
Citation: Lu, S.; Yang, H.; Han, C.

TransPCGC: Point Cloud Geometry

Compression Based on Transformers.

Algorithms 2023, 16, 484. https://

doi.org/10.3390/a16100484

Academic Editor: Binhai Zhu

Received: 10 September 2023

Revised: 6 October 2023

Accepted: 16 October 2023

Published: 19 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

TransPCGC: Point Cloud Geometry Compression Based
on Transformers
Shiyu Lu, Huamin Yang * and Cheng Han

School of Computer Science and Technology, Changchun University of Science and Technology,
Changchun 130022, China; 2020200128@mails.cust.edu.cn (S.L.); hancheng@cust.edu.cn (C.H.)
* Correspondence: yanghuamin@cust.edu.cn

Abstract: Due to the often substantial size of the real-world point cloud data, efficient transmis-
sion and storage have become critical concerns. Point cloud compression plays a decisive role in
addressing these challenges. Recognizing the importance of capturing global information within
point cloud data for effective compression, many existing point cloud compression methods over-
look this crucial aspect. To tackle this oversight, we propose an innovative end-to-end point cloud
compression method designed to extract both global and local information. Our method includes
a novel Transformer module to extract rich features from the point cloud. Utilization of a pooling
operation that requires no learnable parameters as a token mixer for computing long-distance de-
pendencies ensures global feature extraction while significantly reducing both computations and
parameters. Furthermore, we employ convolutional layers for feature extraction. These layers not
only preserve the spatial structure of the point cloud, but also offer the advantage of parameter
independence from the input point cloud size, resulting in a substantial reduction in parameters. Our
experimental results demonstrate the effectiveness of the proposed TransPCGC network. It achieves
average Bjontegaard Delta Rate (BD-Rate) gains of 85.79% and 80.24% compared to Geometry-based
Point Cloud Compression (G-PCC). Additionally, in comparison to the Learned-PCGC network, our
approach attains an average BD-Rate gain of 18.26% and 13.83%. Moreover, it is accompanied by a
16% reduction in encoding and decoding time, along with a 50% reduction in model size.

Keywords: point cloud geometry compression; transformers; convolution

1. Introduction

With the rapid advancement of real-time sensors such as depth cameras and LiDAR,
point clouds have found widespread applications in Simultaneous Location And Mapping
(SLAM) [1], 3D reconstruction [2], object detection [3], and more. Spatial data collection has
been considerably improved with the invention of LiDAR and other laser scanning tech-
nologies [4]. However, the increased volume of point clouds leads to higher transmission
costs, making it imperative to research point cloud compression algorithms. Point cloud ge-
ometry compression methods can be broadly classified into two categories: lossy geometry
compression and lossless geometry compression. Lossy geometric compression algorithms
have been extensively studied due to their high compression ratio properties [5–8]. Lossless
geometry compression aims to strike a balance between compressed data size and data
quality [9–13]. When more bits are used, it is possible to obtain a value closer to the input.
This concept is formalized in the basic rate-distortion tradeoff, where “rate” stands for bit
rate and “distortion” is formalized as the difference between the original and disordered
point clouds.

The sparsity and disorder of point clouds pose significant challenges to data processing
and compression. Consequently, point clouds are converted into structured representations,
such as tree structures, heightmaps, or voxel representations, which are then compressed us-
ing their inherent spatial correlation. With the emergence of deep learning-based methods,

Algorithms 2023, 16, 484. https://doi.org/10.3390/a16100484 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16100484
https://doi.org/10.3390/a16100484
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1299-7891
https://doi.org/10.3390/a16100484
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16100484?type=check_update&version=1

Algorithms 2023, 16, 484 2 of 14

several studies have explored neural network-based point cloud compression. Previous
research [5–15] focused on voxel-based approaches, while [16–18] utilized tree structures,
and [19] employed a heightmap representation. Deep learning-based methods achieve
superior compression performance compared to traditional algorithms by learning more
memory-efficient encoding strategies from training data. However, there is still space for
improvement in these methods.

This paper presents a point cloud geometry compression based on the Transformer
method (TransPCGC). The main contributions of this scheme are as follows:

• We design a novel Transformer-based network for compressing geometric information
in point clouds. This network comprises preprocessing modules for voxelization and
partitioning of point clouds, compression networks to optimize the BD-Rate, and post-
processing modules for point cloud reconstruction. In contrast to pure convolutional
neural networks, our designed network achieves remarkable compression gains.

• The effectiveness of point cloud compression is hindered due to convolutions de-
signed with fixed receptive fields and fixed weights, which cannot aggregate enough
information from sparse and disordered point clouds. There is a need for a solution
that can better exploit correlations among global and local information point clouds.
As the Transformer architecture designed for processing images is not well suited for
point clouds, we develop a Transformer capable of handling point clouds. Utilizing
this Transformer, we extract the richness of both global and local features from the
point cloud.

• Extensive experiments validate the compression performance of the proposed
TransPCGC on multiple point cloud datasets, while also demonstrating its low spatial
and temporal complexity.

The remainder of this paper is as follows: Section 2 provides a summary overview
of the related work; Section 3 describes our proposed compression and decompression
network; Section 4 offers the experimental details and presents the experimental results;
Section 5 briefly concludes the paper.

2. Related Work
2.1. Non-Deep Learning Methods

Over the past few years, a series of Point Cloud Compression (PCC) standards have
been developed under the MPEG consortium. Prominent examples include the geometry-
based PCC (G-PCC) v14 [20] and V-PCC [21]. Meshes, voxels, and point clouds serve as
widely used 3D representation forms. Mesh models consist of vertices and faces formed by
the connections/topology between vertices. Mesh compression methods [22] save topology
memory through intermediate representations, where vertices can also be compressed us-
ing topological information, resulting in improved subjective quality with fewer encoding
bits. For geometry compression based on octrees, the octree structure is commonly utilized
to provide better context for entropy coding. Point cloud encoding is executed through
manually defined rules and data structures. The octree geometry codec in PCL [23] and
MPEG standard G-PCC [24] are two popular octree-based methods. Google’s Draco [25]
employs a kd-tree to partition space and encodes points based on the occupancy of par-
titioned space. Some algorithms do not directly compress the 3D geometric structure of
point clouds; they project the point clouds onto 2D images and apply video compression
algorithms, as seen in the V-PCC method in the MPEG standard [20]. Dumic et al. [26]
presented a dynamic point cloud compression based on different projection types and
bit depth combined with the surface reconstruction algorithm and video compression for
obtained geometry and texture maps. Yu et al. [27] proposed an improved compression
means for dynamic point cloud based on curvature estimation and hierarchical strategy.
Certain works [28] also explored the compression of dynamic point cloud sequences by
introducing motion estimation between consecutive frames. These non-learning-based
methods encode coordinates via predefined rules and generally exhibit robustness across
different types of point clouds, but their encoding performance may be limited.

Algorithms 2023, 16, 484 3 of 14

2.2. Deep Learning Methods

With the development of deep learning architectures, networks have recently been
created for the autoencoder-based reconstruction [29,30], completion [31], or production
of point clouds [32]. Learning-based geometric compression techniques have been devel-
oped to enhance compression performance by acquiring efficient representations from
point clouds, leveraging point cloud autoencoder techniques. Some of these methods
involve converting raw point clouds into voxels and subsequently employing a 3D CNN
to encode the geometry into a binary form. Quach et al. [5] introduced a geometric
information compression algorithm based on convolutional operations and uniform quan-
tization. This approach utilizes a tradeoff parameter for joint optimization of rate and
distortion, transforming the decoding process into a binary classification problem of point
cloud occupancy. Subsequently, an improved version was proposed, incorporating entropy
coding with hyperprior modeling, optimal threshold decoding, and sequential model
training [6]. Wang et al. [7] presented an end-to-end learning-based algorithm for efficient
compression of point cloud geometric information using a stacked convolutional neural
network-based variational autoencoder. They also leveraged the sparsity of point clouds to
perform progressive resampling for hierarchical point cloud reconstruction [8] and further
proposed voxel compression using inter-scale and intra-scale correlations [9]. Researchers
like André [14] and others [10] enhanced compression performance by adding modules
to the multi-scale point cloud geometry compression network. Yu et al. [33] proposed a
multi-layer residual module designed on sparse convolution-based autoencoders which
progressively down-samples the input point clouds and hierarchically reconstructs them.
Zhuang et al. [34] introduced a rate expansion method based on contrastive learning to
expand the bit rate range of the model.

Nguyen et al. [10] introduced a lossless compression method for point cloud geometry
information, leveraging neural networks and context-adaptive arithmetic coding. To ad-
dress the slow inference caused by predicting occupancy probability in voxel order in prior
designs, a multi-scale architecture was proposed, optimizing voxel occupancy modeling
from coarse to fine order [11]. They subsequently suggested using neural network esti-
mation of voxel occupancy probability distribution [12]. Wang and Nguyen later delved
into attribute compression of point clouds [13,15]. You et al. [35] proposed a patch-based
point cloud compression algorithm, followed by enhancements in patch-based point cloud
compression [36]. On another front, the authors of [24] attempted to process coordinates
directly based on PointNet++ [37]. While this method performed well on small and sparse
models, its limited robustness became apparent, as global features used for reconstruction
struggled to generate accurate contours on unseen shapes. Depoco [16] developed an
autoencoder compression framework for sparse point cloud graphs, utilizing features
extracted from the encoder and associated points as compression data. Liang et al. [17]
introduced a novel network model called TransPCC, employing a Transformer autoen-
coder architecture for point cloud geometry compression. Despite its high robustness, its
application remained confined to sparse points within blocks segmented from original
dense point clouds. These point-based compression methods avoid the accuracy loss seen
in voxel networks, but their complex network structures limit their ability to effectively
utilize dense points. Octsqueeze [18] and VoxelcontextNet [38] are part of a series of works
dedicated to outdoor scene compression, introducing network improvements in entropy
coding performance. Muscle [39] took a step further by incorporating spatiotemporal
relationships between multiple scans of outdoor scenes, thereby reducing the bitrate of
both geometric and intensity values.

2.3. Transformer Methods

Transformer [40] is a model based on a self-attention mechanism that not only per-
forms powerfully in modeling global contexts, but also shows excellent transferability to
downstream tasks under large-scale pre-training. This success is widely witnessed in the
fields of machine translation and natural language processing. In 2018, Devlin et al. [41]

Algorithms 2023, 16, 484 4 of 14

proposed the Bert model based on a Transformer with a bidirectional coding structure based
on a masking mechanism, achieving state-of-the-art results on multilingual tasks. In addi-
tion, many Transformer-based language models, including Bert, such as GPTv1-3 [42–44],
T5 [45], etc., have demonstrated strong performance. CNNs have been dominant in com-
puter vision tasks due to their inherent inductive preferences, such as translation invariance,
localization, and other properties. However, the limited sensory field of CNNs makes it dif-
ficult to capture global contextual information. Inspired by the success of the Transformer
model on linguistic tasks, several recent studies have applied Transformer to computer
vision tasks. Parmar et al. [46] designed the image Transformer model for image genera-
tion tasks based on the problem of generating or transforming autoregressive sequences
for the Transformer decoder. Recently, Dosovitskiy et al. [47] introduced another visual
Transformer model, ViT, which adopts the standard structure of Transformer in its structure
completely. ViT has achieved state-of-the-art performance on several image recognition
benchmark tasks. Point Transformer V2 [48] introduced grouped vector attention along
with a weight encoding layer, expanding upon the Point Transformer [49] architecture.
Moreover, the Transformer architecture has found applications in numerous other computer
vision challenges, including target detection [50–52] and semantic segmentation [53–56].
Owing to their outstanding performance, Transformer-based models are being adopted by
an increasing number of researchers to enhance various vision-related tasks.

3. Methods

The network architecture for point cloud geometry compression based on Transformer,
known as TransPCGC, is depicted in Figure 1. It encompasses a preprocessing module,
a compression network, an entropy coding module, and a post-processing module.

C
o

n
v

 3
2

 *
3

3
,R

E
L

U

C
o

n
v

 6
4

 *
3

3
,R

E
L

U

C
o

n
v

 1
6

*
3

3
,R

E
L

U

C
o

n
v

 1
6

*
3

3
,R

E
L

U

C
o

n
v

 6
4

 *
3

3
,R

E
L

U

C
o

n
v

 3
2

 *
3

3
,R

E
L

U

T
ra

n
sf

o
rm

er

*
 1

T
ra

n
sf

o
rm

er

*
 2

T
ra

n
sf

o
rm

er
 *

 1

T
ra

n
sf

o
rm

er

*
 2

T
ra

n
sf

o
rm

er

*
 1

→ → →→

C
o

n
v

 1
6

*
3

3
,R

E
L

U

C
o

n
v

 1
6

*
3

3
,R

E
L

U

 P
re

-p
ro

ce
ss

in
g

P
o

st
-p

ro
ce

ss
in

g

Entropy

T
ra

n
sf

o
rm

er

*
 1

Figure 1. TransPCGC. “Conv” denotes the number of output channels, and the kernel size, “Trans-
former *1/*2”, indicates the cascading of one/two Transformer modules. “↑” and “↓” signify the
operations of zoom-in and zoom-out, “ReLU” refers to the rectified linear unit, Entropy is expressed
as Entropy Rate Modeling.

3.1. Pre-Processing

The original point cloud’s representation format preserves discrete geometric infor-
mation in a three-dimensional space. However, this format cannot be directly utilized for
3D convolutions. Therefore, the TransPCGC method initially processes the original point
cloud representation, converting it from the discrete point set format to a volumetric model
represented by voxels. Voxelized point clouds describe correlations between voxels in a
three-dimensional space. This aids deep learning techniques in extracting meaningful fea-
tures from point clouds. The voxel representation format has a unit length of 1, and when
scaling or downsampling is necessary, the voxel size is typically set to a value greater
than 1. End-to-end neural network algorithms depend on the backpropagation function.
To ensure differentiability, a method involving the addition of stochastic quantization
noise is employed. This allows gradients propagation and facilitation of updates to model
parameters during the training process, as illustrated in Equation (1). Here, t represents the

Algorithms 2023, 16, 484 5 of 14

quantized data, µ represents random uniform noise with a distribution range from − 1
2 to 1

2 ,
and t̂ represents the simulated quantized data after noise addition.

t̂ = t + µ. (1)

The cost of processing a whole voxel rises dramatically when voxels are used, leading
to a large increase in data volume. The processing cost can be decreased by dividing the
voxels into non-overlapping chunks. These blocks are typically of a smaller size, denoted
by M × M × M, as expressed in Equation (2). Here, (bc, nc, gc) represents the specified
position of a block, T̂n denotes the global coordinates of the voxel, and T̂loc

n signifies the
local coordinates of all blocks (bc, nc, gc) encoded using an octree encoder.

T̂loc
n = T̂n − (bc ×M, nc ×M, gc ×M). (2)

3.2. Encoder and Decoder Modules

The encoder–decoder of TransPCGC primarily consists of Transformer blocks, which
extract both global information and local neighborhood features from the point cloud.
As the decoder shares the same module composition as the encoder, it is introduced in the
following subsection together.

Transformer Block

The transformer encoder consists of two components. One is the attention module
for mixing information among tokens and we term it a token mixer. The other component
contains the remaining modules, such as channel MLPs and residual connections. The com-
putational complexity of multi-head attention increases quadratically with the number of
tokens [57]. In related work, Ref. [58], attention was replaced with Fourier Transform and
still achieved an around 97% accuracy compared to vanilla Transformers. Inspired by [59],
we introduced a pooling operation that does not require any learnable parameters as a
token mixer to compute long-distance dependencies. This approach ensures global feature
extraction while significantly reducing both computations and parameters. Additionally,
we utilized convolutional layers for feature extraction. These convolutional layers preserve
the spatial structure of the point cloud, and the parameter count is independent of the
input point cloud’s size, leading to a further reduction in parameters. Specifically, we used
a convolution kernel size of 1 × 1 × 1. Consequently, our developed Transformer module
excels at extracting local features with translation invariance using convolution operations
and capturing long-distance information in sequences. We applied the proposed Trans-
former block to compress point cloud geometry data, resulting in promising experimental
outcomes. Figure 2 illustrates the schematic diagram of the structure.

 Input(N Channel)

AvePooling x3
3
 ReLU

ConvMLP x1
3
 ReLU

 Output(N Channel)

Batch Normalization

Batch Normalization

Figure 2. Transformer block.

Algorithms 2023, 16, 484 6 of 14

First, the input T̂loc
n undergoes an input embedding process [60], where it is partitioned

into patches and transformed into a token sequence, as demonstrated in Equation (3). Then,
the tokens are processed by the Token Mixer within the Transformer, enabling the exchange
of information between tokens, as depicted in Equation (4).

Q = InputEmb
(

T̂loc
n

)
, (3)

G = TokenMixer(Norm(Q)) + Q. (4)

Norm(·) represents normalization techniques such as Group Normalization, Layer
Normalization, and Batch Normalization. TokenMixer(·) is a token mixer constructed using
a pooling operation without any learnable parameters. ConvMLP consists of a convolution
operation with a kernel size of 1× 1× 1, as shown in Equation (5). W1 and W2 represent
the learnable parameters within ConvMLP(), and they are accompanied by a nonlinear
activation function such as GELU, ReLU, or Swish.

Z = σ(Norm(G)W1)W2 + G. (5)

3.3. Entropy Coding

As a result of its superior compression capabilities, arithmetic coding is frequently
used in entropy encoding, and TransPCGC also employs it to compress features. To enable
more accurate probability estimation within the neural network, Equation (6) is used to
approximate the bitstream quantization of the features. Here, E represents the quantization
process, and pt̂ stands for the probability density function of the input value. TransPCGC
draws inspiration from feature encoders and hyperprior encoders in image compression to
achieve conditional probability estimation. In the hyperprior encoder, convolutional opera-
tions are likewise utilized to extract hyperprior information z, which assists in decoding
the hyperprior information for auxiliary bitstream estimation of t̂. Quantization strategies
are employed for manipulating the hidden feature t and hyperprior z. The entropy model
represents a fully factorized probabilistic model, in Equation (7), where U represents a
uniform distribution and ψ(i) denotes the parameters of each univariate distribution pẑi |ψ(i) .
As for t̂, it is assumed to follow a Laplace distribution L, and the probability density func-
tion is estimated based on the hyperprior ẑ, in Equation (8). Here, the hyperprior ẑ yields
the variance σi, mean µi, and parameters for each element of t̂i.

Rt̂ = E
[
− log2 pt̂(t̂)

]
, (6)

pẑ|ψ(ẑ | ψ) = ∏
(

pẑi |ψ(i)

(
ψ(i)

)
∗U(−1/2, 1/2)

)
(ẑi), (7)

pt̂|ẑ(t̂ | ẑ) = ∏
i
(L(µi, σi) ∗U(−1/2, 1/2))

(
t̂i
)
. (8)

3.4. Loss Function

It is common practice to consider both the bitstream and the distortion simultane-
ously while optimizing the compression of point clouds, utilizing the Lagrangian loss and
weighted binary cross-entropy as a joint loss function. In Equation (9), this optimization
strategy balances the bitstream and distortion tradeoff. Here, the bitstream is symbol-
ized by R, the distortion is represented by D, and λ regulates the weight of the BD-rate.
As demonstrated in Equation (10), the bitstream is formed from ti and zi, and its estimation
can be stated using the cross-entropy loss function. The two bitstreams are added to create
the complete bitstream, which is represented as R = Rt̂ + Rẑ, with the hyperprior bitstream
ẑ acting as auxiliary data.

Jloss = R + λD, (9)

Algorithms 2023, 16, 484 7 of 14

 Rt̂ = ∑i − log2

(
pt̂i |ẑi

(
t̂i | ẑi

))
Rẑ = ∑i − log2

(
pẑi |ψ(i)

(
ẑi | ψ(i)

)) . (10)

To evaluate the distortion of point cloud compression, the weighted binary cross-
entropy loss function is employed to classify the decoded voxels. This loss function,
as depicted in Equation (11), measures the probability value, denoted as px̃ = sigmoid(x̃),
of voxel occupancy ranging between 0 and 1. Here, x̃o represents the occupied voxel,
x̃n signifies the unoccupied voxel, and α is a hyperparameter that controls the relative
weight, typically set to 3. Furthermore, No and Nn represent the quantities of occupied and
unoccupied voxels, respectively.

DWBCE =
1

No

No

∑− log px̃o + α
1

Nn

Nn

∑− log(1− px̃n). (11)

3.5. Post-Processing

As the decoded voxels x̃ fall within the interval of (0, 1), it becomes necessary to per-
form a binary classification operation on the decoded voxels. In TransPCGC, an adaptive
thresholding approach is employed, where the threshold is determined based on the num-
ber of occupied voxels in the original point cloud. Subsequently, the position information
of points is extracted from the voxel blocks.

4. Experiment
4.1. Experimental Set

We randomly selected approximately 12,000 point cloud models from ShapeNet [61]
for our study. During training, these point clouds were randomly cropped into blocks of
size 64× 64× 64, resulting in a total of 3× 105 blocks. The loss function employed in our
approach is presented in Equation (9). To generate models with different compression rates,
we set the rate-distortion weight λ to 2, 3.5, 6, 10, and 16. During the training process, we
initially set λ to 16 and trained a high-rate model, which was then utilized to initialize
the training of low-rate models. We used a learning rate of 10−5, a batch size of eight,
and the AdamW optimizer. After 2× 105 iterations, the training models began to converge.
The experiments were conducted using the TensorFlow 2.4 deep learning framework on
the Ubuntu 20.04 platform. The system configuration included an Intel Xeon(R) Gold
6134 processor (Intel Corporation, Santa Clara, CA, USA), 256 GB of memory, and an
NVIDIA GeForce RTX 3090 GPU (Nvidia Corporation, Santa Clara, CA, USA).

4.2. Experiment Results

The experiment evaluated the compression performance of TransPCGC using five
datasets: 8i Voxelized FullBodies (8iVFB) [62], Owlii dynamic human mesh (Owlii) [63],
MUVB [64], ShapeNet-Core [61], and ModelNet40 [65]. Because of the substantial size of
the ShapeNet-Core [61] and ModelNet40 [65] datasets, 32 mesh models were randomly
selected from each dataset and subjected to random rotations and voxelization.

The proposed TransPCGC was compared and analyzed against other point cloud ge-
ometry compression algorithms, including G-PCC (O) [20], G-PCC (T) [20], GeoCNNv2 [6],
ADL-PCC [14], Learned-PCGC [7], MRM-PCGC [33] and VA-PCC [34]. Among them,
MRM-PCGC [33] and VA-PCC [34] utilize data from their papers for comparison. Objective
comparisons were performed using BD-rate analysis for lossy compression, measuring
point-to-point error (D1), point-to-plane error (D2), and PSNR derived from both metrics.
Additionally, the bits per input point (bpp) were used to assess the compression rate.
Figure 3 shows the rate-distortion curves for different point clouds. It can be observed
that the D1 and D2 metrics of TransPCGC outperform the compared algorithms across
different bitrates. The results are shown in Tables 1 and 2. Our method achieved averages
−80.84% and −77.59% gains against G-PCC(T) [20], −97.09% and −97.37% gains against

Algorithms 2023, 16, 484 8 of 14

G-PCC(O) [20], −37.9% and −40.27% gains against ADL-PCC [14], −39.01% and −34.64%
gains against GeoCNNv2 [6], −14.39% and −16.66% gains against Learned-PCGC [7],
−4.63% and −10.78% gains against MRM-PCGC [33], −14.12% and −15.99% gains against
VA-PCGC [34] measured via respective D1 and D2 based BD-Rate.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
bpp

58
60
62
64
66
68
70
72
74
76

D
1

PS
N

R
 (d

B
)

redandblack_vox10_1550

G-PCC(O)
G-PCC(T)
GeoCNNv2

ADL-PCC
Learned-PCGC
Ours

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bpp

65.0
67.5
70.0
72.5
75.0
77.5
80.0
82.5

D
1

PS
N

R
 (d

B
)

basketball_player_vox11_00000200

G-PCC(O)
G-PCC(T)
GeoCNNv2

ADL-PCC
Learned-PCGC
Ours

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
bpp

58
60
62
64
66
68
70
72
74
76

D
1

PS
N

R
 (d

B
)

longdress_vox10_1300

G-PCC(O)
G-PCC(T)
GeoCNNv2

ADL-PCC
Learned-PCGC
Ours

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
bpp

62
64
66
68
70
72
74
76
78
80

D
2

PS
N

R
 (d

B
)

redandblack_vox10_1550

G-PCC(O)
G-PCC(T)
GeoCNNv2

ADL-PCC
Learned-PCGC
Ours

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bpp

67.5
70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5

D
2

PS
N

R
 (d

B
)

basketball_player_vox11_00000200

G-PCC(O)
G-PCC(T)
GeoCNNv2

ADL-PCC
Learned-PCGC
Ours

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
bpp

62.5
65.0
67.5
70.0
72.5
75.0
77.5
80.0

D
2

PS
N

R
 (d

B
)

longdress_vox10_1300

G-PCC(O)
G-PCC(T)
GeoCNNv2

ADL-PCC
Learned-PCGC
Ours

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bpp

65.0
67.5
70.0
72.5
75.0
77.5
80.0
82.5

D
1

PS
N

R
 (d

B
)

dancer_vox11_00000001

G-PCC(O)
G-PCC(T)
GeoCNNv2

ADL-PCC
Learned-PCGC
Ours

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
bpp

60.0
62.5
65.0
67.5
70.0
72.5
75.0
77.5

D
1

PS
N

R
 (d

B
)

soldier_vox10_0690

G-PCC(O)
G-PCC(T)
GeoCNNv2

ADL-PCC
Learned-PCGC
Ours

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
bpp

60.0
62.5
65.0
67.5
70.0
72.5
75.0
77.5

D
1

PS
N

R
 (d

B
)

loot_vox10_1200

G-PCC(O)
G-PCC(T)
GeoCNNv2

ADL-PCC
Learned-PCGC
Ours

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bpp

67.5
70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5

D
2

PS
N

R
 (d

B
)

dancer_vox11_00000001

G-PCC(O)
G-PCC(T)
GeoCNNv2

ADL-PCC
Learned-PCGC
Ours

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
bpp

62.5
65.0
67.5
70.0
72.5
75.0
77.5
80.0

D
2

PS
N

R
 (d

B
)

soldier_vox10_0690

G-PCC(O)
G-PCC(T)
GeoCNNv2

ADL-PCC
Learned-PCGC
Ours

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
bpp

62.5
65.0
67.5
70.0
72.5
75.0
77.5
80.0

D
2

PS
N

R
 (d

B
)

loot_vox10_1200

G-PCC(O)
G-PCC(T)
GeoCNNv2

ADL-PCC
Learned-PCGC
Ours

Figure 3. Rate distortion curves plotted on different test samples.

Algorithms 2023, 16, 484 9 of 14

Table 1. BD-rate reduced G-PCC(T) [20], G-PCC(O) [20], ADL-PCC [14], GeoCNNv2 [6], Learned-
PCGC [7], MRM-PCGC [33] and VA-PCGC [34] in D1 based BD-rate measurement (percentage/%).

Point Clouds
D1(p2point)

G-PCC(T)
[20]

G-PCC(O)
[20]

ADL-
PCC [14] GeoCNNv2 [6] Learned-

PCGC [7]
MRM-

PCGC [33] VA-PCC [34]

Longderss_vox10 −81.35 −97.33 −42.36 −43.08 −16.31 −5.98 −15.63
Loot_vox10 −79.47 −96.96 −40.42 −39.5 −14.9 −5.74 −15.06

Red&black_vox10 −80.71 −92.04 −29.52 −44.58 −17.26 −1.68 −10.46
Soldier_vox10 −80.62 −95.48 −39.4 −43.42 −41.21 −5.11 −13.47
Queen_vox10 −79.19 −98.23 −34.1 −29.07 −9.73 - -
Player_vox11 −81.76 −99.85 −41.63 −38.55 −15.07 - −15.29
Dancer_vox11 −82.79 −99.71 −37.89 −34.89 −13.24 - −14.78

Average −80.84 −97.09 −37.9 −39.01 −14.39 −4.63 −14.12

Table 2. BD-rate reduced G-PCC(T) [20], G-PCC(O) [20], ADL-PCC [14], GeoCNNv2 [6], Learned-
PCGC [7], MRM-PCGC [33] and VA-PCGC [34] in D2 based BD-rate measurement (percentage/%).

Point Clouds
D2(p2plane)

G-PCC(T)
[20]

G-PCC(O)
[20]

ADL-
PCC [14] GeoCNNv2 [6] Learned-

PCGC [7]
MRM-

PCGC [33] VA-PCC [34]

Longderss_vox10 −76.56 −96.95 −41.07 −36.26 −12.24 −12.19 −17.79
Loot_vox10 −74.84 −96.41 −39.5 −32.37 −13.53 −11.22 −16.37

Red&black_vox10 −75.28 −94.24 −30.47 −33.16 −13.17 −9.21 −14.99
Soldier_vox10 −75.97 −95.25 −37.8 −36.57 −12.95 −10.51 −15.82
Queen_vox10 −75.27 −98.78 −38.07 −20.81 −11.78 - -
Player_vox11 −82.66 −99.99 −47.06 −40.72 −21.62 - −15.48
Dancer_vox11 −82.52 −99.98 −47.95 −42.58 −31.3 - −15.51

Average −77.59 −97.37 −40.27 −34.64 −16.66 −10.78 −15.99

From Table 3, it can be observed that our method, TransPCGC, demonstrates superior
performance when compared to the G-PCC(O) [20] method on the 8iVFB, Owlii, and MUVB
datasets. Across the three datasets, our method achieves an average BD-rate gain of
85.79% and 80.24% for D1 and D2 metrics, respectively. We also compared our proposed
TransPCGC method with the Learned-PCGC [7] method on five datasets. Across all five
datasets, our method showcases average BD-rate gains of 18.26% and 13.83% for D1 and D2
metrics, respectively. These results demonstrate the superior performance of our method
compared to the comparative approaches across multiple datasets.

Table 3. BD-rate reducest G-PCC(O) [20] and Learned-PCGC [7] in D1 and D2 based BD-rate
measurement (percentage/%).

Point Clouds
G-PCC(O) [20] Learned-PCGC [7]

D1 D2 D1 D2

8iVFB −96 −96.32 −15.13 −13.08
Owlii −78.03 −75.55 −13.45 −29.4

MVUB −83.34 −68.85 −9.86 −2.53
ModelNet - - −24.57 −12.06
ShapeNet - - −28.27 −12.1
Average −85.79 −80.24 −18.26 −13.83

In Figures 4 and 5, we provide a visual comparison between the original point cloud
and the decompressed point clouds. To visualize the geometric details of the point cloud,
we initially compute the normal vectors for each point using the surrounding 20 neigh-
boring points and render the point cloud. This approach provides a superior visual effect.

Algorithms 2023, 16, 484 10 of 14

Additionally, we generate error maps based on the D1 error between the decompressed
and original point cloud, allowing us visualization of the error distribution. Comparing
the resulting point clouds from different compression methods, our method stands out in
preserving intricate details and generating visually superior point clouds, as indicated by
the red and blue dashed boxes in Figures 4 and 5. It is noteworthy that G-PCC (T) [20]
introduces noticeable holes, while both G-PCC (O) [20] and G-PCC (T) [20] exhibit sparser
reconstructed point clouds with significant quantization loss compared to other methods.
This phenomenon occurs because octree-based encoding methods often lose details in leaf
nodes at low bit rates. On the contrary, ADL-PCC [14] and Learned-PCC [7] demonstrate
better preservation of details and fill a significant number of holes. However, our method
surpasses them in terms of detail preservation.

(c) Learned-PCGC

bpp = 0.2

(f) G-PCC(O)

bpp = 0.3

O
v

er
al

l
P

2
p

o
in

t
er

ro
r

m
ap

(a) Ground Truth (e) G-PCC(T)

bpp = 0.2

2.5

0

Zoom in Zoom in Zoom in Zoom in Zoom in

(b) Ours

bpp = 0.2

(d) ADL-PCC

bpp = 0.3

Zoom in

Figure 4. Visual comparison of “longdress” for Ground Truth, Ours, Learned-PCGC [7], ADL-
PCC [14], G-PCC (T) [20] and G-PCC (O) [20].

(a) Ground Truth (c) Learned-

PCGC

bpp = 0.2

(c) G-PCC(T)

bpp = 0.2

(b) G-PCC(O)

bpp = 0.3

O
v

er
al

l
P

2
P

o
in

t
er

ro
r

m
ap

2.5

0

Zoom in Zoom in Zoom in Zoom in Zoom in

(b) Ours

bpp = 0.2

(d) ADL-PCC

bpp = 0.3

Zoom in

Figure 5. Visual comparison of “Soldier” for Ground Truth, Ours, Learned-PCGC [7], ADL-PCC [14],
G-PCC (T) [20] and G-PCC (O) [20].

In Table 4, we compare the running time of different methods. The table displays the
encoding and decoding time as well as the storage space of each method. It is evident that
the traditional method G-PCC(O) [20] has the fastest encoding and decoding time, resulting
in a 16% reduction in encoding and decoding time and a 50% reduction in storage space
compared to the Learned-PCGC [7]. The slightly slower decoding time of our method is
primarily attributed to the generation of more voxels in the reconstruction process, which

Algorithms 2023, 16, 484 11 of 14

is based on a binary classification method. We plan to further optimize this aspect in
future work.

Table 4. Compare the Enc time, Dec time, and Model size of different methods (unit: second/s).

G-PCC(O) [20] G-PCC(T) [20] Learned-
PCGC [7] Ours

Encoding time 1.6 8.16 6.63 7.42
Decoding time 0.6 6.58 17.49 12.85

Model size 2.6 M 2.6 M 8.0 M 4.0 M

4.3. Ablation Study

The effectiveness of the Transformer modules in TransPCGC was validated through
disintegration experiments. We performed disintegration by stacking and adjusting various
parameters of the Transformer Blocks, including the network structure, activation function,
normalization layer, and patch size. The outcomes indicated that utilizing ReLU activation,
Batch Normalization, and a patch size of seven led to the designed Transformer Blocks
achieving superior BD-Rate, as demonstrated in Table 5.

Table 5. Ablation for Transformer Blocks on the “longdress” point cloud.

Ablation Variant Bpp D1 D2

Baseline [Trans, Trans, Trans] 0.59 75.45 79.53

Hybrid Stages [Trans, Trans, Trans] → [Trans, Trans*2, Trans] 0.58 75.48 79.57
[Trans, Trans, Trans] → [Trans, Trans*3, Trans] 0.59 75.45 79.53

Activation GeLU → ReLU 0.55 75.45 79.58
GeLU → Swich 0.55 74.53 78.58

Normalization Group Normalization → Layer Normalization 0.54 75.22 79.36
Group Normalization→ Batch Normalization 0.55 75.54 79.71

Token mixers Pooling size 7→5 0.55 75.47 79.62
Pooling size 7→9 0.55 75.46 79.58

5. Conclusions

In this paper, we introduce a Transformer-based point cloud geometric compression
network. It includes preprocessing modules for voxelization and partitioning of point
clouds, compression networks to achieve optimal BD-Rate, and postprocessing modules for
point cloud reconstruction. This approach addresses the common problem in mainstream
point cloud geometric compression algorithms, which often overlook global information in
point cloud data. We propose a low-complexity and low-computation Transformer module,
incorporating a pooling operation that does not require any learnable parameters as a
token mixer to compute long-distance dependencies. This method ensures global feature
extraction while significantly reducing both computations and parameters. In addition, we
employ the convolutional layer for feature extraction, which further reduces the number
of parameters while preserving the spatial structure of the point cloud. The experimental
results demonstrate that our method improves the reconstruction quality of the point cloud
and preserves more details. Moreover, our method outperforms other compared algorithms
in terms of BD rate gain. Compared with the data from the latest VA-PCC published paper,
our method achieves an average BD-Rate gain of 14.12% and 15.99% for D1 and D2 distor-
tion criteria, respectively. Furthermore, when compared with the Learned-PCGC network,
our method shows improvement in BD-Rate while reducing encoding and decoding time
by 16% and model size by 50%. There are numerous interesting topics for exploration in the
future, including (1) enhancing the entropy coding module by constructing more accurate
context probability models using the Transformer module, (2) attribute compression (e.g.,
RGB colors), and (3) motion capturing for dynamic point clouds.

Algorithms 2023, 16, 484 12 of 14

Author Contributions: Conceptualization, S.L. and H.Y.; data curation, H.Y. and C.H.; formal
analysis, S.L.; funding acquisition, H.Y. and C.H.; investigation, S.L.; methodology, S.L. and C.H.;
project administration, H.Y. and C.H.; resources, H.Y. and C.H.; writing—original draft, S.L.; writing—
review and editing, S.L. and C.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been partially supported by the National Key R&D Program of China under
grant No. 2020YFB1709200.

Data Availability Statement: The dataset used in this paper is the publicly available shapenet,
ModelNet40, MVUB, 8iVFB, and Owlii. They can be downloaded at the following links: https://
shapenet.org/, https://modelnet.cs.princeton.edu/, https://plenodb.jpeg.org/ and https://mpeg-
pcc.org/index.php/pcc-content-database/ (accessed on 15 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, Z.; Peng, S.; Larsson, V.; Xu, W.; Bao, H.; Cui, Z.; Oswald, M.R.; Pollefeys, M. Nice-slam: Neural implicit scalable encoding

for slam. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 12786–12796.

2. Li, Y.; Zhao, Z.; Fan, J.; Li, W. ADR-MVSNet: A cascade network for 3D point cloud reconstruction with pixel occlusion.
Pattern Recognit. 2022, 125, 108516. [CrossRef]

3. Fernandes, D.; Silva, A.; Névoa, R.; Simões, C.; Gonzalez, D.; Guevara, M.; Novais, P.; Monteiro, J.; Melo-Pinto, P. Point-cloud
based 3D object detection and classification methods for self-driving applications: A survey and taxonomy. Inf. Fusion 2021,
68, 161–191. [CrossRef]

4. Vujasinović, M.; Regodić, M.; Kecman, S. Point cloud processing software solutions. AGG+ J. Archit. Civ. Eng. Geod. Relat. Sci.
Fields 2020, 8, 64–75. [CrossRef]

5. Quach, M.; Valenzise, G.; Dufaux, F. Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression.
In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019;
pp. 4320–4324. [CrossRef]

6. Quach, M.; Valenzise, G.; Dufaux, F. Improved Deep Point Cloud Geometry Compression. In Proceedings of the 2020 IEEE 22nd
International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 21–24 September 2020; pp. 1–6. [CrossRef]

7. Wang, J.; Zhu, H.; Liu, H.; Ma, Z. Lossy Point Cloud Geometry Compression via End-to-End Learning. IEEE Trans. Circuits Syst.
Video Technol. 2021, 31, 4909–4923. [CrossRef]

8. Wang, J.; Ding, D.; Li, Z.; Ma, Z. Multiscale Point Cloud Geometry Compression. In Proceedings of the 2021 Data Compression
Conference (DCC), Snowbird, UT, USA, 23–26 March 2021; pp. 73–82. [CrossRef]

9. Wang, J.; Ding, D.; Li, Z.; Feng, X.; Cao, C.; Ma, Z. Sparse Tensor-Based Multiscale Representation for Point Cloud Geometry
Compression. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9055–9071. [CrossRef] [PubMed]

10. Nguyen, D.T.; Quach, M.; Valenzise, G.; Duhamel, P. Learning-Based Lossless Compression of 3D Point Cloud Geometry.
In Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON,
Canada, 6–11 June 2021; pp. 4220–4224. [CrossRef]

11. Nguyen, D.T.; Quach, M.; Valenzise, G.; Duhamel, P. Multiscale deep context modeling for lossless point cloud geometry
compression. In Proceedings of the 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shenzhen,
China, 5–9 July 2021; pp. 1–6. [CrossRef]

12. Nguyen, D.T.; Quach, M.; Valenzise, G.; Duhamel, P. Lossless Coding of Point Cloud Geometry Using a Deep Generative Model.
IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4617–4629. [CrossRef]

13. Nguyen, D.T.; Kaup, A. Lossless Point Cloud Geometry and Attribute Compression Using a Learned Conditional Probability
Model. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 4337–4348. [CrossRef]

14. Guarda, A.F.R.; Rodrigues, N.M.M.; Pereira, F. Adaptive Deep Learning-Based Point Cloud Geometry Coding. IEEE J. Sel. Top.
Signal Process. 2021, 15, 415–430. [CrossRef]

15. Wang, J.; Ding, D.; Ma, Z. Lossless Point Cloud Attribute Compression Using Cross-scale, Cross-group, and Cross-color Prediction.
In Proceedings of the 2023 Data Compression Conference (DCC), IEEE, Snowbird, UT, USA, 21–24 March 2023; pp. 228–237.

16. Wiesmann, L.; Milioto, A.; Chen, X.; Stachniss, C.; Behley, J. Deep Compression for Dense Point Cloud Maps. IEEE Robot.
Autom. Lett. 2021, 6, 2060–2067. [CrossRef]

17. Liang, Z.; Liang, F. TransPCC: Towards Deep Point Cloud Compression via Transformers. In Proceedings of the 2022 International
Conference on Multimedia Retrieval, Newark, NJ, USA, 27–30 June 2022; pp. 1–5.

18. Huang, L.; Wang, S.; Wong, K.; Liu, J.; Urtasun, R. Octsqueeze: Octree-structured entropy model for lidar compression.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 1313–1323.

https://shapenet.org/
https://shapenet.org/
https://modelnet.cs.princeton.edu/
https://plenodb.jpeg.org/
https://mpeg-pcc.org/index.php/pcc-content-database/
https://mpeg-pcc.org/index.php/pcc-content-database/
http://doi.org/10.1016/j.patcog.2021.108516
http://dx.doi.org/10.1016/j.inffus.2020.11.002
http://dx.doi.org/10.7251/AGGPLUS2008064V
http://dx.doi.org/10.1109/ICIP.2019.8803413
http://dx.doi.org/10.1109/MMSP48831.2020.9287077
http://dx.doi.org/10.1109/TCSVT.2021.3051377
http://dx.doi.org/10.1109/DCC50243.2021.00015
http://dx.doi.org/10.1109/TPAMI.2022.3225816
http://www.ncbi.nlm.nih.gov/pubmed/36455091
http://dx.doi.org/10.1109/ICASSP39728.2021.9414763
http://dx.doi.org/10.1109/ICMEW53276.2021.9455990
http://dx.doi.org/10.1109/TCSVT.2021.3100279
http://dx.doi.org/10.1109/TCSVT.2023.3239321
http://dx.doi.org/10.1109/JSTSP.2020.3047520
http://dx.doi.org/10.1109/LRA.2021.3059633

Algorithms 2023, 16, 484 13 of 14

19. Beemelmanns, T.; Tao, Y.; Lampe, B.; Reiher, L.; van Kempen, R.; Woopen, T.; Eckstein, L. 3D Point Cloud Compression with
Recurrent Neural Network and Image Compression Methods. In Proceedings of the 2022 IEEE Intelligent Vehicles Symposium
(IV), IEEE, Aachen, Germany, 5–9 June 2022; pp. 345–351.

20. ISO/IEC 23090-9:2023; Information Technology-Coded Representation of Immersive Media-Part 9: Geometry-Based Point Cloud
Compression (G-PCC). MPEG: Kowloon, Hong Kong, 2023.

21. ISO/IEC 23090-5:2021; Information Technology-Coded Representation of Immersive Media-Part 5: Visual Volumetric Vedio-Based
Coding (V3C) and Vedio-Based Point Cloud Compression (V-PCC). MPEG: Kowloon, Hong Kong, 2021.

22. Dvořák, J.; Káčereková, Z.; Vaněček, P.; Váša, L. Priority-based encoding of triangle mesh connectivity for a known geometry.
Comput. Graph. Forum 2023, 42, 60–71. [CrossRef]

23. Rusu, R.B.; Cousins, S. 3d is here: Point cloud library (pcl). In Proceedings of the 2011 IEEE International Conference on Robotics
and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4.

24. Huang, T.; Liu, Y. 3d point cloud geometry compression on deep learning. In Proceedings of the 27th ACM International
Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 890–898.

25. Google. Draco 3D Data Compression. 2017. Available online: https://github.com/google/draco (accessed on 15 October 2023).
26. Dumic, E.; Bjelopera, A.; Nüchter, A. Dynamic point cloud compression based on projections, surface reconstruction and video

compression. Sensors 2021, 22, 197. [CrossRef] [PubMed]
27. Yu, S.; Sun, S.; Yan, W.; Liu, G.; Li, X. A method based on curvature and hierarchical strategy for dynamic point cloud compression

in augmented and virtual reality system. Sensors 2022, 22, 1262. [CrossRef] [PubMed]
28. Thanou, D.; Chou, P.A.; Frossard, P. Graph-Based Compression of Dynamic 3D Point Cloud Sequences. IEEE Trans. Image Process.

2016, 25, 1765–1778. [CrossRef] [PubMed]
29. Puang, E.Y.; Zhang, H.; Zhu, H.; Jing, W. Hierarchical Point Cloud Encoding and Decoding with Lightweight Self-Attention

Based Model. IEEE Robot. Autom. Lett. 2022, 7, 4542–4549. [CrossRef]
30. Tatarchenko, M.; Dosovitskiy, A.; Brox, T. Octree generating networks: Efficient convolutional architectures for high-resolution

3d outputs. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 2088–2096.

31. Dai, A.; Qi, C.R.; Nießner, M. Shape Completion Using 3D-Encoder-Predictor CNNs and Shape Synthesis. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6545–6554.
[CrossRef]

32. Luo, S.; Hu, W. Diffusion probabilistic models for 3d point cloud generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2837–2845.

33. Yu, J.; Wang, J.; Sun, L.; Wu, M.E.; Zhu, Q. Point Cloud Geometry Compression Based on Multi-Layer Residual Structure.
Entropy 2022, 24, 1677. [CrossRef] [PubMed]

34. Zhuang, L.; Tian, J.; Zhang, Y.; Fang, Z. Variable Rate Point Cloud Geometry Compression Method. Sensors 2023, 23, 5474.
[CrossRef] [PubMed]

35. You, K.; Gao, P. Patch-based deep autoencoder for point cloud geometry compression. arXiv 2021, arXiv:2110.09109.
36. You, K.; Gao, P.; Li, Q. IPDAE: Improved Patch-Based Deep Autoencoder for Lossy Point Cloud Geometry Compression.

In Proceedings of the 1st International Workshop on Advances in Point Cloud Compression, Processing and Analysis, Lisbon,
Portugal, 14 October 2022; pp. 1–10.

37. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 5099–5108.

38. Que, Z.; Lu, G.; Xu, D. Voxelcontext-net: An octree based framework for point cloud compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6042–6051.

39. Biswas, S.; Liu, J.; Wong, K.; Wang, S.; Urtasun, R. Muscle: Multi sweep compression of lidar using deep entropy models.
Adv. Neural Inf. Process. Syst. 2020, 33, 22170–22181.

40. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9
December 2017; pp. 6000–6010.

41. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the naacL-HLT, Minneapolis, MN, USA, 2 June 2019; Volume 1, p. 2.

42. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training.
Technical Report, OpenAI. 2018. Available online: https://openai.com/research/language-unsupervised (accessed on 15 October
2023).

43. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

44. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

45. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551.

http://dx.doi.org/10.1111/cgf.14719
https://github.com/google/draco
http://dx.doi.org/10.3390/s22010197
http://www.ncbi.nlm.nih.gov/pubmed/35009738
http://dx.doi.org/10.3390/s22031262
http://www.ncbi.nlm.nih.gov/pubmed/35162006
http://dx.doi.org/10.1109/TIP.2016.2529506
http://www.ncbi.nlm.nih.gov/pubmed/26891486
http://dx.doi.org/10.1109/LRA.2022.3149569
http://dx.doi.org/10.1109/CVPR.2017.693
http://dx.doi.org/10.3390/e24111677
http://www.ncbi.nlm.nih.gov/pubmed/36421532
http://dx.doi.org/10.3390/s23125474
http://www.ncbi.nlm.nih.gov/pubmed/37420640
https://openai.com/research/language-unsupervised

Algorithms 2023, 16, 484 14 of 14

46. Parmar, N.; Vaswani, A.; Uszkoreit, J.; Kaiser, L.; Shazeer, N.; Ku, A.; Tran, D. Image transformer. In Proceedings of the
International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 4055–4064.

47. Kolesnikov, A.; Dosovitskiy, A.; Weissenborn, D.; Heigold, G.; Uszkoreit, J.; Beyer, L.; Minderer, M.; Dehghani, M.; Houlsby, N.;
Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

48. Wu, X.; Lao, Y.; Jiang, L.; Liu, X.; Zhao, H. Point transformer v2: Grouped vector attention and partition-based pooling.
Adv. Neural Inf. Process. Syst. 2022, 35, 33330–33342.

49. Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point transformer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 16259–16268.

50. Misra, I.; Girdhar, R.; Joulin, A. An end-to-end transformer model for 3d object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 2906–2917.

51. Sheng, H.; Cai, S.; Liu, Y.; Deng, B.; Huang, J.; Hua, X.S.; Zhao, M.J. Improving 3d object detection with channel-wise transformer.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021;
pp. 2743–2752.

52. Wang, Y.; Ye, T.; Cao, L.; Huang, W.; Sun, F.; He, F.; Tao, D. Bridged transformer for vision and point cloud 3d object detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June
2022; pp. 12114–12123.

53. Gao, Y.; Liu, X.; Li, J.; Fang, Z.; Jiang, X.; Huq, K.M.S. LFT-Net: Local feature transformer network for point clouds analysis.
IEEE Trans. Intell. Transp. Syst. 2022, 24, 2158–2168. [CrossRef]

54. Park, C.; Jeong, Y.; Cho, M.; Park, J. Fast point transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16949–16958.

55. Lai, X.; Liu, J.; Jiang, L.; Wang, L.; Zhao, H.; Liu, S.; Qi, X.; Jia, J. Stratified transformer for 3d point cloud segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June
2022; pp. 8500–8509.

56. Xu, S.; Wan, R.; Ye, M.; Zou, X.; Cao, T. Sparse cross-scale attention network for efficient lidar panoptic segmentation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Palo Alto, CA, USA, 22 February–1 March 2022; Volume 36, pp. 2920–2928.

57. Yu, W.; Luo, M.; Zhou, P.; Si, C.; Zhou, Y.; Wang, X.; Feng, J.; Yan, S. Metaformer is actually what you need for vision.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June
2022; pp. 10819–10829.

58. Lee-Thorp, J.; Ainslie, J.; Eckstein, I.; Ontanon, S. FNet: Mixing Tokens with Fourier Transforms. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Seattle, WA, USA, 10–15 July 2022; pp. 4296–4313.

59. Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Montreal, BC, Canada, 11–17 October 2021; pp. 568–578.

60. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October
2021; pp. 10012–10022.

61. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3d shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–15 June 2015;
pp. 1912–1920.

62. D’Eon, E.; Harrison, B.; Myers, T.; Chou, P.A. 8i voxelized full bodies—A voxelized point cloud dataset. ISO/IEC JTC1/SC29 Jt.
2017, 7, 11.

63. Xu, Y.; Lu, Y.; Wen, Z. Owlii Dynamic human mesh sequence dataset. In Proceedings of the ISO/IEC JTC1/SC29/WG11 m41658,
120th MPEG Meeting, Macau, 23–27 October 2017; Volume 1.

64. Loop, C.; Cai, Q.; Escolano, S.O.; Chou, P.A. Microsoft voxelized upper bodies—A voxelized point cloud dataset. In Proceedings
of the ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) m38673/M72012, Geneva, Switzerland, 30 May–3 June 2016;
Volume 1.

65. Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.; et al. Shapenet:
An information-rich 3d model repository. arXiv 2015, arXiv:1512.03012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TITS.2022.3140355

	Introduction
	Related Work
	 Non-Deep Learning Methods
	Deep Learning Methods
	Transformer Methods

	Methods
	Pre-Processing
	Encoder and Decoder Modules
	Entropy Coding
	Loss Function
	Post-Processing

	Experiment
	Experimental Set
	Experiment Results
	Ablation Study

	Conclusions
	References

