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Abstract: Stochastic Programming is a powerful framework that addresses decision-making under
uncertainties, which is a frequent occurrence in real-world problems. To effectively solve Stochastic
Programming problems, scenario generation is one of the common practices that organizes realiza-
tions of stochastic processes with finite discrete distributions, which enables the use of mathematical
programming models of the original problem. The quality of solutions is significantly influenced by
the scenarios employed, necessitating a delicate balance between incorporating informative scenarios
and preventing overfitting. Distributions-based scenario generation methodologies have been exten-
sively studied over time, while a relatively recent concept of problem-driven scenario generation has
emerged, aiming to incorporate the underlying problem’s structure during the scenario generation
process. This survey explores recent literature on problem-driven scenario generation algorithms
and methodologies. The investigation aims to identify circumstances under which this approach
is effective and efficient. The work provides a comprehensive categorization of existing literature,
supplemented by illustrative examples. Additionally, the survey examines potential applications
and discusses avenues for its integration with machine learning technologies. By shedding light on
the effectiveness of problem-driven scenario generation and its potential for synergistic integration
with machine learning, this survey contributes to enhanced decision-making strategies in the context
of uncertainties.

Keywords: stochastic programming; scenario generation; machine learning

1. Introduction

Stochastic Programming [1] is a framework for stochastic optimization problems
involving decision-making under uncertainties. The incorporation of uncertainties into the
models of the optimization problems makes the problem more realistic, but meanwhile,
more difficult to solve. To address this challenge, Robust Optimization (RO) [2] is commonly
employed when the parameters have known bounds, while Stochastic Programming (SP) is
used under the assumption that the distributions of the random variables are either known
or can be inferred from data. Consequently, RO aims to identify feasible solutions within
predetermined bounds, while SP endeavors to identify optimal solutions that are expected
to be feasible for all possible data instances, called scenarios.

Scenario generation is an algorithmic strategy to organize the realizations of the
stochastic process with finite discrete distribution, commonly in a tree structure. In such
a way, the SP problem can be solved with different decomposition and approximation
techniques [3,4]. The quality of the solutions naturally depends on the scenarios used.
The solutions are more reliable when more scenarios are considered, while the problem
is more difficult to solve. Due to this limitation, it is critical to find the balance to include
in the scenario-tree the most informative scenarios that avoid over-fitting and ensure the
reliability of the solution. Failure to account for the variability of the stochastic process
could lead to sub-optimal solutions. By employing suitably generated scenarios, the initial
problem can be effectively solved by using decomposition and approximation techniques,
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such as Benders Decomposition [5], a widely used technique in SP and RO that divides
the original problem into a master problem and a sub-problem, enabling the exchange
of information between them to update variable values and constraints. Both problems
are solved iteratively until convergence, allowing the resolution of large problems with
certain structures.

Various methodologies for scenario-tree generation have been proposed over the
years. Classic methodologies are mainly distribution-oriented, which involves fitting
statistical models to approximate the probability distribution of the stochastic parameters
and then apply sampling techniques based on these distribution. A survey and review of
such methodologies can be found in [6,7]. Due to advances in computing power and the
evolution of machine learning, research conducted in the field is also beyond the replication
of statistical characteristics of the stochastic process. In recent years, a concept of problem-
driven scenario generation has been proposed and studied. Under this circumstance, we
conduct a survey on recent literature on problem-driven scenario generation methodologies
that takes into account the structure of the underlying problem in the scenario generation
process. The objective of this investigation is to ascertain the circumstances under which
this approach shows effectiveness and/or efficiency. Additionally, we explore possible
avenues for the integration of such an approach with machine learning technologies.

The remainder of the paper is organized as follows. In Section 2, we provide the
formulations of the Stochastic Programming problems and solving techniques, leading
to the concept of quality evaluation of a scenario-tree in Section 3. Difference between
distribution-oriented and problem-oriented scenario generation is explained in Section 4,
which includes categorization of the existing literature on problem-driven scenario genera-
tion across various dimensions and accompanied by the presentation of example problems.
In Section 5, potential applications of the problem-driven scenario generation approach are
discussed. The conclusions are finally drawn in Section 6.

2. Problem Definition
2.1. A Two-Stage Stochastic Programming Problem

Suppose that a decision x ∈ Rn has be taken based on the information available at
the time, while a stochastic process ξ ∈ Rd exists and its value can only be observed in the
future. A general two-stage SP problem can be represented as follows [1]:

min
x∈X

f (x) +Eξ [Q(x, ξ)], (1)

where f (x) is a continuous function representing the first-stage costs, X is the feasibility set
for x defined by constraints and Q(x, ξ) is the optimal value of the second-stage problem,
also known as the recourse problem:

Q(x, ξ) = min
y
{q(y, ξ)|U(ξ)x + W(ξ)y ≤ h(ξ)}, (2)

where y ∈ Rm is the second-stage decision vector, q(y, ξ) is the cost of the recourse action in
which W(ξ)y compensates for a possible inconsistency of the system U(ξ)x ≤ h(ξ) when
the uncertain data ξ are revealed.

The two-stage SP problem assumes that the stochastic process is realized only after
the first-stage decisions have been made. The objective is to find an optimal decision that
fulfills the constraints while taking into account possible realizations of the uncertainties in
the coming future. For example, in a simple investment planning problem, a company has
a limited budget and faces risks in returns for several projects. In the first stage, it decides
which projects to invest in based on the expected returns. Further adjustment can be made
to maximize the profit (or minimize the cost) in the second stage, after the actual returns
are revealed.

In real-world applications, the problems usually involve a series of decisions that
respond to evolving outcomes over time. To account for this, the multi-stage Stochastic
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Programming model that generalizes two-stage SP problems has been proposed to include
sequential uncertainty realizations.

2.2. A Multi-Stage Stochastic Programming Problem

Let us consider a set of time stages t = {1, . . . , T} and a random vector ξ ∈ Rd that
represents the uncertain parameters of a problem, whose value is revealed gradually over
time t. The realization of the random vector is denoted as {ξt}T

t=1. In practice, ξ1 is a
fixed value and ξt is the observation value of the stochastic process following a specified
probability distribution when t > 1. At each stage, a decision xt ∈ Rn must be taken with
knowledge available up to stage t, and the future realizations ξt+1, . . . , ξT are still to be
observed. This concept is known as non-anticipativity. With these notations, a generic
multi-stage Stochastic Programming problem that aims at maximizing the profit can be
represented as follows:

max
x1,...,xT

f1(x1) +Eξ [
T

∑
t=2

ft(xt, ξt)] (3)

s.t.
x1 ∈ X1 (4)

xt ∈ Xt(xt−1, ξt), ∀t ∈ {2, . . . , T}, (5)

where ft is a continuous function, Xt ⊆ Rn is the feasibility set for the decision xt that
depends on the decision xt−1 at the previous stage and the observation ξt.

Different from the formulation represented by Equations (1) and (2), which exclusively
involve two decisions, the initial decision x and the recourse decision y, the multi-stage
problem model (3)–(5) accommodates sequential decisions xt over multiple time peri-
ods. This introduces greater complexity and computational demands. In multi-stage
optimization problems, the optimal decision is often hard to compute, especially when the
underlying uncertain parameters are modeled by continuous random vectors. Therefore, a
variety of approximation methods have been developed in which the stochastic process is
approximated over a finite number of scenarios, commonly organized in a tree structure,
i.e., a scenario-tree (see Figure 1). In the following section, we will provide a comprehensive
discussion concerning the application of a scenario-tree and the implementation of solving
techniques in SP problems.

Figure 1. Illustration of a scenario-tree with 3 stages and 5 scenarios.

2.3. Scenario-Tree and Solving Techniques

In a scenario-tree, each scenario is depicted as a distinct path originating from the tree’s
root and terminating at one of its leaves. The nodes traversing along each path correspond
to the specific values taken by random parameters in the model. When continuous variables
are involved, a finite and tractable scenario-tree can be constructed by using sampling
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techniques. A common approach is the Monte Carlo sampling [8–10]. The sample average
approximation (SAA) for the objective function f (x) can be simply formulated as follows:

1
n

n

∑
i=1

f (x, ξi). (6)

There are other examples such as quasi-Monte Carlo methods [11], Hidden Markov
Models [12], Optimal Quantization [13], Moment-Matching [14], etc. We refrain from
providing a detailed discussion of these methodologies in this work. By employing a
scenario-tree, the SP problems can be solved with mathematical programming models.
Among these approaches, one direct approach is to solve the corresponding Deterministic
Equivalent problem.

As an illustrative example, we consider a multi-stage SP problem under the assump-
tion that both the constraints and the objective function are linear. Consequently, the
multi-stage SP problem defined by (3)–(5) can be reformulated as follows:

max
x1,...,xT

c1x1 +Eξ [
T

∑
t=2

ct(ξt)xt] (7)

s.t.
A1x1 = µ1 (8)

Bt(ξt)xt−1 + At(ξt)xt = µt(ξt), ∀t ∈ {2, . . . , T} (9)

xt ≥ 0, ∀t ∈ {1, . . . , T}. (10)

By employing a scenario-tree, the stochastic process ξt is sampled by a set of S distinct
scenarios. In each scenario s, the function ct(ξt) in (7) takes a fixed value for each stage
t. We denote the decision variable at each stage in each scenario as xs

t and it may assume
varying values across different scenarios. The Deterministic Equivalent problem for the
problem (7)–(10) is then defined as follows:

max
x1,xs

2,...,xs
T

c1x1 +
S

∑
s=1

ps[cs,2xs
2 + · · ·+ cs,Txs

T ] (11)

s.t.
A1x1 = µ1 (12)

Bs,txs
t−1 + As,txs

t = µs,t, ∀t ∈ {2, . . . , T}, ∀s ∈ {1, . . . , S} (13)

xs
t ≥ 0, ∀t ∈ {1, . . . , T}, ∀s ∈ {1, . . . , S} (14)

xj
t = xk

t , if ξ
j
t = ξk

t , (15)

where ps is the probability associated with scenario s. Equations (12)–(14) are the con-
straints defining the feasibility set for the decisions xs

t in each scenario s. Constraint (15)
represents the non-anticipativity conditions, which indicates every pair of scenarios j and
k indistinguishable up to stage t shares the same decision at stage t (see Figure 2). In
particular, the first stage solution xs

1 assumes equal values in all scenarios, i.e., xs
1 = x1.

Through the resolution of the Deterministic Equivalent problem (11)–(15) with each
scenario s, it becomes feasible to derive an approximate solution for the original Stochastic
Programming problem (7)–(10). Nevertheless, it is essential to note that in this approach,
the computational time grows exponentially as the number of scenarios increases. Conse-
quently, solving the Deterministic Equivalent problem becomes infeasible when dealing
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with a substantial number of scenarios. Given this challenge, decomposition algorithms,
such as Lagrangian decomposition [15,16] and Benders decomposition [5] present more
effective alternatives as solving techniques. An illustrative example of solving the two-stage
SP problem (see Section 2.1) with Benders decomposition is shown in Figure 3. The original
problem is decomposed into two parts: A master problem that searches for the optimal
values of the first-stage decision variables x, and sub-problems that, given a fixed value
of x obtained from the master problem, solve for the optimal recourse decisions y with
different scenarios ξi. In each iteration, the master problem offers a fixed x value to the
sub-problems and the sub-problems generate feasibility and optimality cuts for x, which
are constraints added to the master problem to be solved with. The master problem and
sub-problems are iteratively solved until convergence, leading to the optimal solution for
the original SP problem. In multi-stage SP problems, the application of Benders decomposi-
tion transforms into a nested Benders decomposition. We suggest the work of [17] for more
comprehensive details.

Figure 2. Example of solving Stochastic Programming problems using the scenario-tree in Figure 1.

Figure 3. Illustration of using Benders decomposition algorithms for a two-stage SP problem.

Regarding implementations of the solving techniques, the SP problems can be repre-
sented through the utilization of modeling frameworks such as Pyomo [18,19] in Python [20],
JuMP [21] in Julia [22], SAMPL [23] based on AMPL [24], and GAMS [25]. The solving
of the represented models can be accomplished by using solvers such as CPLEX [26] and
Gurobi [27]. A demonstration of the implementation of Benders decomposition through the
utilization of JuMP and the Julia programming language is available in [28]. Additionally,
a broader framework employing JuMP has been extensively discussed in [29].

Irrespective of the specific solving techniques employed, in SP problems, the quality of
the obtained solutions relies significantly on the scenario-tree employed. For the aforemen-
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tioned solving techniques, the scenario-tree always plays an important role as it must cover
a wide array of possibilities, from the best-case to worst-case scenarios, while effectively
capturing the most probable outcomes of the problem. Accurately describing the problem
in such a manner is expected to result in a more precise or robust solution from the model.
In the following section, the quality evaluation of a scenario-tree and its correlation with
the quality of the obtained solution is thoroughly discussed.

3. Quality Evaluation of a Scenario-Tree and a Solution

Due to computational efficiency considerations, scenario-trees often contain a finite
number of scenarios, which can lead to the solution providing decisions exclusively for a
subset of random parameter values. This raises two issues that must be considered: firstly,
it necessitates the development of suitable evaluation methodologies for selecting the
most representative scenarios to be included in the scenario-tree. Secondly, it initiates the
exploration of generalization techniques that are capable of extending the results obtained
with a specific scenario-tree to cover all possible scenarios. In this section, we will examine
each of these issues in a detailed and systematic manner.

3.1. In-Sample and Out-of-Sample Performance

Regarding the evaluation of performance in optimization problems, computing time
(or tractability in the case of computationally challenging problems) and the quality of
a solution serve as typical performance metrics. The evaluation of these performance
aspects for a solution derived from a specified scenario-tree using the same scenario-tree is
referred to as “in-sample performance” evaluation. To derive an accurate objective function
value, it is common practice to perform an out-of-sample evaluation, which evaluates the
solution’s performance on scenarios outside the scenario-tree. This evaluation is crucial
in validating models across different fields. As an illustration, the scenario-tree can be
conceptualized as a training set in machine learning, wherein the model is trained and
learns from the provided data. Correspondingly, the out-of-sample evaluation serves as a
validation set, where the model’s performance is assessed on unseen data to evaluate its
generalization capabilities.

In SP problems, a solution is obtained by using a specific scenario-tree. The solution is
expected to be feasible and optimal for all cases considered, while keeping a reasonable
computing time. Consequently, the size of the scenario-tree is constrained, which can lead
to disparities between the in-sample and out-of-sample performance. In consideration
of this premise, the work presented in [30] introduces a scenario generation process by
minimizing a loss function that measures the discrepancy between out-of-sample and
in-sample performance of the solutions. The criterion for a desirable scenario-tree T is also
established as follows: Given a set of solutions to be evaluated both out-of-sample and
in-sample with respect to the actual distribution ξ, in a good scenario-tree T :

• The ranking of the solutions is preserved: if solution x1 outperforms x2 when evaluated
out-of-sample, it should be highly probable that x1 will also outperform x2 when
evaluated in-sample.

• Overconfident outliers should be excluded. An outlier is defined as the inconsistency
between the out-of-sample f (x, ξ) and in-sample values f (x, T ). For example, for a
solution x1 better than x2 in a maximizing problem:

– If f (x1, ξ) > f (x2, ξ), f (x1, T ) < f (x2, T ) while f (x1, ξ) ≈ f (x2, ξ), it is an
acceptable outlier.

– If f (x1, ξ) < f (x2, ξ), f (x1, T ) > f (x2, T ), it is a non-acceptable outlier.

• The in-sample values approximate well the out-of-sample values: f (x, ξ) ≈ f (x, T ).
The criterion shows that a fundamental metric for assessing the quality of scenario-

trees is their capacity to effectively preserve the quality of a solution. The discussion
highlights that, when assessing the quality of scenario-trees, the out-of-sample perfor-
mance carries greater importance than the in-sample performance, particularly when
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inconsistencies arise between the two. This leads to the stability arguments that address
the robustness of the tree. A survey on stability-based approaches for scenario generation
can be found in [31]. Several classical methodologies in Stochastic Programming have been
discussed, together with a comprehensive review on optimal scenario reduction methods
and techniques for generating scenario-trees.

Regarding the stability arguments and robustness of scenario-trees, a natural con-
sideration arises that a scenario-tree is good when a substantial number of scenarios are
incorporated. This is, however, impractical due to computational efficiency constraints.
Therefore, another focus of attention centers on determining the minimum number of
scenarios required. Two simple approaches exist in this regard, offering insights into identi-
fying an optimal scenario-tree size that strikes a balance between computational efficiency
and the desired level of stability:

• Initiating with an empty scenario-tree, scenarios are gradually added until stability is
achieved. This iterative process continues until the desired level of stability is attained.

• Beginning with a large stable scenario-tree containing numerous scenarios, scenarios
are successively removed to observe the loss of stability during the reduction process.

Under these circumstances, the construction of an effective scenario tree necessitates
an understanding of the specific scenarios that create variations in the solutions. Sensitiv-
ity analysis [32] emerges as another widely used approach for the quality evaluation of
scenario-trees. It is a process of investigating the impact of variations in the model’s input
parameters on the resulting output. In the work [33], a concrete theoretical foundation for
assessing the optimal-value error is proposed, which denotes the difference between the
optimal value of the original SP problem and that of the approximated problem generated
using different scenario-trees. The study highlights that sub-optimal discretization at a
node in the scenario-tree generation process contributes to the optimal-value error, and sug-
gests that suitable scenario-trees can be designed to numerically integrate specific classes
of functions determined by the problem’s structure. The findings confirm the practicality
of the problem-driven scenario generation approach.

In addition to assessing the quality of scenario-trees in terms of stability and robustness,
an auxiliary objective is to find the balance between the quality of the tree and the speed
of computation. This leads to the scenario reduction [34], wherein the goal is to identify a
smaller subset of scenarios to reduce numerical complexity while maintaining a satisfactory
level of accuracy.

3.2. Generalization of a Solution Obtained from a Scenario-Tree

Given that the scenario-tree is limited to providing decisions for mainly values of
random parameters included in the tree, generalizing methods and extension procedures
have been proposed to compensate the loss of information. Considering that in real-world
problems, it is possible that the decisions provided by SP from a scenario-tree is neither
optimal nor feasible when the actual realization of the stochastic process does not coincide
with the scenarios included in the tree. In this case, a generalized decision policy is expected,
which ensures the feasibility and/or the optimality for any possible scenario of the target
problem. The decision policy specify actions to be taken based on the observed outcomes
instead of a specific set of decisions that aims to achieve the best overall performance as a
solution. Possible approaches for such a generalized decision policy have been discussed
in the literature [35–37].

In the work [35], the multi-stage SP problem is solved by using a scenario-tree to
obtain optimal decisions. The decisions at all stages in the tree are then used to fit a
policy function approximations via supervised learning. In this way, decision policies
associated with different scenario-trees can be derived with Gaussian regression [38] and
evaluated on a new set of samples (out-of-sample evaluation). Through this process, the
most effective policy function approximation can be determined. This fast simulation
technique is then employed to help the selection of the optimal tree from a set of scenario-
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trees. A similar work on optimal scenario-tree selection for multi-stage SP problem using
sequential learning can be found in [37].

A different extension procedure is presented in the work [36]. The decisions obtained
on a scenario-tree are extended to a decision policy by using the Nearest Neighborhood
algorithm [39] and the weighted N-Nearest Neighbors algorithm. Quality indicators are
defined to assess the scenario-tree generation and extension procedures. The indicators are
designed to evaluate the quality of different methodologies to derive a decision policy that
is applicable for all possible values of the stochastic process, without incurring significant
computational costs.

Nevertheless, there exists an ambiguity in this area of generalization methodologies.
The use of SP is under the assumption that the distributions of the random variables exist,
and the scenario-trees represent a discretization of the scenarios based on the primary
distribution. Consequently, the generalization of the solutions acquired based on a scenario-
tree to all possible scenarios does not necessarily fit the original distribution but is more
of an empirical inquiry. This allows for the exploration of techniques that do not assume
a precise distribution, such as Bayesian optimization [40] or Credal networks [41]. The
utilization of Bayesian optimization is evident in the literature [35,37,42].

4. Problem-Driven Scenario Generation
4.1. Difference between Distribution-Oriented and Problem-Oriented Scenario Generation

Classical scenario generation methodologies are mainly distribution-based. Statistical
models are used to simulate the distribution of the random variables and then the sampling
techniques are applied to generate the scenario-trees. In this sense, the quality evaluation
of a scenario-tree is measured by how precise it can represent the statistical features of the
underlying data. An example is the use of the Kolmogorov–Smirnov test [43], which is a
widely used statistical test that measures the distance between the empirical distribution
and the theoretical distribution.

To illustrate, Figure 4 shows an example of a scenario-tree generated with dynamic
scenario-tree generation methodologies proposed by [13] using a Julia package [44]. Given
a predefined tree structure for a Gaussian random walk process across four stages, the
scenario generation process uses random vectors drawn from conditional distributions that
are conditioned on prior data points and sample trajectories, while incorporating a distance
criterion that evaluates the fidelity of the approximation to generate the tree. The resulting
scenario-tree is shown on the left side and the corresponding probability distribution
of scenarios is shown on the right side. For more instances showing distribution-based
scenario generation methodologies, we recommend the surveys in the literature [6,7].

While the distribution-oriented methods are commonly used to generate scenarios
from the stochastic process before solving the Stochastic Programming problem, it is
pointed out in [45] that, given the significance of the link between the scenario generation
process and the decision model for the SP problem to be solved, there is no single scenario
generation method that would be universally suitable for all Stochastic Programming
models, even if they were influenced by identical random phenomena. Therefore, a concept
of problem-oriented scenario generation has been proposed, in which the quality of the
decision takes precedence over the precision of the probability distribution estimation.

In the following section, we provide an overview of the existing literature concerning
problem-driven scenario generation, which takes into account the role of the optimization
problem in the scenario generation process in a certain way.
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Figure 4. Illustration of a scenario-tree with predefined branching structure for a Gaussian random
walk process across four stages, generated by a dynamic scenario-tree generation process [13,44].

4.2. Literature Overview

Existing literature on problem-driven scenario generation is mainly classified into the
three categories as described in [46], namely:

• Feature-based filtering of outcomes (FFO);
• Guided scenario generation with problem-specific knowledge (GSG);
• Stability arguments of the scenario-trees (SA).

In this work, we also examine an additional class of problem-driven scenario generation:

• Scenario reduction and clustering (SRC).

Feature-based filtering of outcomes involves identifying the outcomes of the input
distribution that have a minimal or negligible impact on the objective function. As a result,
these outcomes can be aggregated or ignored. Guided scenario generation with problem-
specific knowledge refers to cases where features of the problem can be used to guide the
scenario generation process. This is usually accomplished by deducing attributes of the
output distribution a priori or using the intuitions provided by previous experiences in
solving specific problems. Stability arguments of the scenario-trees discuss the models’
performance in response to a different selection of the scenarios, both theoretically and
empirically. The comprehensive assessment of scenario tree performance has been exten-
sively explored in Section 3.1. The primary goal of scenario reduction and clustering is the
identification of a reduced subset of scenarios that can lower numerical complexity while
maintaining an acceptable level of error.

Based on this classification, we show the literature on problem-driven scenario gener-
ation in Table 1. This table outlines the progression of studies chronologically, providing a
systematic framework for understanding the evolution of methodologies in this domain.
Moreover, the table includes a compilation of example problems that have been investigated
in these studies, thus illuminating the diverse application areas that have been explored.
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Table 1. Literature on problem-driven scenario generation chronologically.

Paper Cat. Example Problem

Høyland and Wallace [47] SA Asset allocation
Feng and Ryan [48] GSG Stochastic unit commitment

Zhao and Wallace [49] GSG Facility layout problem
Sun et al. [50] GSG Transmission network expansion planning

Prochazka and Wallace [51] FFO Stochastic knapsack problem
Fairbrother et al. [52] FFO Portfolio selection with tail risk measures
Fairbrother et al. [53] FFO Portfolio selection with tail risk measures

Guo et al. [54] GSG Stochastic vehicle routing problem
Prochazka and Wallace [30] SA Stochastic knapsack problem

Narum [46] SA Air traffic flow management
Keutchayan et al. [55] SRC Network design/Facility location

Henrion and Römisch [56] SRC The news-vendor problem
Hewitt et al. [57] SRC Biweekly fleet planning/Network design

Bertsimas and Mundru [58] SRC Portofolio optimization/Aircraft allocation/
Electric power extension planning

Narum et al. [59] SRC Network design/Multidimensional news-vendor/Air-
lift operations scheduling/Storage layout and routing

4.3. Methodologies

The present section entails an investigation into several examples of problem-driven
scenario generation methodologies.

As mentioned by Fairbrother [60], property-matching scenario generation method-
ologies investigated in [47] can be considered one of the first problem-driven scenario
generation methodologies. The aim is to construct sets of scenarios with prescribed statisti-
cal properties, such as moments of the marginal distributions, correlations of the margins,
percentiles of the marginal distributions etc. [61]. It is a generalization of the moment-
matching algorithms [14,47] and focuses on capturing the key statistical features instead of
guaranteeing an exact representation of the distribution. Consequently, it focuses only on
problems with specific properties, usually determined by empirical analysis. Subsequent
advancements have been centered on establishing methodologies that can be mathemati-
cally verified and their application to real-world problems.

Two examples of the problem-driven scenario generation methodologies have been
mentioned in [53]: Importance sampling [62] and Forward Selection in Recourse Clus-
ters [48,63]. Importance sampling is a general technique that effectively samples from
a distribution and has been used for distribution-based scenario generation. It involves
drawing samples from a proxy distribution and modifying the weights assigned to each
sample to approximate the required expectation. The construction of the proxy distribution
depends on the underlying loss function of the stochastic program, the scenario genera-
tion approach is therefore considered as problem-driven when the problem-specific loss
function is defined, e.g., a solution-based loss function instead of a distribution-based loss
function. Nevertheless, compared to other variance reduction techniques, importance sam-
pling is demonstrated to be computationally expensive. The Forward Selection in Recourse
Clusters technique aims to prevent scenario redundancy by initially clustering scenarios
based on their behavior in relation to the problem. Following this, a standard reduction
technique known as forward selection is employed to select a single scenario from each
cluster in the reduced set. An application of this approach to a stochastic unit commitment
problem can be found in [48], along with a discussion of the practical challenges involved.
Alternative modifications to the method are described in [48,63].

The research by [53] also put forward two specific approaches for handling stochastic
programs that incorporate tail risk measures: aggregation sampling and aggregation
reduction. The tail risk measure is a statistical or quantitative measure employed to assess
the potential losses or risks associated with extreme events or outliers in a probability
distribution. As demonstrated in Figure 5, the red node represents an event characterized
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by a low likelihood of occurrence, but holds a considerably high value when it occurs. In
real-world problems, tail risk refers to the probability of infrequent and exceptional events
taking place, often leading to substantial losses or disruptions. For example, in the work
of [53], the conditional expectation of the random variable above its β-quantile is evaluated,
which is also referred to as the Conditional Value at Risk (CVaR) [64], which evaluates the
expected loss in the event that the worst-case threshold is crossed:

β-CVaR(θ) =
1

1− β

∫ 1

β
F−1

θ (u)du, (16)

with θ being a random variable with distribution functions Fθ and 0 < β < 1.
The objective of the corresponding SP problem is to find the optimal decision that

minimizes the value of β-CVaR. Given that the tail risk is conceptualized as a function of a
random variable that only depends on the upper tail of its distribution function, the value of
any tail risk measure in the corresponding SP problems depends only on scenarios that are
restricted within a defined region referred to as the risk region. In such a case, it has been
demonstrated by [53] that problem-driven scenario generation methodologies consistently
produce better and more stable solutions compared to standard Monte Carlo sampling. The
methodologies for problem-driven scenario generation function in the following manner:
with aggregation sampling, a predetermined quantity of scenarios are supposed to be in
the risk region. The algorithm randomly selects samples from the distribution, storing
only those samples that lie in the risk region, while aggregating those outside the risk
region into a single point, usually their average value. The algorithm terminates once the
predetermined number of risk scenarios has been attained. The method has been validated
on the portfolio selection problem in [52].

Figure 5. Example of a tail risk distribution.

While the aforementioned methodologies realize problem-driven scenario generation
by explicitly considering the problem’s features, a scenario generation process based only
on the out-of-sample performance with heuristic solutions is proposed in [30]. It is realized
by formulating a loss function that quantifies the discrepancy between the out-of-sample
and in-sample performance of the given solutions (see Section 3.1). By minimizing the loss
function for a specified number of scenarios, the scenario-tree generation process can be
expressed as follows:



Algorithms 2023, 16, 479 12 of 16

• Initiate the process by generating a pool of solutions xi with i ∈ {1, . . . , n}, using a
heuristic approach that strikes an appropriate balance between speed and accuracy. It
is unnecessary for the solutions to be optimal or feasible in scenario-related constraints.

• Proceed to evaluate the performance of the solutions by out-of-sample evaluation,
denoted as f (xi, ξ).

• Formulate a loss function that quantifies the discrepancy between the in-sample
performance of the solutions xi on a given scenario-tree Tj and the out-of-sample
performances of the solutions, i.e., f (xi, Tj) versus f (xi, ξ).

• Undertake a search to identify the scenario-tree T ∗ that minimizes the loss function,
considering all possible scenario-trees Tj with j ∈ {1, . . . , m}, defined by a predeter-
mined number of scenarios s.

In comparison to other methods, this approach frequently results in a lower number
of scenarios. However, it has a drawback that the heuristics for generating solutions and
the minimization of the loss function are specific to the problems and cannot be easily
generalized. Consequently, scenario reduction and clustering have become popular again
with problem-driven scenario generation to create a more general framework [55–59]. The
primary goal is always to identify a smaller set of scenarios that maintains an acceptable
level of accuracy, with a wider range of possible applications.

4.4. Advantages and Disadvantages

The rapid progress of machine learning technologies, such as neural networks, has
enabled the solving of problems through “black box” methods, which reduces the need for
accurate approximation of the statistical distributions of stochastic problems. Unavoidably,
classical scenario generation methodologies in SP has lost some of its competitiveness.
In line with the new trend of problem-driven scenario generation, the advantages and
disadvantages of such an approach have become evident. The advantages of problem-
driven scenario generation include but are not limited to:

• A more accurate scenario sets in terms of solving the problem: with scenarios gen-
erated based on the problem structure and features, they are more likely to provide
more accurate solutions.

• More efficient use of computational resources: Several works have proven that
problem-driven scenario generation can reduce the number of scenarios needed to
achieve a certain level of accuracy, thereby decreasing the computational burden of
the optimization problem.

While the disadvantages are:

• Requirements of problem-specific subroutines that could be difficult to identify.
• Limited generalizability: often there is no direct comparison with other problem-

driven scenario generation methodologies.
• Risk of over-fitting: a common issue when a stochastic problem is solved within a

small number of scenarios.
• Time-consuming for complex problems.

Overall, the decision to use problem-driven scenario generation in Stochastic Program-
ming should be based on a careful consideration of the specific problem being addressed,
the available data and the time constraints involved.

5. Potential Applications

The literature summarized in Table 1 demonstrates that problem-driven scenario
generation have a broad range of potential applications in Stochastic Programming. Past
applications where these methods have been shown to be effective include portfolio op-
timization with specific risk measures, energy systems planning, network design, and
allocation problems.

Taking into account the aforementioned characteristics of problem-driven scenario
generation, this approach shows the potential for situations wherein it is crucial to limit
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the number of scenarios. Additionally, it has been proposed in [30] that an area where
problem-driven scenario generation may be particularly useful is in problems involving
binary distributions, where traditional scenario generation methods based on fitting the
scenario-tree and underlying distribution may not perform well.

To optimize decision-making problems involving uncertainties in more complex envi-
ronments, we also consider exploring potential combinations of Stochastic Programming
and machine learning technologies to enhance the performance of the solving process.
Within this context, we provide a concise examination of the existing literature in this field.

Primarily, when confronted with intricate distributions that are generally hard to
approximate, a direct and straightforward approach is to employ machine learning tools to
approximate these distributions in SP models. An example can be found in [65] that esti-
mates the conditional urban traffic through spatial and temporal aspects using generative
adversarial networks.

More specifically in the context of scenario generation in SP problems, machine learn-
ing technologies have been investigated for the purpose of generating more informative
scenarios, as illustrated in the work [42]. Furthermore, machine learning technologies have
proven valuable in facilitating scenario reduction and clustering procedures, as evidenced
by the research conducted in [66,67]. The computational complexity of the SP models
can be significantly reduced, making it more practical for solving large-scale problems
commonly encountered in real-world applications.

Regarding the resolution of SP problems, a diverse array of studies have employed
various machine learning techniques aimed at enhancing the effectiveness and efficiency of
the solving process. A method involving a Conditional Variational Autoencoder (CVAE)
has been introduced in [68]. This CVAE is designed to capture the dependencies between
scenarios and their corresponding instances. As a result, it substantially improves the
problem-solving performance, enabling the attainment of high-quality solutions within a
short computational time and exhibits generalizability to larger-scale problems or those
featuring a greater number of scenarios. Another work by [69] introduces a neural network
that is trained to approximate the expected value function, thereby constructing a surrogate
model that can be solved more efficiently compared to the traditional extensive formulation
approach for two-stage Stochastic Programming problems with different structures. A
similar work using a neural network can also be found in [70] for multi-stage optimization
problems. Related works that employ supervised learning can be found in [71] for mixed-
integer linear two-stage stochastic programs. A learnable local search solver for two-stage
stochastic integer programming in a large-scale data setting via reinforcement learning is
presented in [72]. It addresses the task by simultaneously learning two policies: one for
generating an initial solution and another for iteratively refining it through local search
moves. To enable learning across various problem instances and generalization to new
ones, these policies utilize contextual features associated with each problem instance as
input. Additionally, the study introduces an extra policy aimed at learning the computation
of the objective bound via dual decomposition.

All of the aforementioned studies provide insights into the collaborative potential of
machine learning techniques and Stochastic Programming, thereby outlining noteworthy
directions for future research pursuits.

6. Conclusions

In this work, we presented a survey on problem-driven scenario generation, which has
become increasingly popular in recent years by incorporating problem-specific knowledge
into the scenario generation process. An overview of state-of-the-art research in this area
has been provided, as well as potential applications of this approach. In general, problem-
driven scenario generation methodologies have a wide range of potential applications
across diverse domains, and its usefulness continues to grow as these methodologies are
refined and improved.
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Despite the decreasing demand for approximating statistical distributions due to the
rapid development of machine learning technologies, problem-driven scenario generation
remains a valuable tool with multiple advantages. There is also a growing opportunity to
combine problem-driven scenario generation with machine learning technologies to further
improve the accuracy and efficiency of this approach.

Author Contributions: Conceptualization, X.C. and E.M.; methodology, X.C. and E.M.; software,
X.C.; validation, X.C. and E.M.; formal analysis, X.C. and E.M.; investigation, X.C. and E.M.; resources,
X.C. and E.M.; writing—original draft preparation, X.C.; writing—review and editing, X.C. and E.M.;
visualization, X.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by “ULTRA OPTYMAL- Urban Logistics and sustainable TRAns-
portation: OPtimization under uncertainty and MAchine Learning”, a PRIN2020 project funded by
the Italian Ministry of University and Research (grant number 20207C8T9M).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shapiro, A.; Philpott, A.B. A Tutorial on Stochastic Programming. 2007. Available online: https://stoprog.org/sites/default/

files/SPTutorial/TutorialSP.pdf (accessed on 15 September 2023).
2. Beyer, H.G.; Sendhoff, B. Robust optimization—A comprehensive survey. Comput. Methods Appl. Mech. Eng. 2007, 196, 3190–3218.

[CrossRef]
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