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Abstract: Convolutional neural networks (CNNs) in deep learning have input pixel limitations, which
leads to lost information regarding microcalcification when mammography images are compressed.
Segmenting images into patches retains the original resolution when inputting them into the CNN
and allows for identifying the location of calcification. This study aimed to develop a mammographic
calcification detection method using deep learning by classifying the presence of calcification in
the breast. Using publicly available data, 212 mammograms from 81 women were segmented into
224 × 224-pixel patches, producing 15,049 patches. These were visually classified for calcification
and divided into five subsets for training and evaluation using fivefold cross-validation, ensuring
image consistency. ResNet18, ResNet50, and ResNet101 were used for training, each of which created
a two-class calcification classifier. The ResNet18 classifier achieved an overall accuracy of 96.0%,
mammogram accuracy of 95.8%, an area under the curve (AUC) of 0.96, and a processing time of 0.07 s.
The results of ResNet50 indicated 96.4% overall accuracy, 96.3% mammogram accuracy, an AUC of
0.96, and a processing time of 0.14 s. The results of ResNet101 indicated 96.3% overall accuracy, 96.1%
mammogram accuracy, an AUC of 0.96, and a processing time of 0.20 s. This developed method
offers quick, accurate calcification classification and efficient visualization of calcification locations.

Keywords: deep learning; mammography; image classification

1. Introduction

Breast cancer is a cancer of the mammary gland tissues and most often arises from
the ducts, with some cases arising from the lobules and other tissues. Cancer cells may
metastasize to lymph nodes or other organs, resulting in damage. Breast cancer is the
leading cause of cancer in women and the second leading cause of cancer-related mortality
worldwide [1]. Mammography, magnetic resonance imaging (MRI), and ultrasonography
are common methods used to diagnose breast cancer [2].

In this study, we focus on mammography, which is an essential tool for breast cancer
diagnosis. This study aims to develop a method for detecting calcification in mammography
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using deep learning techniques. We base our classification on the presence or absence of
calcification in mammography. Deep learning uses a neural network called CNN, which
has a limitation on the number of pixels in its input. However, there are a large number of
pixels included in mammography images, and compressing the images results in the loss
of information of small lesions, such as microcalcifications [3]. If an entire image is input
and classified based on the presence or absence of calcification, it becomes challenging to
determine where calcification is located. There are no previous studies that analogize the
location of calcification solely on the basis of image classification. In this study, the accuracy
of the classifier as well as the accuracy and processing time for each mammography image
were calculated and investigated. There are no studies that have been found that include
these factors. Therefore, our objective is to divide the image into patches, enabling input
into a CNN with the original resolution. This allows us to classify the presence or absence
of calcification in each patch and display the integrated image to show the location of
calcification in the original image.

2. Related Work

Mammography is one of the diagnostic imaging modalities for breast cancer. It is
an effective screening tool for breast cancer diagnosis and is the only method proven
to reduce breast cancer mortality [4]. According to a recent report [5], it is one of the
most effective ways to detect breast cancer in its early stages. Mammography detects
approximately 80% to 90% of breast cancer cases in asymptomatic women and has been
reported to reduce breast cancer mortality by 38–48% among those screened [6,7]. This
also has been reported [8–10] in recent years to reduce mortality by 30% or mortality by
20%. Mammography is mainly used for qualitative diagnosis and to observe masses, focal
asymmetric shadows, calcifications, and structural abnormalities. Calcification is a common
finding in mammography. It is caused by the deposition of calcium oxalate and calcium
phosphate in the breast tissue and appears as bright spots on mammography [11,12]. The
distribution of calcification is useful for differentiating benign from malignant disease.
Diffuse or scattered calcifications are generally benign, while zonal or linear calcifications
are suspected to be malignant [13]. Because clustered microcalcifications are found in
30–50% of cases of cancer diagnosed by mammography, the detection, evaluation, and
classification of calcifications are important [6,7]. However, microcalcifications can be
difficult to accurately detect and diagnose due to their size, shape, and heterogeneity in the
surrounding tissue [6].

Computer-aided diagnosis (CAD) systems have been used in mammography to assist
in the reading of mammograms and were developed to detect abnormal breast tissue and
reduce the number of false-negative results for breast cancer detected by radiologists [14].
The sensitivity and specificity of CAD for all breast lesions have been reported to be 54%
and 16%, respectively. CAD can easily misclassify parenchyma, connective tissue, and
blood vessels as breast lesions, vascular calcifications, and axillae as microcalcifications.
Because of its low specificity and high false-positive rate, CAD should not be used alone in
mammography for breast examinations [15].

Deep learning technologies, specifically convolutional neural networks (CNNs), have
recently been used in a variety of fields, including medical imaging [16,17]. Deep learn-
ing techniques have a wide range of applications, including classification [18,19], object
detection [20,21], semantic segmentation [21–23], and regression [24–26]. Deep learning
techniques have also been applied to breast diagnostics. For MRI, studies have used U-Net
for breast mass segmentation [27] and ResNet18 pretrained on ImageNet for classification
of benign and malignant breast tumors [28]. These studies are limited due to the small
number of available breast MRI data and often rely on transfer learning. Similarly, deep
learning methods for breast ultrasound also typically use transfer learning and pretraining
with ImageNet due to the small number of available breast ultrasound image training
sets [18]. Deep learning models in mammography have been used not only for the detection
of potential malignancies but also for tasks like risk stratification, lesion classification, and
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prognostic evaluation based on mammographic patterns [29,30]. Researchers have also
explored the potential of employing transfer learning to overcome challenges associated
with the limited availability of supervised image training mammography data [31].

3. Materials and Methods
3.1. Subjects

In this study, we used image data from the Categorized Digital Database for low-
energy and subtracted contrast-enhanced spectral mammography (CDD-CESM) images
available at the Cancer Imaging Archive (https://www.cancerimagingarchive.net/ ac-
cessed on 15 September 2023). These public data were converted from DICOM format to
lossless JPEG with an average pixel size of 2355 × 1315 pixels. Of the 2006 mammography
image datasets of 326 patients included in these publicly available data, we used 212 low-
energy images from 81 patients with more than 50 images in both the left and right imaging
orientations for this study. Table 1 provides a detailed description of the image data used.

Table 1. Number of mammography images in this study.

Right Left

CC a Image MLO b Image CC Image MLO Image

No. of images 53 51 52 56
a Craniocaudal; b mediolateral oblique.

3.2. Data Preprocessing

The data preprocessing in this study was performed using in-house MATLAB software
(MATLAB 2023a; The MathWorks, Inc., (Natick, MA, USA)) and a desktop computer with
an NVIDIA RTX A6000 graphics card (Nvidia Corporation, Santa Clara, CA, USA). Table 2
shows the specifications of the computers used for image processing in this study.

Table 2. Software and equipment used in this study.

Environment Contents

Software MATLAB 2023a (Mathworks)
OS Windows 11

CPU Intel core i9-10980XE 3.0 GHz
GPU NVIDIA RTX A6000 48 GB x 2

Memory DDR4 2933 Quad-Channel 64 GB

In this study, as shown in Figure 1, high-resolution mammography was divided into
small patches, and images that preserved the resolution of the original images were used
for image classification to identify whether calcification was present in the images within
the patches using a deep learning image classifier. In this study, we used a pretrained
ResNet for transfer learning in ImageNet. To achieve the pixel size of 224 × 224 pixels,
which is the input image size for ResNet18, ResNet50, and ResNet101, 212 mammography
images were divided into 224 × 224-pixel size. The right breast image was divided into
224-pixel patches by starting from the bottom right side, and the left breast image was
divided into 224-pixel patches by starting from the bottom left side; the missing pixels
were filled with zeros. The 15,049 patches were reviewed visually by four radiologists with
24, 14, 6, and 1 years of experience. These radiologists were certified by the Japan Central
Organization on Quality Assurance of Breast Cancer Screening. As shown in Table 3, the
presence or absence of calcification was classified by consensus.

https://www.cancerimagingarchive.net/
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Table 3. Number of classifications of the presence or absence as visual calcification.

Calcification No. of Images

Yes 1029
No 14,020

We performed fivefold cross-validation by dividing the generated patches into five
subsets, A through E. The number of mammographic images in each subset was kept
similar to avoid including mammographic images of the same patient in different subsets.
Table 4 shows a summary of the subset structure.

Table 4. Detail of images and calcification in patches within subset.

Subset No. of Patients No. of Mammography
Images

Calcification in the Patch

Yes No

A 16 43 194 3352
B 16 42 131 3001
C 17 41 238 2329
D 15 43 196 2989
E 17 43 270 2349

Five datasets, folds 1 through 5, were created based on the subsets, with the training
data for fold 1 being subsets B through E and the test data being subset A. The other
datasets were created in the same way. Table 5 shows each of the datasets.

Since a classifier created by training on unbalanced training data may be biased
toward classes with a large number of images in the training data, a model created on
training data with many images without calcification may be more easily classified as
having no calcification, leading to missing calcification [32]. Therefore, we performed data
augmentation on the training data in each dataset to make the number of images with and
without calcification equivalent. First, the training data patches with calcification were
rotated by 90◦, 180◦, and 270◦. Then, the original and rotated patch was flipped. Next,
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these patches were expanded by increasing the pixel values by a factor of 0.5 and 0.75.
Training data without calcification were expanded by applying only the flipping process.
We did not perform shearing or rotations of less than 90◦ in this study. Table 6 shows the
changes in imaging data that occurred after data augmentation.

Table 5. Number of images in each fold.

No. of Images Used for Training No. of Images Used for Testing

Without
Calcification

With
Calcification

Without
Calcification

With
Calcification

Fold 1 10,668 835 3352 194
Fold 2 11,019 898 3001 131
Fold 3 11,691 791 2329 238
Fold 4 11,031 833 2989 196
Fold 5 11,671 759 2349 270

Table 6. Number of images after data augmentation in training data.

Without Calcification With Calcification

Original Augmented Original Augmented

Fold 1 10,668 21,336 835 20,040
Fold 2 11,019 22,038 898 21,552
Fold 3 11,691 23,382 791 18,984
Fold 4 11,031 22,062 833 19,992
Fold 5 11,671 23,342 759 18,216

3.3. Image Training

Mammography images were input in patch form, and a classifier was created to
perform two-class classification with respect to the presence or absence of calcification. In
order to compare the accuracy of different CNN structures in training the patched images,
we used ResNet18, ResNet50, and ResNet101 for the training models, and each CNN was
used to create a classifier that performs two-class classification of the presence or absence
of calcification. The parameters used to create the classifiers are as follows: The optimizer
was the stochastic gradient descent and momentum optimization, the batch size for the
number of training samples was 128, the number of epochs was 10, and the initial learning
rate was 0.001. The learning rate drop factor was 0.3, the learning rate drop period was
1, the L2 regularization was 0.005, and the momentum was 0.9. In order to evaluate the
difference in accuracy due to CNN structure, we did not optimize the training parameters
in this study, and the training conditions were identical.

3.4. Evaluation of Created Models
3.4.1. Classification Accuracy

The confusion matrix is used to calculate the accuracy of the classifier as a whole.
This matrix classifies the images into two classes: one with calcification and one without
calcification. In addition, it determines the accuracy of each mammographic image. The
sensitivity, specificity, F1 score, positive predictive value (PPV), and negative predictive
value (NPV) of the model can be calculated using true positive (TP), false positive (FP),
true negative (TN), and false negative (FN). Their definitions and calculation formulas are
shown below.

Accuracy =
TP + TN

TP + FP + TN + FN

Sensitivity =
TP

TP + FN
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Specificity =
TN

TN + FP

F1 score =
TP

TP + 1
2 (FP + FN)

PPV =
TP

TP + FP

NPV =
TN

TN + FN

In this study, we performed fivefold cross-validation and then averaged the results
of the five models to calculate the accuracy, sensitivity, specificity, PPV, and NPV of the
classifiers created by each CNN. In addition, receiver–operating characteristic (ROC) anal-
ysis was performed, and the area under the curve (AUC), which is the area under the
ROC curve, was calculated by averaging the results of the five models and the AUC of the
classifier created by each CNN.

3.4.2. Time for Classification

We calculated the time taken to classify patches generated from a single mammography
image by the presence or absence of calcification. For the trained model, the processing
time was defined as the time required to infer all patched images per mammogram in the
test data.

3.4.3. Accuracy of Each Whole Mammogram

Considering that a mammogram is divided into N patches, the accuracy of each whole
mammogram image can be expressed by the following equation using the number of TP
patches and the number of TN patches.

Accuracy of each whole mammogram =
TP + TN

N
× 100[%]

In this study, we calculated accuracy for each of the 212 mammograms. We subse-
quently calculated the average accuracy of each CNN for each of the mammograms.

4. Results
4.1. Accuracy of the Created Classifier

Table 7 shows the accuracy of the classifier for the two-class classification of mammog-
raphy images in each CNN, with and without calcifications. The classifier trained with
ResNet50 had the highest values for all CNNs.

Table 7. Accuracy of classifiers in each CNN.

CNN a Sensitivity Specificity F1 Score PPV b NPV c Accuracy

ResNet18 73.4 97.8 71.4 70.5 97.8 96
ResNet50 76.2 98.1 74.7 74.4 98.1 96.4

ResNet101 75.6 98 73.8 72.9 98 96.3
a Convolutional neural network; b positive predictive value; c negative predictive value.

4.2. ROC Analysis

Table 8 shows the AUC of the two-class classifier for the presence or absence of
calcification using mammography images input as patches in each CNN. The classifier
trained by ResNet50 had the highest value.
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Table 8. AUC of classifiers in each CNN.

CNN a AUC b

ResNet18 0.956
ResNet50 0.963
ResNet101 0.961

a Convolutional neural network; b area under the curve.

4.3. Time for Classification

Table 9 shows the inference time taken by each CNN to classify a patch generated
from a single mammogram image as calcification or no calcification.

Table 9. Inference time by classifier for each CNN.

CNN a Time for Classification [s]

ResNet18 0.072
ResNet50 0.136
ResNet101 0.203

a Convolutional neural network.

4.4. Accuracy for Each Whole Mammogram

Table 10 shows the average accuracy per mammogram for each CNN, and Figure 2
summarizes the accuracy per mammogram for the classifiers trained on ResNet18, ResNet50,
and ResNet101.

Table 10. Average accuracy for each mammography image in each CNN.

CNN a Average Accuracy [%]

ResNet18 95.8
ResNet50 96.3
ResNet101 96.1

a Convolutional neural network.
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The average accuracy of each mammogram image for the classifiers trained on
ResNet18, ResNet50, and ResNet101 was 95.8%, 96.3%, and 96.1%, respectively, with
the ResNet50 trained model having the highest value.

5. Discussion

The results in Section 4.1 demonstrate that the overall accuracy of the classifiers
was 96.0% for the ResNet18 classifier, 96.4% for the ResNet50 classifier, and 96.3% for
the ResNet101 classifier. The accuracy of the ResNet50 classifier was 96.4%, and that
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of the ResNet101 classifier was 96.3%. Alternatively, in a previous study of two-class
classification of the presence or absence of calcification, the authors reported that the most
accurate classifier was 96% [33]. The findings obtained in the current study are comparable
with those of the previous research. However, the ResNet18, ResNet50, and ResNet101
classifiers had sensitivities of 73.4%, 76.2%, and 75.6%, respectively, whereas the highest
sensitivity in the previous study [33] was 98%. Compared with the results of the prior
report, the sensitivity obtained in our study was relatively lower. One of the reasons
for this is that in previous studies, patches were extracted from mammographic images
in such a way that there was slight overlap in the top, bottom, left, and right sides of
the image, which was reported to reduce the FN rate (1—sensitivity) [33,34]. A recent
study [32] using the ResNet network showed that deep learning tools aid radiologists in
mammogram-based breast cancer diagnosis. The study addressed class imbalance issues
in training data by testing techniques like class weighting, over-sampling, under-sampling,
and synthetic lesion generation. The results indicated a bias toward the majority class
due to class imbalance, which was partially mitigated by standard techniques but did
not significantly improve AUC-ROC. Synthetic lesion generation emerged as a superior
method, particularly for out-of-distribution test sets. The morphology and distribution of
the calcifications in the breast vary. Obvious benign calcifications include skin and vascular
calcification, fibroadenoma calcification, calcification associated with ductal dilatation,
round calcification, central translucent calcification, calcareous calcification, calcareous
milk calcification, suture calcification, and heterotopic calcification. The morphology of
calcification, which must be distinguished between good and bad, includes microcircular,
pale and indistinct, pleomorphic, fine-linear and fine-branched, diffuse, scattered, regional,
clustered, linear, and zonal distribution. Because of the variations in the morphology and
distribution of calcifications, we assume that the diversity of features was not captured
in this study, resulting in a low sensitivity. In addition, FN patches had a smaller area
of calcification as compared with TP patches. Most coarse calcifications were correctly
classified as calcified. Other calcifications were often judged as calcified when a patch
contained many calcifications or slightly larger calcifications, but they were incorrectly
classified as no calcified when a patch contained only a few small calcifications, such as
one or two small calcifications (i.e., when the area of calcification in the patch was small).
In addition, FN patches were often whiter than TP patches, especially when the entire
patch was white and each patch contained only a few small calcifications (i.e., one or
two). Conversely, FP patches included some patches with white patches. In addition, as
with the FN patches, patches that were entirely white were often incorrectly classified as
having calcification. These results suggest that calcification is often misjudged because
it is difficult to distinguish between calcification and noncalcification when patches are
whitish because calcification is depicted with high brightness. Therefore, we believe that
the use of thresholding can improve the accuracy of the classifier by reducing the number
of FN and FP patches via the extraction of areas of particularly high brightness. With
regard to the point that a small area of calcification in a patch is often incorrectly classified
as no calcification, in this study, we divided the mammography image into patches of
224 × 224 pixels to create the input image size for ResNet; however, it is possible to divide
the mammography image into patches of a smaller matrix size and to use the generated
patches as the input image size for ResNet. However, if the patches are divided into a
smaller matrix size and the generated patches are enlarged to 224 × 224 pixels by resizing,
the area of calcification in the patches will be larger and the accuracy may be improved.

We will next discuss the AUC of the created classifiers. The AUC of the classifiers
created by all CNNs was greater than 0.95, a value that is considered to be very accurate
and excellent. Regarding the processing time for classifying the presence or absence of
calcification for the created classifiers, ResNet18, ResNet50, and ResNet101 took the shortest
processing times, in that order. This is consistent with the fact that deeper CNN layers
require more processing time to extract more advanced and complex features. The classifier
trained on ResNet50, which had the highest accuracy and AUC, took 0.136 s to classify the
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patches generated from a single mammogram image according to the presence or absence
of calcification, which means that seven mammogram images can be processed per second.

Next, we discuss the accuracy of the system for one mammogram at a time. The
average accuracy for each mammogram was 95.3%. The interior of the breast is composed
mainly of mammary glands and fat and is classified into four categories in accordance with
the proportion of these components: fatty, scattered mammary, heterogeneous hyperintense,
and extremely hyperintense. The percentage of mammary tissue is larger in the latter
category. The two types of tissue, heterogeneous and extremely dense, are referred to
as “dense breasts”. Densely concentrated breast has less fat and more mammary tissue,
resulting in a whiter image and a lower rate of lesion detection [35]. This makes it difficult to
distinguish between calcification and noncalcification and is thought to reduce the accuracy
of classifying the presence or absence of calcification. Because microcalcifications appear
as localized areas of high brightness, the use of thresholding is expected to increase the
accuracy of the classifier as a whole as well as the accuracy of each mammographic image.

The specificity of microcalcification detection in CAD, which has been conventionally
used as a reading aid, is 45%, and the FP rate is reported to be high [15]. The specificity of
the classifiers used in this study was 97.8% for ResNet18, 98.1% for ResNet50, and 98.0% for
ResNet101. A low false-positive rate and high NPV indicate its usefulness as a diagnostic
aid that may reduce the burden on physicians.

One limitation of this study is that the dataset we used consisted of mammographic
images from Europeans, Americans, and other foreign nationals. Japanese individuals
generally have more dense breasts and a smaller breast size than Europeans and Americans.
Therefore, it is necessary to use a dataset of Japanese mammographic images or to mix the
data used in this study with Japanese mammographic images in the future. In addition, the
training data used in this study contained more patches without calcification than patches
with calcification, and the data were biased toward patches without calcification. Therefore,
in the future, it will be necessary to take care to avoid bias in the training data.

In this study, the parameters were not changed in the training process, so changing the
batch size or the number of epochs may improve the accuracy. In the previous study [33],
the number of epochs was set to 200, and thus, it will be necessary to study the optimal
parameters in the future. We used ResNet for classification in this study; however, further
improvement in accuracy can be achieved by changing the network model used. This
study aimed to perform a comparison with the intention of serving as an indicator when
utilizing the time taken for classification in a clinical setting. While ResNet is a relatively
common network model in medical image classification [18,19], it is essential to compare
different network models. However, because we believed that altering individual layers or
comparison between network models with different characteristics might yield varying
sensitivity due to the background information inherent in images, we sought to elucidate
the extent to which accuracy and processing time differ with varying depths of the same
CNN. To achieve this, we conducted training and comparison using three CNNs: ResNet18,
ResNet50, and ResNet101. In the context of evaluating the validity of the three CNNs
employed in this study, it is essential to discuss them in an objective manner, particularly
when compared to the state of the art (SOTA) in image classification. Utilizing the effective
optimization algorithm implemented in BASIC-L (Lion, fine-tuned) [36], an accuracy
of 76.45% was observed, which compares favorably to the 76.22% achieved using the
original ResNet-50. Furthermore, in the case of using Vision Transformer (ViT-H/14) [37]
for transfer accuracy, the metric was higher at 88.08% compared to ResNet-50’s 77.54%.
Additionally, in the assessment of test error rates using Sharpness-Aware Minimization
(SAM) [38], which seeks parameters that lie in neighborhoods with uniformly low loss,
the SAM-augmented ResNet-50 yielded a rate of 22.5% against the original ResNet-50’s
22.9%. In a similar comparison using ResNet-101, SAM achieved a rate of 21.2% as opposed
to the original ResNet-50’s 20.2%. Moreover, employing multitask learning [39] showed
classification accuracies of 88.22% when based on ResNet-18, which compares favorably
with the reported SOTA figure of 87.82%. It is worth noting that ResNet serves as a
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foundational convolutional neural network (CNN) for classification and is consistently used
for comparative evaluation against new algorithms and methods. However, in this study,
optimization of the learning algorithm was not undertaken, highlighting an area for future
research. Nonetheless, it is crucial to consider that the application of SOTA algorithms could
potentially alter inference times. Therefore, future studies should integrate considerations
for optimizing CNNs, taking into account references to existing SOTA systems.

There is another limitation to this study. There are several limitations in approaching
the task of detecting calcification while maintaining the resolution of mammography
images. In the application of deep layer training models, it can be difficult to directly
evaluate the individual contributions of the different intermediate layers in capturing
image features. This recognition requires a comprehensive understanding of how each
component affects the overall performance of the model. Considering the limited use of
annotated mammography datasets, there are limitations in generalizing our findings in
this study, and the performance of the models we present may show variability when
testing them on a broader and more diverse dataset. They should therefore be applied and
evaluated on a broader set of external datasets. In addition, regarding the optimization
of parameters during training, ResNet, a structurally similar network model differing
only in its number of layers, was used for comparison. However, for the optimization of
parameters in image training, it is necessary to evaluate true training accuracy; this is a
limitation of the research in this study and will be an issue to consider in addition to its
implementation in other network models in the future.

For future consideration, with the aim of increasing the sensitivity of calcification
classification, there are several ways to improve the accuracy, such as training with different
CNNs and parameters, as described above; using a large number of diverse training data
with calcification; creating patches in which the top, bottom, left, and right sides slightly
overlap; using threshold processing; and devising patch partitioning. In addition, by using
a classifier trained on the shape and distribution of calcification in patches classified as
having calcification, it is possible to develop a tool for determining whether calcification
is benign or malignant or for determining the category of calcification. In addition, the
development of such a tool could contribute to the early detection and diagnosis of breast
cancer; thus, it is necessary to evaluate its usefulness in clinical practice.

6. Conclusions

In this study, we developed a mammographic calcification detection method that
only uses image classification to determine the presence or absence of calcification in the
breast using deep learning technology. The developed method is fast and has relatively
high accuracy in classifying the presence or absence of calcification and facilitating the
visualization of the location of calcification; thus, its usefulness has been confirmed. In
the future, calcification classification sensitivity can be improved in several ways, such
as using diverse training data, varying CNNs and parameters, overlapping patches, ap-
plying threshold processing, and optimizing patch partitioning. Additionally, a classifier
trained on calcification features within patches could help develop a tool for distinguishing
calcification types and aiding in early breast cancer detection, requiring clinical evaluation.
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