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Abstract: Complex diseases are affected by various factors, and single-nucleotide polymorphisms
(SNPs) are the basis for their susceptibility by affecting protein structure and gene expression. Com-
plex diseases often arise from the interactions of multiple SNPs and are investigated using epistasis
detection algorithms. Nevertheless, the computational burden associated with the “combination ex-
plosion” hinders these algorithms’ ability to detect these interactions. To perform multi-SNP analysis
in complex diseases, the iterative exclusion of compatible samples (IECS) workflow is proposed in
this work. In the IECS workflow, qualitative comparative analysis (QCA) is firstly employed as the
calculation engine to calculate the solution; secondly, the pattern is extracted from the prime impli-
cants with the greatest raw coverage in the solution; then, the pattern is tested with the chi-square
test in the source dataset; finally, all compatible samples are excluded from the current dataset. This
process is repeated until the QCA calculation has no solution or reaches the iteration threshold. The
workflow was applied to analyze simulated datasets and the Alzheimer’s disease dataset, and its
performance was compared with that of the BOOST and MDR algorithms. The findings illustrated
that IECS exhibits greater power with less computation and can be applied to perform multi-SNP
analysis in complex diseases.

Keywords: complex diseases; single-nucleotide polymorphisms; iterative exclusion of compatible
samples workflow; qualitative comparative analysis; combination explosion

1. Introduction

Single-nucleotide polymorphism (SNP), the most prevalent form of genetic varia-
tion in the human genome, represents a third-generation genetic marker [1–4]. SNPs are
connected to the occurrence of inherited diseases in humans [5], while there is still lim-
ited understanding regarding the mechanism underlying this phenomenon [6,7]. Some
associations between SNPs and diseases have been discovered, including the primary
effect of single SNPs, interactions between SNPs, and interactions between SNPs and
the environment [8–10]. The main effects of single SNPs can be detected by single-point
association analysis [11–13]. However, this approach can only explain a small portion of
complex diseases. To explain more complex diseases, epistasis analysis is required to detect
SNP–SNP interactions [14,15].

Studies of epistasis analysis methods start with small datasets. With the development
of genome sequencing technologies, extensive volumes of data have been produced, result-
ing in the widespread implementation of genome-wide association studies (GWAS) [16].
GWAS have been carried out to identify sequence variations in the whole human genome
and screen out the SNPs associated with diseases through single-point association analysis
and epistasis analysis [17,18]. With the advancement of bioinformatics, numerous epista-
sis analysis methods have emerged, but epistasis analysis is faced with the challenge of
combinatorial explosion since GWAS data are characterized by high dimensions [19].
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For epistasis analysis, the methods can be mainly classified into searching, screening,
and machine learning methods. The searching method transforms the mining of SNP–SNP
interactions into a problem of searching for SNP combinations in an N-dimensional space.
For instance, multifactor dimension reduction (MDR) is a searching method, proposed
in 2001 [20], which can transform a structure of high dimensions into a structure of one
dimension which consists of two levels (high risk or low risk). Following dimension-
ality reduction, evaluation of the capability to identify and predict diseases using the
one-dimensional multifactor combination can be performed through cross-validation and
permutation tests [21]. In the following years, the MDR method has been continuously
improved. For instance, an enhanced method named OR-MDR (odds ratio-based MDR)
was introduced by incorporating the odds ratio as a risk indicator [22], which greatly
improves the recognition ability but increases the amount of calculation. GMDR (gener-
alized multifactor dimensionality reduction) (GMDR) broadens the data range of MDR
to continuous variables [23]. The method of MB-MDR (multifactor dimensionality reduc-
tion based on models) can be applied to investigate datasets with limited initial sample
sizes [24]. MDRGPU is a GPU-based multifactor dimension reduction method with great
improvement of computing speed [25]. QMDR is an algorithm that can identify models for
quantitative traits [26]. MDR-ER, proposed in 2013, introduces a classifier function, which
improves the probability of the correct classification of genotypes but also increases the
amount of calculation [27]. Fuzzy MDR combines the fuzzy set theory, in which the condi-
tional variables can be fuzzy data between 0 and 1 [28]. UM-MDR is a unified model-based
MDR method that reduces the error rate by using a regression framework with a semi-
parametric correction procedure [29]. The combination of classification-based multifactor
dimensionality reduction (CMDR) with the differential evolution algorithm has led to the
development of an innovative algorithm known as DECMDR, which shows improvement
of recognition ability but an increase in the calculation amount [30]. Multi-objective MDR
(MOMDR) regards the contingency table of MDR as the target equation and employs
the classification accuracy and likelihood ratio to measure SNP–SNP interactions, which
improves the recognition ability of MDR [31]. GFQMDR, proposed in 2018, is a method
to detect interactions between genes for complex quantitative traits via generalized fuzzy
classification, which can calculate multiple SNP interactions with a heavy computational
burden [32].

The screening methods can effectively screen SNPs, delete a large number of noise
sites, and effectively retain the genetic correlation of data, thereby improving the calculation
efficiency and recognition ability. In 2008, a two-stage method for epistasis analysis was
reported. In this method, significant SNPs are first screened out and single SNPs with
marginal effects significantly exceeding the threshold are retained, and then epistasis is
identified based on the retained SNPs [33]. INTERSNP, proposed in 2009, can screen
SNPs by combining SNP association, genomic location, and pathway information, and
logistic regression (LR) is then used to identify higher-order epistasis based on the screened
SNPs [34]. The efficient detection of all pairwise interactions in genome-wide case–control
studies can be achieved through the application of the BOolean operation-based screening
and testing (BOOST) approach [35]. BOOST introduces a Boolean expression of genotype,
establishes a 3 × 3 contingency table, and adopts a two-stage searching approach. To
evaluate all SNP pairs, a non-iterative method is utilized in the filtering stage to calculate
the approximate likelihood statistical ratio [36], and the interactive impact of the chosen
SNP pairs is evaluated using both the classical likelihood ratio test and the chi-square test
during the testing stage [37,38].

Machine learning methods judge the phenotype of new data by learning the training
data and select the SNP combinations with the strongest association with diseases by
converting epistasis detection into a classification problem. Random forest (RF) [39],
support vector machines (SVM) [40], neural networks (NNs) [41], and LR [42] are machine
learning methods commonly used in epistasis analysis. Usually, machine learning models
are difficult to interpret due to their complexity.
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Some of the aforementioned algorithms can only analyze two-order SNP interactions,
and some have a heavy computational workload or difficulty in interpretation. Boolean al-
gebra is a rigorous logical calculation system that can obtain the combination of conditional
variables for a specific result which has the potential to be used to study the association
between SNPs and complex diseases. Qualitative comparative analysis (QCA) [43], a config-
urational analysis method grounded in set theory and Boolean algebra, has been extensively
applied in sociology [44,45] to examine the interplay between conditional variables and
outcome variables. For an SNP dataset, there are generally many conditional variables and
relatively few samples. Boolean minimization and simplification can only eliminate a small
number of conditional variables, and therefore the complex solution of QCA usually has
no simple prime implicants. Since complex diseases are often caused by mutated SNPs,
the mutated SNPs can be extracted from the prime implicants screened according to the
coverage and then combined into pathogenic patterns, followed by the chi-square test on
the pathogenic pattern in the source data to check the association between the pathogenic
pattern and complex diseases. To further mine the information, the samples compatible
with the pathogenic pattern are excluded, and the remaining samples will be subjected to
the next round of calculation. The four steps (QCA, pattern extraction, the chi-square test,
and compatible sample exclusion) are iterated and form the IECS workflow.

2. Materials and Methods
2.1. Iterative Exclusion of Compatible Samples Workflow

In set theory, the definition of a subset is as follows: consider two sets X and Y, if every
element in X is also an element in Y, then X is a subset of Y. A subset is a sufficient condition
for a superset, and it can be logically deduced that if X, then Y. In real situations, there are
very rare complete subset relationships. Therefore, it is necessary to evaluate the extent
to which a condition set is sufficient for an outcome set, namely, consistency. Consistency
represents the proportion of samples with a particular antecedent or a combination of
antecedents with the same outcome. Coverage represents the extent to which the subset
covers the target set, which can be used to measure the empirical importance of a particular
antecedent or a combination of antecedents and represents the explanatory power of the
dataset with respect to the result.

QCA explores how the outcome occurs as a whole by examining the subset relationship
of sufficiency between the conditional variables and the outcome variable. In sufficiency
analysis, the conditional variable is taken as the subset of the outcome variable, whose
consistency is calculated by Equation (1).

Consistency(Xi ≤ Yi) = ∑[min(Xi, Yi)]/ ∑(Xi) (1)

The coverage is calculated by Equation (2).

Coverage(Xi ≤ Yi) = ∑[min(Xi, Yi)]/ ∑(Yi) (2)

where Xi denotes the value of the conditional variable and Yi denotes the value of the
outcome variable.

The flow chart of IECS is presented in Figure 1. In IECS, the iteration of four steps
(QCA, pattern extraction, the chi-square test, and exclusion of compatible samples) is used
to analyze the sufficiency relationship between SNPs and complex diseases.

QCA obtains the solution by constructing a truth table according to the dataset and
performing Boolean minimization, simplification, and elimination of some conditional
variables, and the resultant solution is a combination of multiple prime implicants. If there
is no solution, the items obtained in previous rounds of iteration are output, and the IECS
workflow is ended.



Algorithms 2023, 16, 480 4 of 14Algorithms 2023, 16, x FOR PEER REVIEW 4 of 15 
 

 
Figure 1. Flow chart of IECS workflow. IECS utilizes the iteration of four steps (QCA, pattern ex-
traction, the chi-square test, and exclusion of compatible samples) to analyze the relationship be-
tween SNPs and complex diseases. 

QCA obtains the solution by constructing a truth table according to the dataset and 
performing Boolean minimization, simplification, and elimination of some conditional 
variables, and the resultant solution is a combination of multiple prime implicants. If there 
is no solution, the items obtained in previous rounds of iteration are output, and the IECS 
workflow is ended. 

Pattern extraction selects the prime implicant with the greatest raw coverage in the 
solution, extracts the conditional variables with “1”, and combines these conditional var-
iables into a pattern. If all the conditional variables in the prime implicant are “0”, the 
prime implicant with the second greatest raw coverage is selected, and so on. If no pattern 

Figure 1. Flow chart of IECS workflow. IECS utilizes the iteration of four steps (QCA, pattern
extraction, the chi-square test, and exclusion of compatible samples) to analyze the relationship
between SNPs and complex diseases.

Pattern extraction selects the prime implicant with the greatest raw coverage in the
solution, extracts the conditional variables with “1”, and combines these conditional vari-
ables into a pattern. If all the conditional variables in the prime implicant are “0”, the prime
implicant with the second greatest raw coverage is selected, and so on. If no pattern can be
extracted from all prime implicants in the solution, the items obtained in previous rounds
of iteration are output, and the IECS workflow is ended.
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The chi-square test is then employed to test whether the pattern is related to the
complex disease in the source dataset.

Exclusion of compatible samples is performed to exclude all samples compatible with
the pattern and subject the remaining samples to the next round of analysis.

This cycle of processes is repeated until the preset maximum number of iterations is
obtained, the results are output, and the IECS workflow is ended.

IECS can work in two modes: the first mode restricts the number of iterations, while
the second mode has no limitations on the number of iterations. In the first mode, assume
that the number of iterations is set to k. If each round of QCA produces a solution and
a pathogenic pattern can be extracted, the program will iteratively run until the preset
number of iterations is reached. However, if QCA has no solution or no pathogenic pattern
can be extracted in a certain round, the program will end and n pathogenic patterns will be
obtained (n < k). On the other hand, in the second mode, the program will run iteratively
until the next round of QCA calculation has no solution or no pathogenic pattern can
be extracted. It is recommended to initially limit the number of iterations to a smaller
value and then decide whether to increase the number of iterations or switch to the second
mode after observing the results. This approach helps avoid excessive analysis time in the
beginning.

The framework of IECS with data examples is presented in Figure 2. In the first mode,
IECS performs the first round of analysis: QCA obtains n prime implicants, among which
PI-1 has the greatest coverage (0.557). Therefore, the pathogenic pattern of simultaneous
mutations of SNP B and SNP D is extracted from PI-1. The p-value (0.023) for this pathogenic
pattern is calculated in the source dataset. Next, samples that are compatible with the
pathogenic pattern (such as sample 2, etc.) are excluded. Then, it is checked whether the
number of iterations has been reached. If so, the IECS workflow is ended, and all the items
are output. If not, IECS continues with a following round of iterations with the remaining
samples. During the iterations, if the solution of QCA is empty or the extracted pathogenic
pattern is empty, the items obtained in previous rounds of iteration are output, and the
IECS workflow is ended.

In the second mode, IECS works until a certain round of QCA solution is empty or the
extracted pathogenic pattern is empty.

The pseudocode of IECS is as following Algorithm 1. The code folder is available at
https://github.com/happyputi/IECS (accessed on 10 October 2023).

Algorithm 1 IECS

Input: k: threshold of iterations; consistency threshold: threshold of consistency;
U: set of samples.
Output: Solution: The SNP combinations with p-value of chi-square test.
1: Solution← ∅
2: V← U
3: W← U
4: For i = 1→ k do
5: X← qca(V)
6: If X.length == 1 then
7: Break
8: Else
9: Z← Extractpattern(X)
10: p← Chisquaretest(Z, W)
11: V← Excludesamples(V)
12: Z← Append(Z, p)
13: Solution← Append(Solution, Z)
14: End if
15: End for

https://github.com/happyputi/IECS
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Figure 2. Framework of IECS with data examples. For the data examples, the row name is the sample
ID; each column indicates one SNP, except the last column, which indicates whether there is a disease.
For conditions, red squares indicate the mutation of the SNP, and green squares indicate no mutation
of the SNP. For the result, red squares indicate the disease, green squares indicate no disease. In the
first mode, IECS performs the first round of analysis, and QCA obtains n prime implicants, among
which PI-1 has the greatest coverage (0.557). Therefore, the pathogenic pattern of simultaneous
mutations of SNP B and SNP D is extracted from PI-1. The p-value (0.023) for this pathogenic pattern
is calculated in the source dataset. Next, samples that are compatible with the pathogenic pattern
(such as sample 2, etc.) are excluded. This cycle of processes is repeated until the preset maximum
number of iterations is obtained, the results are output, and the IECS workflow is ended. During the
iterations, if the solution of QCA is empty or the extracted pathogenic pattern is empty, the items
obtained in previous rounds of iteration are output, and the IECS workflow is ended.

2.2. Analysis of Necessary Conditions

Analysis of necessary conditions considers complex diseases as the subsets of single
SNPs and calculates the consistency and coverage parameters. Then, single SNPs with
consistency and coverage greater than the threshold are selected, followed by a chi-square
test to screen single SNPs as the necessary conditions (with statistical significance) of
complex diseases.

2.3. Performance Measurements

The recognition ability (power) and runtimes of MDR, BOOST, and IECS were com-
pared. Measurement of power was performed with the proportion of the number of
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datasets identified by the algorithm to that of all datasets [35]. Power is calculated as
follows:

Power = NT/ND (3)

where NT denotes the number of identified datasets determined by whether the whole
solution has at least one item that is the same as the item in the logical expression of the
pathogenic model [46], and ND denotes the total number of datasets, which was set to
1000 in this experiment. Runtime is obtained by calculating the average time that the
program runs in each dataset of each dataset group.

2.4. Simulated Data

Suppose the S disease is caused by the simultaneous mutation of SNP-A and SNP-B
or SNP-C and SNP-D, and E is added to stand for any other SNP. The configuration table
of all logical combinations of the S disease is expressed as A × B × C × D × E × S, and the
pathogenic model is recorded as A × B + C × D = S.

Collection I comprises seven dataset groups introduced with 10%, 20%, 30%, 40%,
50%, 60%, and 70% noise, respectively, and each group contains 1000 datasets, with each
dataset including 100 samples.

Collection II comprises seven dataset groups respectively containing 200, 400, 600, 800,
1000, 1200, and 1400 samples, and each dataset group includes 1000 datasets introduced
with 30% noise.

2.5. Alzheimer’s Disease Data

The etiology of Alzheimer’s disease (a neurodegenerative disorder) remains un-
known [47]. The performance of IECS was further tested in a real dataset of Alzheimer’s
disease downloaded from the Kaggle website. This dataset encompasses 257 Chinese
individuals diagnosed with sporadic Alzheimer’s disease along with 242 control subjects
exhibiting normal cognitive function. The average age of the patients at examination was
76.7 years, and the average age of the controls was 80.0 years.

3. Results and Discussion

All calculations were executed on the same computer with the configuration as follows:
CPU, Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz; RAM, 16.0 GB; OS, Windows 10 64 Bit.

3.1. Simulated Data Experiment

For Collection I, the power levels of IECS, MDR, and BOOST are presented in Figure 3a.
The results revealed that when the noise was lower than or equal to 60%, IECS exhibited
a greater power compared to both the MDR and BOOST methods; when the noise level
reached 70%, the power of IECS was slightly smaller than that of MDR, but greater than
that of BOOST. IECS utilizes QCA for calculation and then extracts the pattern for the
chi-square test, which can minimize the negative impact caused by noise and then more
accurately identify SNP interactions.

Noise showed a great influence on the power: the power of IECS, MDR, and BOOST
was close to 1 when the noise was 10% and gradually decreased with increasing noise. A
greater noise ratio represents more interfered samples. For MDR, a greater noise ratio means
a greater error probability to define different combinations of SNP pairs and accordingly a
higher probability of incorrect results in the cross-validation, thereby leading to the smaller
power of the algorithm; for BOOST, it means a lower probability that the distribution of the
contingency table is consistent with the pathogenic model, so the power is smaller; and for
IECS, it means a greater reduction in the consistency and coverage during QCA, which has
a greater impact on the identification process and then leads to smaller power.
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Figure 3. (a) The power levels of IECS, MDR, and BOOST for simulated data with different noise
levels. When the noise was less than or equal to 60%, the power of IECS was greatest; when the
noise was 70%, the power of IECS was slightly less than MDR, but greater than BOOST. (b) The
power levels of the three algorithms with different numbers of samples. With the increase in the
number of samples, the power of MDR and BOOST increase slowly and IECS remains constant; the
more samples, the more information about the pathogenic model obtained by the MDR and BOOST
algorithms and the greater the power. However, in IECS, the QCA calculation engine becomes
insensitive to the number of samples beyond a certain amount.

The runtimes of IECS, MDR, and BOOST for simulated data with different noise ratios
are shown in Table 1. In general, BOOST is the fastest, followed by IECS and then MDR.
MDR performs the permutation test on generated multiple new datasets by randomly
shuffling the outcome of the original samples and then carries out MDR analysis on these
new datasets, which is very computationally intensive, resulting in its having the lowest
speed among IECS, MDR, and BOOST. BOOST employs an approximate approach to
evaluate all pairs of loci by calculating the approximate likelihood ratio in a non-iterative
way, which reduces the runtime by simplifying the calculation. With increasing noise ratio,
the runtime remains almost constant.
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Table 1. Runtimes of IECS, MDR, and BOOST for simulated data with different noise percentages
and numbers of samples.

Noise (%)
Runtime (Seconds) Samples Runtime (Seconds)

MDR BOOST IECS MDR BOOST IECS

10 14.258 0.056 0.962 200 13.783 0.056 0.953
20 14.241 0.056 1.034 400 17.243 0.059 1.013
30 14.238 0.056 1.069 600 20.658 0.063 1.070
40 14.221 0.056 1.040 800 24.159 0.074 1.151
50 14.104 0.056 0.969 1000 26.810 0.068 1.162
60 12.393 0.056 0.783 1200 30.203 0.071 1.229
70 11.990 0.058 0.651 1400 33.574 0.075 1.288

For Collection II, the power levels of IECS, MDR, and BOOST for simulated data
with different numbers of samples are presented in Figure 3b. With an increasing number
of samples, the power of MDR and BOOST increases slowly, while that of IECS remains
almost constant. With more samples, more information about the pathogenic model could
be obtained by MDR and BOOST, which would contribute to a greater power. However, in
IECS, the QCA calculation engine becomes insensitive to the number of samples beyond
a certain amount. When the noise is constant, the number of excluded samples will be
adjusted proportionally, and then the extracted pattern is almost unchanged, resulting in
the constant power of IECS.

The runtimes of IECS, MDR, and BOOST for simulated data with different numbers
of samples are presented in Table 1. With an increasing number of samples, the runtime
of MDR and IECS will increase, because more information needs to be calculated for
more samples, and therefore more runtime is consumed. BOOST employs an approximate
approach to evaluate all pairs of loci by calculating the approximate likelihood ratio in a
non-iterative way, which is not sensitive to the number of samples, resulting in an almost
constant runtime.

Based on the above results of simulated datasets with a comprehensive comparison of
power and runtime, IECS has a stronger recognition ability for pathogenic models with an
acceptable runtime.

3.2. Alzheimer’s Disease Data Experiment

The dominant model was adopted to code homozygous wild-type alleles as 0 and
heterozygous wild-type and mutant alleles or homozygous mutant alleles as 1.

Four iterations were completed in the IECS workflow. The pattern of the simultaneous
mutation of SNP (IV S22 + 36 C > A) and SNP (3′UT R159 C > T) was extracted in the first
round; the IV S17 − 294 C > T mutation pattern was extracted in the second round; the
simultaneous mutation pattern of IV S3 + 106 T >G, IV S10 − 5 C > T, and 3 ’UT R159 C > T
was extracted in the third round; and the IV S22 + 36 C > A mutation pattern was extracted
in the fourth round. Please refer to Table 2 for the results of the QCA analysis.

The chi-square test was employed to analyze the predictive power of the four patterns
in the source dataset, and the p-value of the pattern with simultaneous mutation of IV S3 +
106 T > G, IV S10 − 5 C > T, and 3′UT R159 C > T was 0.909, which was greater than 0.05,
and therefore this pattern was excluded from the pathogenic model.

The relationship between SNPs and Alzheimer’s disease was obtained by IECS. If IV
S22 + 36 C > A and 3′UT R159 C > T are simultaneously mutated, or IV S17 − 294 C > T or
IV S22 + 36 C > A is mutated, the individual might get Alzheimer’s disease.

The Alzheimer’s disease data were also analyzed by MDR and BOOST, and the
results and comparisons with those of IECS are shown in Table 3. IECS obtained three
significant items with a runtime of 4.496 s. MDR obtained one significant item, namely,
the simultaneous mutation of IV S22 + 36 C > A and 3′UT R159 C > T, with a runtime of
42.591 s. BOOST obtained an insignificant item, namely, the simultaneous mutation of IV
S10 − 5 C > T and IV S22 + 36 C > A, with a runtime of 0.368 s.
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Table 2. QCA results for Alzheimer’s disease data of four iterations.

Configuration Round 1 Round 2 Round 3 Round 4

−204 G > C # # # #
IVS3 + 106 T > G # • #

c.401 A > G # # #
IVS10-5 C > T # # • #

IVS15 + 144 T > A # # # #
IVS17-294 C > T • # #
IVS22 + 36 C > A • # # •
3′UTR159 C > T • # • #
Raw coverage 9.73% 2.71% 1.96% 1.51%
Consistency 1 1 1 1

Black circles “•” indicate mutation, while white circles “#” indicate no mutation; the blank spaces indicate “don’t
care”; four iterations are completed in the IECS workflow.

Table 3. Comparison of IECS, MDR, and BOOST for Alzheimer’s disease data.

Method Result p-Value Runtime

IECS
IVS22 + 36 C > A * 3′UTR159 C > T 0.007

4..496 sIVS17-294 C > T 0.026
IVS22 + 36 C > A 0.002

MDR IVS22 + 36 C > A * 3′UTR159 C > T 0 42.591 s
BOOST IVS10-5 C > T * IVS22 + 36 C > A 0.153 0.368 s

Asterisks “*” indicate simultaneous mutation.

Previous research has demonstrated the interactive association of Alzheimer’s disease
with two SNPs, namely, IV S22 + 36 C > A and 3′UT R159 C > T, located within introns [22].
This interaction was determined using the multifactor dimensionality reduction method
based on a log-linear model and the multifactor dimensionality reduction algorithm. IV
S17 − 294 C > T in introns was associated with an increase in the risk for Alzheimer’s
disease, as indicated by the statistical analysis and the haplotype analysis; in addition,
IV S22 + 36 C > A in introns was also related to a higher risk of Alzheimer’s disease [48].

Among IECS, MDR, and BOOST for the Alzheimer’s disease dataset, IECS could
obtain more results than MDR and BOOST, its runtime is relatively short, and the results
are all supported by the literature, demonstrating that IECS can detect multiple SNPs
related to complex diseases.

According to the significance of necessary conditions, we took Alzheimer’s disease
as the outcome and eight SNPs as the conditional variables to perform the chi-square
test. The relation of necessary conditions was expressed as “No A, then no B” logically.
A conditional variable is deemed necessary if its consistency exceeds 0.9 and its coverage
surpasses 0.5 [49]. There are four conditional variables necessary for Alzheimer’s disease:
∼−204 G > C, ∼C.401 A > G, ∼IV S10 − 5 C > T, and ∼IV S15 + 144 T > A (“∼” denotes no
mutation of the SNP). According to the significance of necessary conditional variables, a
chi-square test was conducted by taking the disease as the outcome. The results are shown
in Table 4. “No mutation of −204 G > C” under Alzheimer’s disease is significant with a
p-value of 0.008, suggesting that if the SNP of −204 G > C is mutated, the individual will
not get Alzheimer’s disease. The other three conditional variables are not significant. In
a previous study, analysis of the transcription factor binding site performed by Consite
showed that the mutation at the position of−204 G > C enables it to enhance the expression
of neprilysin and reduce the accumulation of A β (amyloid beta) in the brain, which
possibly hinders Alzheimer’s disease [48].
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Table 4. Results of analysis of necessary conditions for Alzheimer’s disease data.

Condition Consistency Coverage p-Value

~−204 G > C 0.969 0.530 0.008
~c.401 A > G 0.961 0.510 0.130

~IVS10-5 C > T 0.911 0.518 0.711
~IVS15 + 144 T > A 0.926 0.528 0.082

Tildes “~” indicate no mutation of the SNP.

The relationships between SNPs and Alzheimer’s disease obtained by IECS and the
analysis of necessary conditions are shown in Figure 4. All results are supported by the
literature.
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Figure 4. Relationships between SNPs and Alzheimer’s disease obtained by IECS and analysis of
necessary conditions. R6 indicates −204 G > C, N4 indicates IVS3 + 106 T > G, N6 indicates C.
401 A > G, N11 indicates I V S10 − 5 C > T, N15 indicates I V S15 + 144 T > A, N18 indicates I V
S17 − 294 C > T, N22 indicates I V S22 + 36 C > A, N24 indicates 3′U T R159 C > T and asterisk “*”
indicates simultaneous mutation. Simultaneous mutation of I V S22 + 36 C > A and 3′U T R159
C > T, I V S22 + 36 C > A mutation, and I V S17 − 294 C > T mutation cause Alzheimer’s disease;
−204 G > C mutation prevents Alzheimer’s disease.

4. Conclusions

The IECS workflow with QCA as the calculation engine was proposed and applied to
analyze simulated datasets and the real dataset of Alzheimer’s disease, and its performance
was compared with that of the BOOST and MDR algorithms. The results revealed that IECS
has greater power with relatively less computation cost. IECS has a relatively acceptable
runtime and can compute high-dimensional pathogenic patterns with greater power. IECS
could be applied to multi-SNP analysis in complex diseases as well as gene–gene and gene–
environment interactions to explore the causes of complex diseases. In further research, we
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would use IECS to analyze more datasets to explore the causes of complex diseases and
accelerate the computing speed of IECS.
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