribute
to climate change and the warming temperatures on the globe. Local temperature for each
glacier was sourced from the closest regional station. An overall monthly global average
temperature was also calculated in order to assess the overall temperature variations. A
monthly data set was utilized from NOAA which contains samples of the monthly average
temperature from January 1880 to December 2021. The result is a data set which contains a
total of six predictors measured at both the global and local levels. Next, glacier variations
(estimated either by detected terminus or by quantified area) will be modeled in response to
monthly measurements of the predictors of interest (aforementioned data) for identification
of potential relationship between temporal glacier variations and climate factors.

3. Methods

Due to the limitations of the previous methods for identification of glacier terminal
points, along with the estimation of area, different techniques are required to improve the
analytical process [10]. This work is a combination of image processing techniques with
parametric and nonparametric statistical methods to model glacier change. In this section, a
novel method, both in its breadth of analysis (area and terminal point) and generalizability
(not designed for a specific glacier), will be discussed. First the investigative processes
for quantifying changes in the terminal point and area variation of mountain glaciers will
be developed, followed by the results of a preliminary application on two similar but
spatially distant mountain glaciers (Figure 3). While both glaciers namely Franz Josef
in New Zealand and Gorner in Switzerland share the characteristic of being mountain
glaciers, they differ by being thousands of miles apart and in opposite hemispheres of the
globe. This selection was deliberate in order to prevent the development of a model or a
method that would rely on the characteristics of one specific glacier or geographical and
climatological conditions found in one specific region.

The glacier termini are manually marked in the satellite imagery using a graphical
user interface (GUI) developed in MATLAB R 2021b. After the identification of the terminal
point the glacier area will be estimated via the application of several standard image
processing techniques. This process is replicated over a time series of Landsat images.
The results of both the terminal point locations and the estimated areas are stored for
use as dependent variables in a model using climate factors as predictors to describe
the variation in the glaciers attributes of interest (area and terminal point change). The

https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:NZ000936150/detail
https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:NZ000936150/detail
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overall intent of the modeling process is to construct a predictive and interpretable model
for the variations of mountain glaciers due to global climate change and its effects. The
schematics of the analytical process are displayed In Figure 6. The first step is data collection
and preprocessing where Landsat imagery and climate data are collected, cleaned up,
and preprocessed. This step also includes quantification of glacier area and localization
of glacier terminus. Next, two different statistical approaches are taken, a parametric
technique (multiple regression), and a nonparametric method (GAM). Both statistical
approaches are applied to model glacier change. The glacier variation is once modeled
using changes in spatiotemporal location of glacier terminus, and again by quantification
of changes in glacier area over time.
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3.1. Quantification of Glacier Area and Terminus

Terminal point was located using a suit of image processing techniques over temporal
sequence of images collected for each glacier. A graphical user interface was developed
to zoom on the glacier’s geographical location on the image using glacier’s latitude and
longitude. A bonding box as region of interest (ROI) encompassing the glacier’s area was
drawn. The ROI was used to crop the glacier through entire sequence of original Landsat
images. Terminal point location was then marked in each cropped image of the sequence.

Because only two glaciers were studied in this project, the manual terminus detection
was an effective and rapid approach to locate the terminus and mark it by a single pixel
on the glacier image. This manual detection method allowed a swift process of a large
sequence of images for each glacier by avoiding issues such as partial obstruction of the
glacier in the image.

Although an expedient method was developed for the identification of the terminus
location, segmentation of glacier area proved to be a more challenging problem. This
difficulty stem from the fact that finding the entire outline of the glacier is a two-dimensional
problem in contrast with the detection of the terminal point that is a zero-dimensional
task. The segmentation of cropped image to glacier and non-glacier segments with sharp
boundaries is rather challenging due mainly to debris and mud blending into the ice near
glacier’s boundaries.

Region growing and edge detection methods were preliminary attempted to segment
the area of the glacier. Each of these methods were slightly successful to segment the glacier
area. Region growing method creates homogenous regions based upon a specific threshold,
while edge detection looks for abrupt changes in pixel intensity to identify an edge. A
mutual challenge among both segmentation methods is to find the threshold for optimal
segmentation of glacier boundary in each image in the sequence, one by one. Hence, a
hybrid method was implemented by combination of region growing and edge detection
techniques. Figure 7 shows some partially successful application of this hybrid Region
Growing-Edge Detection approach to both glaciers in this study. Some regions containing
both glacier and non-glacier areas can be observed in Figure 7(Left).



Algorithms 2023, 16, 486 8 of 27

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 26 
 

(multiple regression), and a nonparametric method (GAM). Both statistical approaches 
are applied to model glacier change. The glacier variation is once modeled using changes 
in spatiotemporal location of glacier terminus, and again by quantification of changes in 
glacier area over time. 

 
Figure 6. Schematic of Proposed Method. 

3.1. Quantification of Glacier Area and Terminus 
Terminal point was located using a suit of image processing techniques over tem-

poral sequence of images collected for each glacier. A graphical user interface was devel-
oped to zoom on the glacier’s geographical location on the image using glacier’s latitude 
and longitude. A bonding box as region of interest (ROI) encompassing the glacier’s area 
was drawn. The ROI was used to crop the glacier through entire sequence of original 
Landsat images. Terminal point location was then marked in each cropped image of the 
sequence. 

Because only two glaciers were studied in this project, the manual terminus detection 
was an effective and rapid approach to locate the terminus and mark it by a single pixel 
on the glacier image. This manual detection method allowed a swift process of a large 
sequence of images for each glacier by avoiding issues such as partial obstruction of the 
glacier in the image. 

Although an expedient method was developed for the identification of the terminus 
location, segmentation of glacier area proved to be a more challenging problem. This dif-
ficulty stem from the fact that finding the entire outline of the glacier is a two-dimensional 
problem in contrast with the detection of the terminal point that is a zero-dimensional 
task. The segmentation of cropped image to glacier and non-glacier segments with sharp 
boundaries is rather challenging due mainly to debris and mud blending into the ice near 
glacier’s boundaries. 

Region growing and edge detection methods were preliminary attempted to segment 
the area of the glacier. Each of these methods were slightly successful to segment the glac-
ier area. Region growing method creates homogenous regions based upon a specific 
threshold, while edge detection looks for abrupt changes in pixel intensity to identify an 
edge. A mutual challenge among both segmentation methods is to find the threshold for 
optimal segmentation of glacier boundary in each image in the sequence, one by one. 
Hence, a hybrid method was implemented by combination of region growing and edge 
detection techniques. Figure 7 shows some partially successful application of this hybrid 
Region Growing-Edge Detection approach to both glaciers in this study. Some regions 
containing both glacier and non-glacier areas can be observed in Figure 7(Left). 

 

Figure 7. (Left) Two scenes of the Franz Josef glacier superimposed (green, 1990; purple, 2009);
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highlight the recession.

To further improve the segmentation results, a multi-level thresholding technique
(Otsu’s method) was applied. Otsu’s method finds the optimum global threshold for the
image segmentation by maximizing the between-class variance of the pixel intensities in
the partitioned regions, here glacier vs. non-glacier. It demonstrated limited success in
producing somewhat detailed depictions of the glacier in some images, but often could not
produce sufficient separation between glacier and neighboring non-glacier areas.

The final approach contained three steps and outperformed the previous methods that
were used for glacier segmentation in this study. In the first step, the images were cropped
to remove as much of the glacier’s surroundings as possible. This cropping process has
the virtue of reducing the surrounding non-glacier features to improve the segmentation
results. The second step was to binarize the cropped image for preliminary segmentation
of image to glacier and non-glacier partitions. The final step was the application of Otsu’s
method for a detailed segmentation by finding the optimal global threshold. Different
glacial regions in the binarized image were compared (by counting the number of pixels
in each) to choose the region comprising the largest connected glacier area. The selective
cropping in the first step greatly facilitated the performance. The main advantage of this
technique was the combination of initial and final elimination of non-glacier areas.

3.2. Statistical Modeling

Beyond trying to identify glacier terminal points and glacial areas, the central point
of the analysis is to identify the association between glacier terminus variation (as well as
glacier area variation) and larger global dynamics specifically global warming driven by
climate change. To this end, several potential models were developed to assess and analyze
the potential association between the response and predictors.

3.2.1. Multiple Regression

First, multiple regression was implemented for modeling glacier variation using
climate factors. For each glacier two separate models were constructed, one for each of
the measured response variables, i.e., terminal point and glacier area. The general form of
multiple regression model is:

y = B0 + B1x1 + B2x2 + · · ·+ BKxK + ε (1)

where B′is are the unknown coefficients, x′is are the observed values of the predictors, and ε
is the Gaussian error term. The multiple regression to model terminus location is:

d = B0 + B1·CO2 + B2·TMIN + B3·TMAX + B4·PRCP + B5·Global_Temp + ε (2)

where d is temporal change of terminus (distance), TMIN is minimum local temperature,
TMAX is maximum local temperature, Global_Temp is average global temperature, and
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PRCP is average precipitation. In a similar way, the multiple regression to model glacier
area is:

a = B0 + B1·CO2 + B2·TMIN + B3·TMAX + B4·PRCP + B5·Global_Temp + ε (3)

where a is glacier area.

3.2.2. Generalized Additive Model (GAM)

Because of the observed non-linear trends in glacier variations, the more advanced
method of generalized additive models (GAMs) was implemented. GAM is a powerful
nonparametric method that can potentially discover the complex nonlinear trends in the
glacier variations. GAMs are more flexible than linear models and more interpretable than
deep learning methods. GAM is essentially an additive model of nonparametric smooth
functions [12–14]

g(E[Y|X]) = f0 + ∑K
j=1 f j

(
xj
)

(4)

where f (x) is a smooth function of predictor X, and Y is the response variable with a
distribution belongs to the exponential family (ex. Gaussian, Binomial, Gamma, etc.).
The main advantage of GAM is its capability to model highly complex and nonlinear
relationships. The consideration and the associated tradeoff between the simplicity of a
model and its interpretability. GAMs relax the restriction that the relationship must be a
simple weighted sum, like in the multiple regression model, and instead assume that the
outcome can be modeled by a sum of arbitrary smooth functions of each predictor variable.

The function g( ) in the GAM model (Equation (4)) is known as the link function.
The GAM links the sum of the smoothed predictors with the mean value of the assumed
distribution using the link function g( ), which can be chosen flexibly depending on the
problem under consideration. In addition to the Exponential family of distributions and the
link functions, the third essential component to the GAM is the smoothing functions f j

(
xj
)

for the predictor variables in the model. This implies that the predictor variables become
smooth curves by some function f. This is achieved for each of the functions f j

(
xj
)

in the
GAM by using a basis of splines to create the nonparametric smooths using the Restricted
Maximum likelihood method [14–16]. The GAM method employed in the current research
regresses the terminus change by:

d = f (CO2) + f (TMIN) + f (TMAX) + f (PRCP) + f (Global_Temp) + ε (5)

and the area change in the glaciers against the climate factors:

a = f (CO2) + f (TMIN) + f (TMAX) + f (PRCP) + f (Global_Temp) + ε (6)

In both GAM models in Equations (5) and (6), the distribution selected from the
exponential family is the Gaussian. This distributional assumption leads to the link function
being the identity function. The basis functions for the nonparametric smoothing are Thin-
Plate Splines where the dimension of the basis is varied from two to four basis functions over
selected permutations of predictors in the model. The smoothing selection method REML
is applied for smoothness selection. This leads to the functional form of the applied GAM
for the glacier recession analysis. Subsets and permutations of the smoothed predictors
will be evaluated against the full model using the Akaike Information Criterion (AIC) for
model selection. The top performing GAM for each independent variable, terminal point
distance, and area will be the model with lowest AIC value.

4. Results

After quantification of glacier area and locating its terminus, a univariate time series
for the changes in Franz Josef and Gorner glacier’s terminal point and area were created
from the collected Landsat image sequences. The climate data provides the independent
variables for both the multiple regression and the GAM while the area, and location
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data are used as the response variable. Multiple regression and GAM were used for
modeling the glacier variations. As depicted in Figure 8, it can be observed that the
two glaciers have differing behaviors over the time. Franz Josef having a period where
the glacier was advancing while Gorner was in a continuous state of retreat during the
same period (1985–2010). The optimal multiple regression based on AIC for modeling
Franz Josef variations was a combination of local temperature, global temperature, CO2,
and average precipitation for terminal point as response, and only local temperature and
average precipitation for area as response (Table 1). Local temperature and CO2 were
identified as the impactful factors by multiple regression to model Gorner glacier variations
using terminal point, while with glacier area as response, local temperature and global
temperature were only impactful predictors identified by the model (Table 1). The optimal
GAM for modeling Franz Josef variations was a combination of local temperature, CO2,
and average precipitation using either terminal point or glacier area as response (Table 2).
Local temperature, average precipitation, and CO2 were identified as the impactful factors
by GAM to model Gorner glacier variations using terminal point, while with glacier area
as response the global temperature was also included in the model (Table 2).
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Table 1. Multiple Regression Models. (a) Terminal Point of Franz Josef as Response. (b) Area of Franz
Josef as Response. (c) Terminal Point of Gorner as Response. (d) Area of Gorner as Response.

(a)

Franz Josef Terminal Point

Model Index Predictors

1 CO2

2 CO2 Global_Mean

3 CO2 Average_TMAX Global_Mean

4 Average_PRCP CO2 Average_TMAX Global_Mean

Subsets Regression

Model R-
Square

Adj. R-
Square

Pred. R-
Square C(p) AIC SBIC SBC MSEP FPE HSP APC

1 0.58 0.57 0.56 19.07 599 338 607 3495 38.82 0.43 0.44

2 0.64 0.63 0.61 1.93 577 319 587 2871 32.59 0.36 0.39

3 0.65 0.63 0.61 2.21 577 319 590 2847 32.65 0.36 0.39

4 0.65 0.64 0.61 5.00 555 308 569 2779 33.77 0.39 0.39

(b)

Franz Josef Area

Model Index Predictors

1 Global_Mean

2 Average_TMAX Global_Mean

3 Average_PRCP Average_TMAX Global_Mean

4 Average_PRCP CO2 Average_TMAX Global_Mean

Subsets Regression

Model R-
Square

Adj. R-
Square

Pred. R-
Square C(p) AIC SBIC SBC MSEP FPE HSP APC

1 0.34 0.31 0.24 4.74 389 315 393 4,213,050 174,460 7043 0.77

2 0.43 0.38 0.27 3.02 387 314 392 3,792,603 162,351 6616 0.72

3 0.47 0.40 0.26 3.25 387 315 393 3,667,008 62,052 6687 0.72

4 0.48 0.38 0.20 5.00 389 317 396 3,805,281 173,374 7270 0.77

(c)

Gorner Terminal Point

Model Index Predictors

1 CO2

2 CO2 Average_TMAX

3 Average_PRCP CO2 Average_TMAX

4 Average_PRCP CO2 Average_TMAX Global_Mean

Subsets Regression

Model R-
Square

Adj. R-
Square

Pred. R-
Square C(p) AIC SBIC SBC MSEP FPE HSP APC

1 0.93 0.93 0.93 −2.00 333 61 341 174 1.85 0.0195 0.07

2 0.93 0.93 0.93 −0.82 334 62 344 174 1.87 0.0197 0.07

3 0.93 0.93 0.93 1.18 336 64 349 176 1.91 0.0202 0.08

4 0.92 0.92 0.91 5.00 323 65 338 172 2.00 0.0223 0.09
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Table 1. Cont.

(d)

Gorner Area

Model Index Predictors

1 CO2

2 CO2 Average_TMAX

3 Average_PRCP CO2 Average_TMAX

4 Average_PRCP CO2 Average_TMAX Global_Mean

Subsets Regression

Model R-
Square

Adj. R-
Square

Pred. R-
Square C(p) AIC SBIC SBC MSEP FPE HSP APC

1 0.88 0.88 0.88 10.5 1798 1562 1805 11,904,380,369 146,881,258 1,792,815 0.12

2 0.89 0.89 0.88 6.0 1794 1558 1803 11,200,129,510 139,795,855 1,707,838 0.12

3 0.89 0.89 0.88 6.7 1794 1559 1806 11,145,284,672 140,706,326 1,720,988 0.12

4 0.89 0.89 0.88 5.0 1706 1483 1721 10,264,439,570 138,078,149 1,778,893 0.12

Table 2. Generalized Additive: Models. (a) Terminal Point of Franz Josef as Response. (b) Area of
Franz Josef as Response. (c) Terminal Point of Gorner as Response. (d) Area of Gorner as Response.
Find the complete set of models in Appendix A.

(a)

Franz Josef Terminal Point Distance GAM

Distance ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −5.4894 0.3898 −14.1 2 × 10−16

Smooth Terms EDF REF DEF F p-Value

s(Average_TMIN) 1.274 1.49 3.456 0.073

s(CO2) 2.868 2.987 47.024 2 × 10−16

s(Average_PRCP) 1 1 0.046 0.8303

s(Global_Mean) 1 1 5.429 0.0223

Model AIC Deviance Adj R2

480.799 86.1 85

(b)

Franz Josef Area GAM

Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 3211.96 58.77 54.65 2 × 10−16

Smooth Terms EDF REF DEF F p-Value

s(Average_TMAX) 1.988 2.4 1.671 0.186

s(CO2) 2.311 2.654 4 6.33 × 10−2

s(Average_PRCP) 1.363 1.607 1.167 0.2345

s(Global_Mean) 1 1 6.232 0.0224

Model AIC Deviance Adj R2

380.5743 71.9 61.8
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Table 2. Cont.

(c)

Gorner Terminal Point Distance GAM

Distance ~ s(CO2) + s(Average_PRCP) + s(Average_TMAX)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −7.3318 0.1289 −56.87 2 × 10−16

Smooth Terms EDF REF DEF F p-Value

s(Average_TMAX) 1 1 1.908 0.17

s(CO2) 1.933 1.995 701.255 2 × 10−16

s(Average_PRCP) 1 1 0.132 0.717

Model AIC Deviance Adj R2

324.23 94 93.7

(d)

Gorner Area GAM

Area ~ s(CO2) + s(Average_PRCP) + s(Average_TAVG)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 223,144 1262 176.8 2 × 10−16

Smooth Terms EDF REF DEF F p-Value

s(Average_PRCP) 1 1 0.989 0.3232

s(CO2) 1.492 1.742 364.248 2 × 10−16

s(Average_TAVG) 1 1 4.356 0.0401

Model AIC Deviance Adj R2

1794.759 89.4 88.9

Figure 8(Top) displays a time series for the changes to the terminal point for Franz Josef
(left) and Gorner (right) glaciers from the years 2000 to 2021. According to the left-hand
side of Figure 8(Top), the time series for Franz Josef’s shows that the terminal point has
oscillated between advancing and receding in the beginning years of 2000–2010. However,
after the year 2000, it has been continuously receding; by 2021, the terminal point had
receded close to 800 m by 2021 in comparison to its starting point in 2000. For Gorner
glacier on the right-hand side of Figure 8(Top), the time series displays a continuous pattern
of decline over the years from 2000 to 2021. By 2021, the terminal point has receded close to
500 m in comparison to its starting point in 2000.

When trying to measure the physical variations to both glaciers through their terminal
point location, the data reflects that both glaciers have been receding significantly. As for
the changes in area, for Franz Josef, the time series in Figure 8(Bottom) displays a similar
oscillating behavior show in the corresponding one for terminal point, but overall, the area
has decreased in 2009 when compared to 1989. The time series for Gorner glacier on the
right-hand side of Figure 8(Bottom) continues to display a more straightforward receding
effect as the area has been continuously decreasing from 1985 to 2009.

4.1. Modeling Variations in Franz Josef Terminal Point and Area Using Multiple Regression Model

Multiple regressions and generalized additive models introduced within the methods
sections were explored to find which model could best explain the variations of both
glacier’s terminal point and area presented above using climate factors. The best performing
multiple regression to model Franz Josef’s terminus variations was a linear combination of
precipitation, monthly average maximum temperature, global temperature, and CO2 with



Algorithms 2023, 16, 486 14 of 27

highest adjusted R2 of 0.64, the lowest Akaike information criterion (AIC) of 555, and the
lowest Singular Bayesian Information Criteria (SBIC) of 308 (Table 1a). The best multiple
regression to model the variations in the area of Franz Josef could only achieve R2 of 0.40
(Table 1b).

4.2. Modeling Franz Josef Terminal Point’s Variations Using Generalized Additive Model

Next, generalized additive models were implemented to address the shortcomings
of multiple regression to model nonlinear trends. General additive models using differ-
ent combinations of predictors were implemented and compared to find the significant
predictors that could explain the variations in Franz Josef’s terminus. The best overall
model was the linear combination of the smooth functions of average global mean, monthly
average local minimum temperature, precipitation, and CO2 depicted in Figure 9(Left). The
GAM had the highest adjusted R2 of 0.85 and the lowest AIC of 481 (Table 2a), while the
multiple regression only had the highest adjusted R2 of 0.64 (Table 1a). As mentioned in
the Methods section general additive models are the linear combination of nonparametric
smooth functions. A visual representation of the smoothed function of the climate variables
used within the model can be seen in Appendix B. The dashed lines within the figure
represent the confidence intervals for each smoothed function. Model’s predicted output
for the variation of Franz Josef’s area based on measured data is depicted in Figure 9(Left)
and Figure 10(Left). When looking at how the model performed in terms of explaining
the variations, it seemed to perform adequately, as the model shows a trend of recession
followed by an advancement. Therefore, the observation of Franz Josef’s terminal point
demonstrates that in overall Franz Josef has advanced between 2000 and 2009.
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4.3. Modeling Variations in Area of Franz Josef Using Generalized Additive Model

To understand more about the behavior of Franz Josef glacier during this decade,
variations of its area were also investigated. The best multiple regression model was
able to only explain below half of variations with adjusted R2 of 0.4. However, the best
GAM was able to explain about 62% of the variability using average global mean, monthly
average local maximum temperature, precipitation, and CO2 depicted in Figure 9(Right)
and Figure 10(Right). A visual representation of the 4 smoothed functions contained with
the GAM are displayed in Appendix B.
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While the general shape of the local temperature and CO2 predictors have change,
the precipitation and global temperature functions still remain liner. When comparing the
model’s predicted outputs to the measured data (Figure 10(Right)), the model is shown to
accurately capture the general trend of the data. In addition, when comparing this graph to
the graph of Franz Josef’s model outputs for terminal point measurements (Figure 10(Left)),
they look very similar. Both graphs seem to decrease from 2000–2004, and then increase
right afterwards, which indicate that Franz Josef was actually advancing from 2004–2009 as
shown by the increase in area and terminal point position.

This is abnormal behavior as the majority of glaciers around the globe were retreating
during this time period. However, for exceptional cases such as the glaciers in New Zealand,
there were periods of advancement in terms of both the area and terminal point as a result
of the increased precipitation. As we can see in the Figure 10, the trend marked in orange is
the smoothed function of the model’s predicted values, while the points are the measured
data. From 2000 to 2009. The advancement that was observed in the Figure 9 can be seen
in Figure 10 as well, however after the advancement, there is continuous recession. The
model was able to generally explain the variations within the terminal point and area for
Franz Josef glacier for the past two decades.

4.4. Variations in Gorner’s Terminal Point

Now that Franz Josef physical variations have been explained using general additive
models, the following procedure will be done for Gorner glacier. The adjusted R2 for the
best multiple regression was 0.93 (Table 1c). Several general additive models were created
taking into account different combination of climate factors. The best performing additive
model was the linear combination of the smoothed function of monthly average maximum
local temperature, precipitation and CO2 (Figure 11(Left)) with an adjusted R2 of 0.94 and
an AIC of 324 (Table 2c). A visual representation of the shapes of the smoothed function of
the climate factors in the model can be seen in Appendix B. The confidence intervals for
these three smoothed functions are narrow and closely follow the functions themselves,
which indicate that the current function is performing accurately.
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Both visual observation of predicted trend in Figure 11 and the adjusted R2 for this
model indicate that this model can robustly explain the variations of Gorner’s terminal
point. To further confirm this, a comparison of the model’s output (yellow) for the variations
of Gorner terminal point to the measured data (circles) is shown in Figure 11. As seen by a
close look at the predicted trend in comparison with the measured data points, evidently
the model performs well in explaining the glacier variation. Overall, the general additive
model produced robust results for explaining the temporal glacier variations.

4.5. Variations in Gorner’s Area

Finally, we modeled the variations in the area of Gorner glacier. The best perform-
ing multiple regression model achieved an adjusted R2 of 0.89. In comparison, the best
performing generalized additive model for the changes in the area of Gorner glacier was
a linear combination of the smoothed functions of monthly average of local temperature,
precipitation, and CO2 (Figure 11(Right)). This model achieved an adjusted R2 of 0.89 and
an AIC of 1794 (Table 1d). It did not demonstrate an improvement in comparison with
the best multiple regression model with the same adjusted R2 of 0.89. However, GAM
could better decipher the relation between the glacier variations and climate factors. The
general additive model was comprised of three different smoothed function of climate
factors, which can be seen in Appendix B. The smoothed functions provided robust model
as seen by how close the confidence intervals (dashed lines) are to the actual smoothed
functions. The model did have an adjusted R2 of 0.89, so it can be indicated that the model
produced promising results to explain the glacier variations.

By investigating different models in this study, it was concluded that GAM outper-
formed multiple regression in modeling temporal variations of the glacier’s terminal point
and area. The proposed general additive models in this research were able to explain the
variations fairly accurately using climate factors. Smoothed functions of temperature, local
precipitation, and CO2 were identified as significant predictors in all implemented GAMs in
this study, and it can be concluded that there is a strong relationship between the glacier’s
temporal physical variations (for both Franz Josef and Gorner) and the climate factors.

5. Discussion

Two separate response variables representing glacier changes were quantified using
Landsat imagery. First, spatial location of glacier terminus was traced over time as a
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proxy to glacier change. Second, glacier area was measured over time to quantify glacier
variations. Response variables modeled using multiple regression and GAM. GAM could
better model the nonlinear glacier variations. Global CO2 level, temperature (both local and
global), and precipitation were identified as significant factors to model glacier variations.
The results of this study agree with the previous research emphasizing the importance of
local climate factors [17,18]. These finding are in line with what is currently known about
the physics of glacier motion. The interaction between the climate factors could impact the
glacier changes and potentially may help to better understand the complex dynamics of
global climate subtleties.

As a proxy, spatiotemporal variation of glacier’s terminal point, offers valuable insights
about glacier change. However, terminus variations do not provide sensible quantification
of changes in the glacier’s size. Hence, quantification of glacier surface area by the proposed
approach in this paper, provides essential insights about glacier’s size by measuring its
surface area, in comparison with the previous works measuring terminus variations such
as [19–26].

Moreover, due to the non-linear trends in the glacier variations, GAM could sub-
stantially improve the modeling of glacier’s variation using climate factors. The relation
between glacier change and climate factors cannot be deciphered by linear models such
as multiple regression. Hence, by the additional flexibility of a nonparametric approach,
GAM could discover the nonlinear trends in the glacier variations that could not be inferred
using linear models in the previous works [7–9].

Although the proposed semi-automated image segmentation pipeline is a promising
approach, it still requires user’s input to customize it for different glaciers as distribution
of pixel intensities changes in different scenes and over different spectral bands. This
can prevent broad application to a large number of glaciers. Nevertheless, this study
provides some proof of concept and valuable insights about complexity of this challenging
problem. The segmentation can possibly be improved by the inclusion of processed bands
using fusion of multiple Landsat spectral bands. Moreover, the computational cost of the
entire process demands for an efficient data cleaning process in the preprocessing phase.
Considering the scale and coverage of Landsat imagery along with the large number of
glaciers around the globe, the clean-up process is not a trivial task.

6. Conclusions

Human communities rely on glaciers for water supply, agriculture, and drinking
water. Rising temperatures due to the climate change cause mountain glaciers to melt and
changes the water availability. Hence, modeling glacier variations in response to climate
change is a pressing issue. Given that each glacier system is likely to be distinct both in
the climate variations that it has experienced and in its response to these variations, a
generic model may not be pertinent to model spatiotemporal variations of different glaciers.
Moreover, historical measures of surface area or terminus location is essential to predict
future spatiotemporal variations of glaciers. However, direct ground measurement is not
feasible due to the remote nature of glaciers. Satellite imagery provides a practical approach
to measure glacier area or to locate glacier terminus over time through remote sensing.

This work is in continuation of our previous works and is motivated by expedited
recession of many glaciers around the globe while there is not a readily automated or
semi-automated system available to quantify variations of a large number of mountain
glaciers. In this work, a semi-automated pipeline was introduced to quantify glaciers in
multispectral Landsat imagery. Data are gathered as a time sequence of spatially registered
multispectral satellite imagery. The geometry of individual glaciers has been obtained using
various image processing techniques including supervised classification, edge detection,
and region segmentation. Then, two supervised learning methods including a parametric
method (multiple regression) and a nonparametric method (generalized additive model)
were implemented to identify climate factors that can impact glacier changes. This model
can be customized for individual glaciers as the terminus position or surface area of
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individual glacier systems depend strongly on local basin geometry and local variations in
temperature and precipitation. There are limiting factors to the accuracy of the predicted
response including the resolution of satellite imagery, the visibility of the glacier in the
images, the frequency of imaging, and the signal to noise ratio of satellite sensors. Several
factors contribute to partial loss of contrast and variability in the quantified response value.
Among them, some can be visually recognized such as the clouds and mountain shades.
But some others are more intangible such as debris atop glacial ice, snow, and variations
in humidity.
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Appendix A

GAM Summary Tables

Gorner Area GAM

Area ~ s(Average_TAVG) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 225,484 1279 176.3 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TAVG) 1 1 3.114 0.0817

s(CO2) 1.186 1.347 96.1 2.00 × 10−16

s(Average_PRCP) 1 1 0.419 0.5194

s(Global_Mean) 1 1 4.944 0.0292

Model AIC Deviance Adj R2

1706.996 89.3 88.7

Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 225,484 1279 176.3 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TMAX) 1 1 2.866 0.0935

s(CO2) 1.295 1.525 83.051 2.00 × 10−16

s(Average_PRCP) 1 1 0.562 0.4555

s(Global_Mean) 1 1 5.084 0.0271

Model AIC Deviance Adj R2

1707.223 89.3 88.7
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Area ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 225,484 1285 175.5 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TMIN) 1 1 2.094 0.1521

s(CO2) 1.327 1.576 78.722 2.00 × 10−16

s(Average_PRCP) 1 1 0.347 0.5578

s(Global_Mean) 1 1 5.353 0.0235

Model AIC Deviance Adj R2

1708.029 89.2 88.6

Area ~ s(Average_TAVG) + s(CO2) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 225,484 1273 177.2 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TAVG) 1 1 3.73 0.0572

s(CO2) 1.267 1.463 87.025 2.00 × 10−16

s(Global_Mean) 1 1 5.292 0.0241

Model AIC Deviance Adj R2

1705.029 89.2 88.8

Area ~ s(CO2) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 225,484 1287 175.3 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(CO2) 1.648 1.876 68.22 2.00 × 10−16

s(Global_Mean) 1 1 9.24 0.00324

Model AIC Deviance Adj R2

1706.643 88.9 88.5

Area ~ s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 225,484 1286 175.4 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_PRCP) 1.118 1.222 1.093 0.35734

s(CO2) 1.615 1.852 69.493 2.00 × 10−16

s(Global_Mean) 1 1 8.022 0.00591

Model AIC Deviance Adj R2

1707.759 89.1 88.5

Gorner Area GAM

Area ~ s(CO2) + s(Average_PRCP) + s(Average_TAVG)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 223,144 1262 176.8 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_PRCP) 1 1 0.989 0.3232

s(CO2) 1.492 1.742 364.248 2.00 × 10−16

s(Average_TAVG) 1 1 4.356 0.0401
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Model AIC Deviance Adj R2

1794.759 89.4 88.9

Area ~ s(Global_Mean) + s(Average_PRCP) + s(Average_TAVG)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 225,485 3150 104.9 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_PRCP) 1 1 0.065 0.8

s(Global_Mean) 1 1 165.523 2.00 × 10−16

s(Average_TAVG) 1 1 1.125 0.292

Model AIC Deviance Adj R2

1787.65 69.2 68

Gorner Terminal Point Distance GAM

Distance ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −6.9179 0.1306 −52.96 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TMIN) 1.485 1.818 0.623 0.616

s(CO2) 2.503 2.823 111.873 2.00 × 10−16

s(Average_PRCP) 1 1 0.037 0.848

s(Global_Mean) 2.21 2.598 0.879 0.535

Model AIC Deviance Adj R2

310.1617 93.9 93.4

Distance ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −6.9179 0.1306 −52.98 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TMAX) 1 1 1.542 0.218

s(CO2) 2.532 2.842 114.937 2.00 × 10−16

s(Average_PRCP) 1 1.001 0.043 0.838

s(Global_Mean) 2.055 2.456 0.661 0.67

Model AIC Deviance Adj R2

308.9078 93.4 93.9

Distance ~ s(Average_TAVG) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −6.9179 0.1308 −52.9 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TAVG) 1.001 1.002 1.173 0.282

s(CO2) 2.528 2.84 113.304 2.00 × 10−16

s(Average_PRCP) 1 1 0.027 0.871

s(Global_Mean) 2.097 2.96 0.721 0.635

Model AIC Deviance Adj R2

309.2165 93.9 93.4
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Distance ~ s(Average_TAVG) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −6.9179 0.1308 −52.9 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TAVG) 1.001 1.002 1.173 0.282

s(CO2) 2.528 2.84 113.304 2.00 × 10−16

s(Average_PRCP) 1 1 0.027 0.871

s(Global_Mean) 2.097 2.96 0.721 0.635

Model AIC Deviance Adj R2

309.2165 93.9 93.4

Distance ~ s(CO2) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept -6.9179 0.1319 −52.44 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(CO2) 1.938 1.996 190.109 2.00 × 10−16

s(Global_Mean) 1 1 0.878 0.351

Model AIC Deviance Adj R2

306.0558 93.5 93.3

Distance ~ s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −6.9179 0.1325 −52.2 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(CO2) 1.938 1.996 185.669 2.00 × 10−16

s(Average_PRCP) 1 1 0.182 0.67

s(Global_Mean) 1 1 0.713 0.401

Model AIC Deviance Adj R2

307.846 93.5 93.2

Gorner Terminal Point Distance GAM

Distance ~ s(CO2) + s(Average_PRCP) + s(Average_TMAX)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −7.3318 0.1289 −56.87 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TMAX) 1 1 1.908 0.17

s(CO2) 1.933 1.995 701.255 2.00 × 10−16

s(Average_PRCP) 1 1 0.132 0.717

Model AIC Deviance Adj R2

324.23 94 93.7

Distance ~ s(Global_Mean,) + s(Average_PRCP) + s(Average_TMAX)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −6.9179 0.2971 −23.29 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TMAX) 1 1 5.18 0.0253

s(Average_PRCP) 1 1 0.542 0.4636

s(Global_Mean) 1 1 176.089 2.00 × 10−16

Model AIC Deviance Adj R2

453.7315 67 65.9
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Franz Josef Area GAM

Area ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 3212 64 50.19 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TMIN) 1 1 0.295 0.5929

s(CO2) 2.442 2.77 4 2.55 × 10−2

s(Average_PRCP) 1 1 3.604 0.0721

s(Global_Mean) 1 1 2.508 0.1289

Model AIC Deviance Adj R2

382.8962 64.5 54.7

Franz Josef Area GAM

Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 3211.96 58.77 54.65 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TMAX) 1.988 2.4 1.671 0.186

s(CO2) 2.311 2.654 4 6.33 × 10−2

s(Average_PRCP) 1.363 1.607 1.167 0.2345

s(Global_Mean) 1 1 6.232 0.0224

Model AIC Deviance Adj R2

380.5743 71.9 61.8

Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 3211.96 64.33 49.93 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TAVG) 1 1 0.11 0.7441

s(CO2) 2.433 2.763 4 2.94 × 10−2

s(Average_PRCP) 1 1 3.363 0.0816

s(Global_Mean) 1 1 2.264 0.148

Model AIC Deviance Adj R2

383.1614 64.1 54.2

Area ~ s(Average_TMAX) + s(CO2) + s(Average_PRCP)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 3211.96 70.71 45.42 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TMAX) 1 1 0.049 0.82713

s(CO2) 1.922 1.994 10 1.08 × 10−3

s(Average_PRCP) 1 1 1.466 0.23938

Model AIC Deviance Adj R2

386.475 53.3 44.6
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Area ~ s(CO2) + s(Average_PRCP)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 3211.96 69.14 46.45 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(CO2) 1.927 1.995 11 7.85 × 104

s(Average_PRCP) 1 1 1.77 0.196995

Model AIC Deviance Adj R2

384.5096 53.3 47.1

Area ~ s(Global_Mean) + s(CO2) + s(Average_PRCP)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept 3211.96 64.58 49.73 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Global_Mean) 1 1 4.496 0.046

s(CO2) 1.905 1.991 5 1.92 × 10−2

s(Average_PRCP) 1.209 1.374 2.941 0.1213

Model AIC Deviance Adj R2

382.2663 61.4 53.8

Franz Josef Terminal Point Distance GAM

Distance ~ s(Average_TMIN) + s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept -5.4894 0.3898 −14.1 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TMIN) 1.274 1.49 3.456 0.073

s(CO2) 2.868 2.987 47.024 2.00 × 10−16

s(Average_PRCP) 1 1 0.046 0.8303

s(Global_Mean) 1 1 5.429 0.0223

Model AIC Deviance Adj R2

480.799 86.1 85

Distance ~ s(CO2) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −5.2672 0.3834 −13.74 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(CO2) 1.991 2 74.292 2.00 × 10−16

s(Global_Mean) 1.25 1.437 3.905 0.0283

Model AIC Deviance Adj R2

500.766 84.9 84.3

Distance ~ s(Average_TMIN) + s(CO2) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −5.2672 0.3738 −14.09 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TMIN) 1.208 1.372 3.662 0.0336

s(CO2) 1.991 2 75.318 2.00 × 10−16

s(Global_Mean) 1 1 5.575 0.0204
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Model AIC Deviance Adj R2

497.0568 85.8 85.1

Distance ~ s(CO2) + s(Average_PRCP) + s(Global_Mean)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −5.4894 0.3984 −13.78 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(CO2) 1.99 1.999 70.418 2.00 × 10−16

s(Average_PRCP) 1 1 0.086 0.7705

s(Global_Mean) 1.354 1.582 2.68 0.0608

Model AIC Deviance Adj R2

482.9369 85.1 84.3

Distance ~ s(CO2) + s(Average_PRCP) + s(Average_TMIN)

Parametric coefficients: Estimate Std Error T value Pr (>|T|)

Intercept −5.7241 0.3942 −14.52 2.00 × 10−16

Smooth Terms edf ref def F p-Value

s(Average_TMIN) 1.471 1.721 2.972 0.0414

s(CO2) 2 2 225.629 2.00 × 10−16

s(Average_PRCP) 1 1 0.001 0.9839

Model AIC Deviance Adj R2

487.6997 85.9 85.1
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