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Abstract: With the improvement of satellite autonomy, multi-satellite cooperative mission planning
has become an important application. This requires multiple satellites to interact with each other
via inter-satellite links to reach a consistent mission planning scheme. Considering issues such as
inter-satellite link failure, external interference, and communication delay, algorithms should mini-
mize communication costs as much as possible. The CBBA algorithm belongs to a fully distributed
multi-agent task allocation algorithm, which has been introduced into multi-satellite autonomous
task planning scenarios and achieved good planning results. This paper mainly focuses on the
communication problem, and proposes an improved algorithm based on it, which is called c-CBBA.
The algorithm is designed with task preemption strategy and single-chain strategy to reduce the
communication volume. The task preemption strategy is an accelerated convergence mechanism
designed for the convergence characteristics of CBBA, while the single-chain strategy is a commu-
nication link pruning strategy designed for the information exchange characteristics of satellites.
Experiments in various scenarios show that the algorithm can effectively reduce communication
volume while ensuring the effectiveness of task planning.

Keywords: multi-satellite system; distributed cooperative task planning; communication constraints

1. Introduction

With the improvement of satellite autonomy, the Earth Observation Satellite (EOS) has
gradually become capable of onboard perception, decision-making, and inter-satellite com-
munication, playing an increasingly important role in the field of earth observation. Along
with the new control mode, EOS can perform mission planning autonomously, rather than
relying solely on commands from the ground. This enables the satellite to make decisions
based on its own accurate state, while responding to changes in the external environment
in a more timely manner, greatly reducing the response time to target observation. At
the same time, it reduces the dependence on satellite tracking, telemetry and command
resources, enhancing the robustness of the overall system. In the future, with the increase in
the number of autonomous EOSs, multiple autonomous EOSs together form a constellation.
Then the observation mission will not only rely on a single satellite, but also rely on the
cooperation of various satellites in the constellation. Determining how to improve the
efficiency of the entire constellation to ensure that more tasks are scheduled in a timely,
accurate and high-quality manner will be the focus of future autonomous satellite mission
planning [1]. Low-orbit satellite constellations have advantages such as low latency, strong
signal, global coverage, and low cost, affording them important roles in remote sensing [2,3].
This paper focuses on the research of autonomous mission planning methods for low-orbit
imaging constellations with inter-satellite links (ISLs).

In the traditional satellite mission planning mode, the ground obtains the onboard
status through telemetry, tracking, etc., generates the mission planning scheme, and sends
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the command to the satellite. Satellites act only as executors of instructions and do not
have autonomous decision-making capabilities. In this control mode, the imaging mission
planning problem can be regarded as an optimization problem. There is currently a large
amount of research in this field. For example, there are exact solution algorithms such
as the branch and price algorithm [4], the dynamic programming algorithm [5], meta-
heuristic algorithms such as the genetic algorithm [6], adaptive large-neighborhood search
algorithm [7,8], and many heuristic algorithms [9,10]. However, due to the long satellite-
ground loop, this mode cannot respond quickly to changes in the onboard environment.

As the autonomy of satellites increased, mission planning began to be combined with
the autonomous capabilities of satellites. Collaboration is required in a multi-satellite
environment. Two types of multi-satellite collaboration architectures are often studied:
the centralized architecture and the distributed architecture. Centralized architectures
usually rely on a central node that has access to all child nodes, and then performs global
planning based on the collected information. For example, Truszkowski et al. [11] proposed
a spacecraft constellation interaction scenario, constructing a fully centralized architecture
with high-orbit satellites as master satellites and low-orbit satellites as child satellites.
Master satellites receive the status information sent by the low-orbit child satellites and are
responsible for the mission planning of the whole constellation. Adopting a centralized
architecture has many advantages, such as less communication required and higher quality
solutions. However, the centralized architecture requires high computing power of the
master satellite and a good communication environment. Considering issues such as ISL
failures, external interference, and communication delays, it is difficult for the master
satellite to obtain information from all child satellites in a timely manner [12]. In addition,
once the master satellite fails, the entire system will fall into paralysis. In order to cope
with more complex communication environments and to improve system robustness, the
distributed architecture is proposed.

In a distributed architecture, each node in the system has autonomous capabilities.
Child nodes not only act as executors of instructions, but also undertake certain compu-
tational tasks. The distributed architecture can be further divided into the centralized-
distributed architecture and the fully distributed architecture. In a centralized-distributed
architecture, there exists one or more master agents that divide the multiple agents
into different groups for control, while each agent can make decisions independently.
Zhang et al. [13] proposed a distributed broken-chain reconnection algorithm, where the
master satellite splits the scheduling task, transmits sub-tasks to the neighboring auxiliary
satellites for computation, and then the child satellites return the scheduled results to
the master satellite. The approach can break through the limitations of single satellite
computing resources and improve in-orbit computing capability. However, the algorithm
can only perform task planning for a single satellite. Contract network protocol (CNP) [14]
is a classic centralized-distributed algorithm. CNP adopts the market auction mechanism
to allocate tasks in sequence. It has been widely studied in the field of satellite mission
planning. Zhang et al. [15] divided the satellite mission planning problem into two levels:
satellite cluster mission planning and single-satellite autonomous planning, and proposed
an improved CNP algorithm. Long et al. [16] proposed a multi-satellite collaborative
mission planning architecture based on the improved Shuffled Frog Leaping Algorithm
(SFLA). The master satellite is responsible for task allocation, while child satellites are
responsible for task scheduling and calculation of fitness values. Although the child nodes
in the centralized-distributed architecture take on a certain amount of computational work,
it still puts high demands on the master satellite’s computational capability, and there is still
a problem of poor system robustness. The fully distributed architecture, on the other hand,
does not have a central node, and the nodes generate solutions by mutual negotiation. De-
termining how to achieve consistency in solutions through decentralized communication is
a key issue for the architecture. Zheng et al. [17] addressed collaborative planning scenarios
for child satellites after the failure of the master satellite. The Utility-based Regret play was
proposed as a negotiation mechanism for teams in a centralized-distributed structure, and
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the Smoke Signal play and the Broadcast-based play were used as negotiation mechanisms
for teams in a fully distributed structure. Gao et al. [18] proposed a multi-agent collabo-
rative coevolutionary genetic algorithm, where multiple subpopulations distributed on
different satellites evolve in parallel to continuously optimize the combination of satellite
schemes. Zheng et al. [19] proposed a distributed algorithm based on the Hybrid Dynamic
Mutation Genetic Algorithm (HDMGA) with a local search heuristic module and a dis-
tributed global optimization module. However, as the constellation and mission scale
increase, the computational efficiency of the metaheuristic algorithm for iterative opti-
mization is greatly affected. Therefore, considering the limitations of on-board computing
power and inter-satellite communication conditions, we need to explore a low complexity
and low communication cost algorithm to ensure efficient task allocation.

Choi et al. [20] proposed the Consensus-based Bundle Algorithm (CBBA), which
employed a market auction mechanism for decentralized task selection and a consensus
strategy based on local communication to resolve conflicts. The algorithm can accom-
plish task planning within polynomial time while ensuring the quality of planning. Song
et al. [21] introduced CBBA into the imaging satellite mission planning problem, solved
the coupling constraint problem in mission planning, and explored the fitness functions
in different scenarios. However, when the scale of satellite missions increases, there will
still be a significant communication burden. The paper proposes the c-CBBA algorithm
optimized specifically for the communication problem. The task preemption mechanism
and the single-chain strategy are designed. The algorithm is able to significantly reduce the
communication volume while guaranteeing the optimization quality, which is more suitable
for efficient mission scheduling in the context of restricted inter-satellite communication.

The rest of the paper is organized as follows. Section 2 describes the Multi-Satellite
On-board Observation Scheduling Problem (MSOOSP). Section 3 describes the basic CBBA
algorithm and analyses its drawbacks. Section 4 proposes the improved algorithm c-CBBA
with two important strategies: the task preemption strategy and the single-chain strategy.
Section 5 describes the design of test cases and the results of experiments in various
scenarios. The discussion is provided in Section 6 and the conclusions are given in Section 7.

2. Problem Description

The Multi-Satellite On-board Observation Scheduling Problem (MSOOSP) is a task-
resource matching problem. The scheme is generated through autonomous communication
and decision-making among various satellites. The plan needs to determine the execution
satellite of the mission while meeting various constraints. The objective is to maximize the
sum of the benefits obtained from performing the missions.

For ease of reference, a summary of the notations used in the remainder of the paper
is presented as follows. Table 1 shows the description list of abbreviations. Tables 2 and 3
show the description lists of mathematical indices and symbols.

Table 1. Description list of abbreviations.

Abbreviations

EOS the Earth Observation Satellite
ISL the Inter-Satellite Link

MSOOSP the Multi-Satellite On-board Observation Scheduling Problem
O-VTW Observation-Visible Time Window between the satellite and mission
C-VTW Communication-Visible Time Window between satellites

TPS the Task Preemption Strategy
SCS the Single-Chain Strategy
CNP the Contract Network Protocol algorithm
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Table 2. Description list of mathematical indices.

Mathematical Indices

i, i′, i′′ LEO satellite index, i = 1, 2...|S|
j, j′ mission index, j = 1, 2...|T|
k the O-VTW index, k = 1, 2...

∣∣∣Wij

∣∣∣
Table 3. Description list of mathematical symbols.

Mathematical Symbols

si the satellite with index i |S| the number of satellites

Mi the maximum storage capacity of satellite si tj the mission with index j

|T| the number of missions mj
the estimated consumption of storage for the
execution of task tj

dj the required observing duration of task tj tsj the start time of the execution of task tj

tej the end time of the execution of task tj trjj,

the required attitude transition time for the
satellite to perform two adjacent tasks between tj
and tj,

pj the priority of the task tj rj the benefit of task tj∣∣Wij
∣∣ the total number of O-VTWs of satellite si for task tj wijk the kth O-VTW of satellite si for task tj

wsijk the start time of wijk weijk the end time of wijk

xijk
the decision variable that determines whether the task
tj is executed in wijk

gijk the bidding function for the time window wijk

α the parameter of TPS bi the task bundle constructed by satellite si

zi =
{

zi1, zi2, . . . , zi|T|
}

the highest bid satellite list of all tasks under the satellite si’s cognition

yi =
{

yi1, yi2, . . . , yi|T|
}

the highest bid list of all tasks under the satellite si’s cognition

hi =
{

hi1, hi2, . . . , hi|T|
}

the timestamp list of other satellite’s information obtained by satellite si

ui =
{

ui1, ui2, . . . , ui|T|
}

the list of task preemption markers under the cognition of satellite si

vi =
{

vi1, vi2, . . . , vi|T|
}

the task preemption timestamp list under the cognition of satellite si

qi =
{

qi1, qi2, . . . , qi|T|
} the number of communications made by the satellite si that consistently considers itself to be

the highest bidder

2.1. MSOOSP Task Planning Process

Figure 1 shows the task planning process of MSOOSP, which is divided into the
following three parts.

(1) Phase 1. Task broadcast

When the ground station receives a mission request from the user, it first uploads
the mission information to the satellite that is able to establish a satellite-to-earth link
at the current moment. The satellite then broadcasts the received information through
the inter-satellite link so that all satellites in the constellation have access to the mission
information.

It should be noted that for smaller constellations, when the satellite receives informa-
tion transmitted by the ground station, it can broadcast throughout the entire constellation
range as described above. With the tremendous progress of small satellite technology,
low-orbit large-scale small satellite constellations have become an important development
direction, resulting in a large number of research and application plans [22,23]. Adopting
fully distributed algorithms for autonomous task planning in large-scale constellations
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is inefficient and unnecessary. Considering the efficiency and effectiveness of the algo-
rithm, the task broadcast range can be predetermined based on the characteristics of the
constellation, and then the task planning algorithm can be carried out within this range.
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In order to ensure the normal operation and long-term control of satellites, ground
stations routinely obtain information such as satellite flight orbits and operational status
through measurement, control and tracking. Therefore, when the user puts forward the de-
mand, the ground station is able to directly calculate the information such as the visible time
window of each satellite for each task using tools such as Satellite Ephemeris. In order to
reduce the computational burden of the on-board hardware, the pre-processing procedure
of the information required for planning, including mission attributes, observation-visible
time window (O-VTW, i.e., the period when the satellite is able to observe the ground
target), communication-visible time window (C-VTW, i.e., the period when satellites are
able to communicate with each other), satellite attitude, etc., is completed on the ground
and uploaded to the satellite via the satellite-to-earth link.

(2) Phase 2. On-board mission scheduling

When the satellite receives task information, the task planning algorithm is triggered.
Each satellite runs the scheduling algorithm and generates the final scheduled plan through
autonomous decision-making and inter-satellite communication.

(3) Phase 3. Execute mission planning scheme and download data

Each satellite performs missions according to the scheduled scheme. When the satellite
is visible to the ground station, the observation data is transmitted down to the ground
station. Alternatively, it can be transmitted down to the ground station through other
satellites using inter-satellite links.

This paper focuses on the task planning algorithm for the second part.

2.2. Onboard Communication Topology

Satellites carry communication payloads, such as radio or laser, which allow the
satellite to establish ISLs to transmit data. The establishment of ISLs have many constraints,
for example, the distance between the two satellites needs to be within a certain range and
the line-of-sight vector between the two satellites needs to be above the earth’s surface.
Taking the Walker-δ (30/3/1, 600 km, 60◦) constellation (denoted as: Walker constellation,
ten satellites uniformly distributed on each orbital plane, a total of three orbital planes,
phase factor of 1, orbital inclination of 60◦, and orbital altitude of 600 km) as an example.
Its constellation configuration is shown in Figure 2a, and the communication topology is
shown in Figure 2b. Among them, satellites 1 to satellite 10 belong to the same orbital plane,
and their communication topologies are sequentially connected to form a bidirectional
closed loop.
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When there are a large number of satellites on the same orbital plane, due to the smaller
distance between satellites, satellites can not only establish links with adjacent satellites,
but also with further satellites. Taking the Walker-δ (20/1/1, 600 km, 60◦) constellation as
an example, the communication topology at a certain moment is shown in Figure 3.
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For a certain satellite, the satellite that can be linked to it is called the neighbor satellite.
Taking Figure 3 as an example, the neighbors of satellite 1 are {s2, s3, s19, s20}.

2.3. Problem Assumption

To highlight the key points of the problem, combined with the actual situation, this
paper makes the following assumptions in MSOOSP:

• One satellite can only communicate with one neighbor at a time.
• The communication between two satellites is unidirectional, where one satellite serves

as the information sender and the other as the information receiver.
• The paper does not consider the communication costs incurred due to pre-processed

information broadcasting.
• The paper does not consider changes in satellite power and storage caused by factors

other than mission observations.

2.4. Notations

S =
{

s1, s2, ..., s|S|
}

, the set of satellites, |S| represents the number of satellites. Mi

represents the maximum storage capacity of satellite si during the planning period.
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T =
{

t1, t2, ...t|T|
}

, the set of missions, |T| denotes the number of missions. mj

denotes the estimated consumption of storage for the execution of task tj. dj is the required
observing duration of task tj. tsj denotes the start time of the execution of task tj, tej denotes
the end time of the execution of task tj. trjj′ represents the required attitude transition time
for the satellite to perform two adjacent tasks between tj and tj′. pj denotes the priority of
the task tj. rj represents the benefit of task tj. Considering the urgency and timeliness of
observing tasks, this article introduces a mechanism for task benefits to decay over time.
On the basis of the priority pj, the benefit rj decays with the delay of its execution start time
tsj. The calculation formula is shown in Equation (1), λ is the attenuation factor.

rj = pje
−λtsj , (1)

Wij =
{

wij1, wij2, . . . , wij|Wij |

}
, the set of O-VTWs of satellite si for task tj,

∣∣Wij
∣∣

denotes the total number of O-VTWs of satellite si for task tj. wijk denotes the kth O-VTW
of satellite si for task tj. wsijk indicates the start time of wijk, weijk indicates the end time
of wijk.

xijk, decision variable. xijk = 1 if task tj is executed in wijk, xijk = 0 otherwise.

2.5. Mathematical Formulation

Define the scheduling model for MSOOSP. The model is:

max∑|S|
i=1

(
∑|T|

j=1

(
∑
|Wij |
k=1 xijkrj

))
, (2)

subject to:

∑
|T|
j=1

(
∑
|Wij |
k=1 xijkmj

)
≤ Mi, ∀i ∈ S, (3)

∑
|S|
i=1

(
∑
|Wij |
k=1 xijk

)
≤ 1, ∀j ∈ T, (4)

wsijk ≤ tsj < tej ≤ weijk, i f xijk = 1, (5)

tej + trjj′ ≤ tsj′ , i f tej < tsj′ , (6)

tsj + dj = tej, if ∑
|S|
i=1

(
∑
|Wij |
k=1 xijk

)
= 1, ∀j ∈ T, (7)

xijk ∈ {0, 1}, ∀(i, j, k) ∈ S× T ×W, (8)

Equation (2) represents the common objective function of all satellites, maximizing
the sum of benefits of successfully assigned tasks. Equation (3) indicates that during the
planning cycle, the storage occupied by the satellite to perform its tasks cannot reach its
maximum storage capacity; Equation (4) indicates that each task is executed at most once;
Equation (5) indicates that the actual execution time of a task must be within its O-VTW;
Equation (6) indicates that there must be a certain attitude transition time between two
adjacent observation tasks of the satellite; Equation (7) indicates that mission observations
need to last for a certain amount of time; Equation (8) defines the range of values for the
decision variables.

3. The Basic CBBA
3.1. Structure of the CBBA

CBBA is an auction-based distributed algorithm, where each satellite has the capacity
for autonomous decision-making. Each satellite continuously obtains planning informa-
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tion from other satellites through local communication, ultimately reaching a consensus
scheme. During the running time, each satellite needs to maintain two lists to record
the global bidding information under the satellite’s cognition, which are: the highest
bid satellite and its bid corresponding to each task, denoted by zi =

{
zi1, zi2, . . . , zi|T|

}
and yi =

{
yi1, yi2, . . . , yi|T|

}
, respectively. Additionally, it is necessary to record the

timestamp list of other satellite’s information obtained by the satellite, represented by
hi =

{
hi1, hi2, . . . , hi|T|

}
. At the same time, each satellite is required to maintain a task set

of its choice, denoted by bi.
The CBBA consists of two phases. The first phase is the task bundle construction

phase. In this phase, each agent independently and greedily selects the task with the highest
bid one-by-one from the task set from which they believe they have bid higher than the
current global highest bid. The second phase is the consensus check phase. At this stage,
each agent updates its knowledge of global information by interacting with neighboring
agents, which is then used to guide the updating and construction of the task bundle.
After communicating with neighbors, for the task in bi, when there is a satellite bidding
higher, the satellite si needs to give up the task. Since tasks are added sequentially to the
task bundle in the first phase, each addition will have a cascading effect on the remaining
tasks to be scheduled (e.g., the tasks in the bundle set need to satisfy the constraint of
Equation (6), and if there is an overlap in the O-VTW of the two tasks, the addition of one
task will result in the loss of bidding eligibility for the other task due to the failure to satisfy
the constraint). So, if a task is abandoned, all subsequent tasks added to the task bundle
will be invalidated. Therefore, we need to discard the task and all subsequent tasks in
the task bundle, and initialize the information of all tasks after that task in yi and zi. This
step is called conflict resolution. With the continuous iteration of the two stages, more and
more tasks have had the final winner of the bid determined, and a consensus on the task
planning has been ultimately reached.

The process of CBBA from the perspective of single satellite si is shown in Figure 4. The
inside part of the dotted box represents the satellite’s built-in operating program, and the
outside part of the dotted box is the satellite’s information interaction with the environment.
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3.2. Drawbacks of CBBA in Imaging Satellite Mission Planning

From the introduction of the CBBA algorithm above, it can be seen that for task tj,
which currently has the highest global bid, satellite si will prioritize adding to its own task
bundle, and all satellites will obtain and update this information during the consensus
check phase. Therefore, CBBA will prioritize determining the bidding result for the task
with the highest global bid, and achieve consensus on this information globally. However,
the selection of tasks affects each other. For example, the execution of one task may cause
the O-VTW of other tasks to be unavailable (which can be regarded as a bid of 0), i.e.,
some tasks will be masked. Throughout the entire CBBA process, hidden tasks may be
re-qualified for election due to conflict resolution during the consensus check phase.

Let us take Figure 5 as an example to explain the masking phenomenon. The figure
shows the O-VTW information and bidding information of the two satellites for task A
and task B, respectively. Both missions are visible to satellite s1, but only one of them can
be observed due to time window overlap conflicts. Table 4 shows the scheduling process
information of the two stages of CBBA. In the first iteration, s1, prioritizes task A with a
higher bid, and due to time window conflicts, the bid for task B is 0. In the second iteration,
task B regains the bidding qualification due to task A not being added to the bundle. With
the increase in satellite scale and task scale, the frequency of such phenomena increases
greatly, and even there are conflicting relationships among multiple tasks. At this point,
the change in one task can affect the bidding of multiple tasks. This masking phenomenon
leads to capricious bids for the same task. In the worst case, after a round of auction, only
one task’s scheduling result may be determined, that is, the task with the highest global
bid. At this point, when the number of tasks is |T|, |T| rounds of auctions are needed to
determine the final scheduling result, which to some extent limits the convergence speed of
the algorithm and indirectly increases the communication cost of the algorithm.
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Figure 5. Example of masking phenomenon, which shows the visible time windows and their conflict
relationship of two satellites for task A and B, as well as the bidding value for tasks.

Table 4. Solution process of CBBA for the masking issues.

Iteration Phase I After Phase II

Iter1 b1 = {taskA}, b2 = {taskA} b1 = {}, b2 = {taskA}
Iter2 b1 = {taskB}, b2 = {taskA} b1 = {taskB}, b2 = {taskA}

4. c-CBBA

Based on the above analysis, this section proposes an improved CBBA algorithm for
communication problems, called c-CBBA, which mainly includes two strategies: the Task
Preemption Strategy (TPS) and the Single-Chain Strategy (SCS). Figure 6 shows the process
of c-CBBA. From the figure, it can be seen that TPS mainly acts on the consensus check stage
of the basic CBBA, accelerating algorithm convergence by improving the auction rules. SCS
is mainly used for inter-satellite communication. By analyzing the onboard communication
topology, the communication links are pruned so as to reduce the communication cost of
the algorithm in large-scale scenarios.
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4.1. Task Preemption Strategy

Based on the analysis of the implicit drawbacks of CBBA algorithm, the Task Pre-
emption Strategy (TPS) is introduced to accelerate the convergence of the algorithm. In
TPS, single satellite can autonomously preempt tasks. If the satellite continues to believe
that it has the highest bid after aggregating the auction messages sent by its neighbors
for a certain number of communications, it can preempt the task and inform the other
satellites of this message. Then, other satellites will no longer add the preempted task
to their own task bundle. At the global level, TPS overcomes the drawbacks of the task
masking phenomenon. It is not necessary to wait for a high-bid task to identify the winning
satellite before a lower-bid task can be efficiently scheduled, thus accelerating the process
of global consistency. During the distributed operation of the algorithm, there may be a
situation where multiple satellites are preempting the same task. Therefore, it is necessary
to record the timestamp of the satellite’s preemption of the task, and stipulate that the
satellite that first preempts the task acquires the task.

Each satellite requires additional maintenance of the following information:

• ui =
{

ui1, ui2, . . . , uij, . . . , ui|T|

}
, the list of task preemption markers under the cogni-

tion of satellite si, its length is the number of tasks |T|. uij represents the preemptive
marker of task tj. If tj has already been preempted, then uij = 1; otherwise, uij =0.

• vi =
{

vi1, vi2, . . . , vij, . . . , vi|T|

}
, the task preemption timestamp list under the cogni-

tion of satellite si, its length is |S|. vij represents the timestamp of the earliest time
when task tj was preempted under the cognition of satellite si.

• qi =
{

qi1, qi2, . . . , qij, . . . , qi|T|

}
, recording the number of communications made by

the satellite that consistently considers itself to be the highest bidder. Its length is |T|.
• α, the parameter of TPS. When qij reaches α times, satellite si preempts task tj.

4.1.1. Bundle Construction

This phase is essentially a mission scheduling phase performed independently by each
satellite. The task bundle construction process is greedy. Satellite si selects the highest bid
task from its own unscheduled tasks to join the task bundle bi until there are no more tasks



Algorithms 2023, 16, 475 11 of 22

that meet the requirements. Note that the tasks in the task bundle need to be arranged in
the order of addition. The selected task tj must meet three conditions simultaneously:

• The task bundle bi needs to be able to satisfy the constraints of the model after joining
task tj.

• Satellite si’s bid for task tj needs to be higher than the highest bid recorded for tj in
the list yi it maintains.

• Task tj is currently not preempted, i.e., uij = 0.

As task tj is added to bi, the corresponding task information in yi and zi should be
updated at the same time.

Equation (9) defines the bidding function for the time window wijk.

gijk =
rj −∑wij′k′∈Con f ijk

rj′/|S|

mj
, (9)

where Con f ijk denotes the set of O-VTWs that have constraint conflicts (Equation (6)) with
the time window wijk. The bidding function aims to select tasks with high profit, less
storage usage, and low conflict with other tasks.

When tasks are executed on the same satellite, there are many coupling constraints,
such as the constraints on the satellite attitude transition time represented in Equation (6).
Therefore, during the bundle construction phase, constraint checking is required for every
task added.

4.1.2. Consensus Check

In this phase, each agent updates its own knowledge about global information by
interacting with neighboring agents, and then updates the task bundle accordingly. The
consensus check phase under the TPS is as follows:

Step 1: when satellite si receives the neighbor’s message, it checks for consistency with
its own message. If inconsistent, update the information. The basic CBBA needs to update
the highest bid list yi, highest bid satellite list zi, and timestamp list hi. The update rules
are shown in Table 5.

There are three types of rules for updating information:

• update: yij = yi′ j, zij = zi′ j;
• reset: yij = 0, zij = none;
• leave: yij = yij, zij = zij.

The timestamp list hi is updated in such a way: when the satellite si communicates with
si′, the timestamp hii′ is updated to the moment t of this communication, and the timestamp
hii′′ , in which satellite si obtains information about the other satellites si′′ , is updated to the
larger of hii′′ and hi′i′′ . The timestamp update formula is shown in Equation (10) and (11)

hii′ = t, (10)

hii′′ = max{hii′′ , hi′i′′ }, ∀i′′ ∈ T\{i, i′}. (11)

The c-CBBA with TPS also needs to update the list of task preemption markers ui and
preemptive timestamp vi. Table 6 lists the update rules for c-CBBA, which are modified
based on Table 5.

The update rules for auction information are as follows:

• update: yij = yi′ j, zij = zi′ j, uij = ui′ j, vij = vi′ j;
• leave: yij = yij, zij = zij, uij = uij, vij = vij

Step 2: update qi. After communicating with a neighbor, if task tj is not preempted
and zij = i, then the continuous communication count qij will be increased by 1; If zij 6= i,
qij is set to 0.
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Table 5. CBBA’s rules for updating information. It specifies the way in which a satellite updates its
own information when it receives information transmitted by a neighboring satellite.

si’ (Sender) Think zi’j Is si (Receiver) Think zij Is Receiver’s Action (Default: Leave)

i′

i if yi′ j > yij → update

i′ update

i′′ /∈ {i, i′} if hi′ i′′ > hii′′ or yi′ j > yij → update

none update

i

i leave

i′ reset

i′′ /∈ {i, i′} if hi′ i′′ > hii′′→ reset

none leave

i′′ /∈ {i, i′}

i if hi′ i′′ > hii′′ and yi′ j > yij → update

i′ if hi′ i′′ > hii′′ → update
else→ reset

i′′ hi′ i′′ > hii′′ → update

i
′′ ′ /∈ {i, i′, i′′ }

if hi′ i′′ > hii′′ and hi′ i′′ ′ > hii′′ ′ → update
if hi′ i′′ > hii′′ and yi′ j > yij → update
if hi′ i′′ ′ > hii′′ ′ and hii′′ > hi′ i′′ → reset

none *

i leave

i′ update

i′′ /∈ {i, i′} if si′ i′′ > sii′′ → update

none leave

* none indicates that the satellite has not obtained bidding information about the task or the information has
been initialized.

Table 6. c-CBBA’s rules for updating information.

si’ (Sender) Think zi’j Is si (Receiver) Think zij Is Receiver’s Action (Default: Leave)

0
0 Update yij and zij according to

Table 5

1 leave

1

0 update

1 if vi′ j > vij → leave
else→ update

Step 3: task preemption. If task tj is not preempted, determine whether the continuous
communication count qij has reached α: if it has, the satellite si will preempt task tj. After
preemption, update the preemption marker uij to 1, update the preemption timestamp
vij to the current communication time, and advance task tj to the first position of bi (the
purpose of the advance operation is to separate preempted tasks from non-preempted
tasks, preventing preempted tasks from being discarded when the task bundle is updated
at a later time).

Step 4: update the task bundle. For preempted tasks, when the preemption fails
because the preemption time is later than other satellites, they are to be removed directly
from bi. For non preemptive tasks, adding each task during the construction of the task
bundle will have an impact on subsequent task additions. Therefore, if the information
is inconsistent after interacting with neighbors, a disintegration operation should be per-
formed. Denote the position of the most forward task of zij 6= i in bi as n. Reset the yij and
zij of the corresponding task after the n position in bi. Decompose the task on position n
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and all tasks behind position n in bi. Equations (12)–(14) provides specific update formulae.

yibin
= 0, ∀n > n, (12)

zibin
= none, ∀n > n, (13)

bin = ∅, ∀n ≥ n, (14)

4.2. Single-Chain Strategy

According to whether the two satellites establishing the inter-satellite link belongs
to the same orbit, the inter-satellite link is divided into two types: intra-plane ISLs and
inter-plane ISLs. Satellites in the same orbital plane have stable inter-satellite links due to
their stable relative positions, i.e., they have fixed “neighbors” that do not change over time.
On the contrary, as relative motion occurs between satellites in different orbital planes, the
connectivity of the inter-plane ISLs is time-varying and less stable.

As can be seen from Figure 3, when the constellation scale is large, each satellite has
more than one neighbor, which is prone to information interaction redundancy during
communication. For example, in Figure 7, satellites s2 and s3 are both neighbors of s1, and
s2 and s3 are neighbors of each other. If satellites s1, s2, and s3 send information in sequence,
the information transmitted in communication link s1 → s2 → s3 already contains the
information transmitted in s1→s3. Therefore, such multi-span communication links can
be deleted. Based on the consideration of the stability of the communication link, the
operation of removing the redundant link is only performed on the intra-plane ISLs. This
operation is called the Single-Chain Strategy (SCS).
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Figure 7. Redundant communication example, which shows the information transmission flow
among three satellites. The information transmitted in link s1 → s2 → s3 contains the information
transmitted in s1→s3, so the link s1→s3 is redundant.

From a single satellite perspective, in the orbital plane, neighbors exist on both sides
of the satellite. The single-chain strategy refers in particular to the fact that when there
are multiple neighbors, the satellite selects only one neighbor for communication for each
side. Assuming that the current satellite communication topology is shown in Figure 8a.
Due to the fact that satellites are linked from an individual perspective, in order to ensure
the connectivity of whole constellation, it can be specified that all satellites are linked
according to the same rules, such as prioritizing the link with the nearest satellite. In this
way, the communication topology is shown in Figure 8b. Considering the complexity of
the communication environment, there may be situations where it is not possible to build
a link due to special circumstances. In this case, the satellite can choose any neighbor to
establish a link, as shown in Figure 8c.

The premise of CBBA convergence is that the communication topology is connected
during the scheduling period. For other specific constellation configurations, we can design
reasonable pruning strategies based on the characteristics of the constellation to improve
information exchange efficiency while ensuring that the communication link topologies are
connected graphs.
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Figure 8. Constellation communication topology. (a) Original constellation communication topology.
In addition to communicating with directly adjacent satellites, the satellite may be able to communi-
cate with more distant satellites; (b) constellation communication topology under the single-chain
strategy. Each satellite only communicates with directly adjacent neighboring satellites; (c) constel-
lation communication topology under the single-chain strategy in case of partial communication
link damage. When a neighboring satellite directly adjacent to the satellite fails, the satellite can
communicate with a more distant neighboring satellite.

4.3. Response to Abnormal Situations

The above description of the algorithm is based on the assumption that when the
algorithm starts running, the satellite that is running normally remains normal throughout
the entire algorithm running process. However, there may be a situation where a certain
satellite malfunctions. This section provides a brief discussion based on this situation.

(1) Fault occurs after the algorithm operation

After the algorithm runs, each satellite can obtain the task allocation scheme for the
entire constellation through its own maintained global highest bid satellite list zi. If a
satellite is unable to perform tasks due to a fault at this time, the task set assigned to the
faulty satellite will be regarded as a new request and the c-CBBA algorithm will be rerun
throughout the entire constellation.

(2) Fault occurs during the algorithm operation

Assuming that a satellite malfunctions during the operation of the algorithm. At this
point, for any other satellite within the constellation, if the global highest bid satellite list
maintained includes faulty satellites, initialize all task information corresponding to the
faulty satellite, and then continue running the algorithm. Specifically, if zij refers to the
faulty satellite, the following variables need to be updated: zij = none, yij = 0, hij = 0,
uij = 0. Then, when the algorithm reaches global consistency, the faulty satellite will not be
assigned to any tasks.

5. Results
5.1. Design of Tested Scenarios

The algorithms are coded in C++, and the experiments are conducted using an Intel
Core i7-6700 HQ 2.60 GHz CPU under a 64-bit Windows 10 system with 16 GB RAM.

The experimental scenarios are designed as follows: observation missions are gener-
ated according to a random distribution. They are divided into two categories according to
the density of distribution: locally distributed tasks (3◦ N–53◦ N, 73◦ E–133◦ E) and globally
distributed tasks (60◦ S–60◦ N). From each type, 360, 720 and 1080 tasks with O-VTWs
within the planning cycle are randomly selected to form the set of examples, respectively.
Set the estimated consumption storage mj and the priority pj of the task tj to a randomly
sampled integer in [50, 100]. The time discount coefficient λ for task profit is 10−5. Set the
scheduling period to 1.5 h. The decay function of task benefits over time represented by
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Equation (1) is shown in Figure 9, enabling the final profit to be approximately 95% of the
original profit if the task is completed at the end of the planning cycle.
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The constellations are set to a scale of 30, 60 and 90 satellites. The constellation
configuration parameters are Walker-δ (30/3/1, 600 km, 60◦), Walker-δ (60/3/1, 600 km,
60◦) and Walker-δ (90/3/1, 600 km, 60◦), respectively. For global mission scenarios, set
the maximum available storage of one satellite during the planning period to 750; for the
regional mission scenarios, in order to highlight the time constraints, the storage constraints
are appropriately relaxed by setting the maximum available storage for satellites during
the planning cycle to 1125.

5.2. Experimental Result

This section mainly examines the performance of the algorithm on the objective
function and the communication volume.

5.2.1. Comparison of Algorithm Optimization Performance

The algorithm using Equation (9) as the bidding function is represented as c-CBBA
(mix), while the algorithm using task profit as the bidding function is represented as
c-CBBA (profit). The two are compared with the classical centralized-distributed algorithm
Contract Network Protocol (CNP), which uses the task profit as the bidding function. In
CNP, the master satellite bids for each task in the descending order of priority. Table 7
shows the comparison of various indicators of the three algorithms in a total of 18 scenarios
with different task distributions, task scales, and satellite scales (the highest total profit is
in bold). Table 7 compares the algorithms in terms of three aspects: the number of tasks
successfully scheduled (TS), the total profit (TP), and the running time of the algorithms. For
the convenience of expression, the following text uniformly refers to scenarios in the form
of “task type—number of tasks—number of satellites”. For example, using “local-360-30”
to refer to a scenario where the task is locally distributed, the number of tasks is 360, and
the number of satellites is 30.
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Table 7. Comparison of the results of various algorithms. TS refers to the number of tasks successfully
scheduled; TP refers to the total profit.

Task
Type-

Quantity
Sat Scenario

c-CBBA (Mix) c-CBBA (Profit) CNP

TS TP
CPU
Time

(s)
TS TP

CPU
Time

(s)
TS TP

CPU
Time

(s)

local
-

360

30 1 237 18,002.2 0.11 228 17,805.9 0.103 231 17,985.1 0.001
60 2 335 24,458.2 0.50 331 24,156.6 0.501 331 24,155.9 0.001
90 3 350 26,217.9 1.16 348 26,096.5 1.206 348 26,096.5 0.001

local
-

720

30 4 277 22,321.3 0.19 255 21,674.9 0.183 253 21,522.9 0.002
60 5 496 38,083.1 1.02 475 37,488.8 1.037 471 37,233.3 0.002
90 6 628 47,275.2 2.93 612 46,462.6 2.765 611 46,374.1 0.003

local
-

1080

30 7 298 24,807.6 0.29 263 23,484.9 0.273 264 23,550.7 0.005
60 8 552 44,125.3 1.49 522 43,552.6 1.481 521 43,511.4 0.006
90 9 765 59,501.6 4.75 750 59,385.6 5.125 746 59,114.3 0.006

global
-

360

30 10 294 22,985.1 0.11 290 22,988.4 0.097 290 22,994.8 0.001
60 11 359 26,773.3 0.47 358 26,703.4 0.389 358 26,703.4 0.001
90 12 360 26,883.6 0.93 358 26,750 0.9 358 26,750 0.001

global
-

720

30 13 330 27,040.7 0.21 289 25,575.4 0.164 288 25,529.6 0.002
60 14 590 45,876.3 1.12 573 45,449.6 0.945 574 45,481.2 0.002
90 15 713 53,204 3.05 703 52,581.6 2.455 704 52,630 0.003

global
-

1080

30 16 354 29,675.3 0.31 292 26,945.8 0.226 291 26,846.2 0.005
60 17 633 51,509.8 1.59 586 50,231.5 1.308 587 50,308.8 0.005
90 18 892 69,741.8 4.61 869 68,907.9 4.247 866 68,767.1 0.006

(1) As can be seen from Table 7, in most cases, c-CBBA (mix) significantly outperforms
the other two algorithms in indicators such as the number of scheduled tasks and the
total profit. This is because the bid value is more global when considering storage,
conflicts, etc., which is conducive to achieving an overall better performance. The
scheduling effect of c-CBBA (profit) is slightly better than that of CNP. In 18 scenarios,
nine times of c-CBBA (profit) are better, seven times of CNP are better, and the other
two have the same effect. Both have the same bidding function, but the reason for
the difference in scheduling effectiveness is that CNP only bids for one task at a time,
while CBBA bids for a group of tasks simultaneously. Relatively speaking, CBBA has
a more global perspective. However, due to c-CBBA (profit) only considering benefits
and not considering the mutual influence between tasks during actual scheduling, the
results are poor.

(2) When communication time is not factored into the time cost, the CPU time required for
both c-CBBA and CNP operation is not high. This indicates that the algorithm does not
incur excessive computational burden and is therefore suitable for on-board operation.

The bid function of the basic CBBA and c-CBBA in the following experiment will be
based on Equation (9).

5.2.2. Comparison of Communication Volume

The experiments tested the performance on communication volume and scheduling
effect on three different configurations of c-CBBA, including separate SCS and two hybrid
strategy of SCS and TPS: SCS+TPS (α = 2) and SCS+TPS (α = 3), simultaneously compared
with CNP and the basic CBBA. Figure 10a shows the required communication volume for
different algorithms in different scenarios. The calculation method is as follows: every time
the satellite transmits information to a neighbor, the communication volume is increased by
one. The horizontal axis represents the scenario, which corresponds to the scenario number
in Table 7 one by one. The communication topology obtained by applying the SCS is based
on Figure 8b.
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For ease of presentation, the strategy combining SCS and TPS is called the hybrid
strategy. From Figure 10, we can draw the following conclusions:

(1) The communication volume of CBBA is much lower than that of the CNP. Assume
that the number of satellites is |S|, the number of missions is |T|, and all satellites can
communicate directly with each other. Each task in CNP involves three rounds of
communication processes: master satellite bidding, child satellite tendering, and mas-
ter satellite publishing the winning bid results. Considering that the master satellite
combines the notification of the previous task bidding result and the sending of the
next task bidding information into one communication, the required communication
volume for the CNP is (2|T| + 1) × (|S| − 1). For CBBA, as each communication
interaction involves information from the task bundle, the amount of information
in each communication interaction is greatly increased, which can effectively reduce
communication volume.

(2) Both SCS and TPS can effectively reduce communication volume. The SCS is used
to remove redundant information transmission, so it does not affect the scheduling
results, while TPS reduces communication volume at the expense of some scheduling
effects. Figure 10b provides an in-depth analysis of the impact of the hybrid strategy
on communication volume (Comm) and scheduling profit (P). The vertical axis of
the figure represents the percentage of the communication volume and profit of the
hybrid strategy to the basic CBBA. It can be seen that when α = 2, the average
scheduling profit reaches over 94.8% of the basic CBBA algorithm, while the average
communication decreases to 36.1%. When α = 3, the scheduling gain reaches more
than 97.8% of the basic algorithm on average, while the communication drops to
46.2% on average. It can be seen that in similar scenarios in this experiment, when
α = 3, c-CBBA can significantly reduce communication volume while ensuring
scheduling effectiveness.

(3) SCS and TPS strategies can effectively reduce the sensitivity of CBBA to mission
scale and constellation scale. It is evident from Figure 10a that CNP and basic CBBA
communication volume increases rapidly as the mission or satellite scale rises. When
the scenario scale is small, the difference in communication volume between different
algorithms is small. However, as the scenario scale increases, the increase in commu-
nication volume of c-CBBA is significantly weaker than that of the basic CBBA. This
suggests that c-CBBA has better adaptability to large-scale scenarios.
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6. Discussion

From the experiments in the previous section, it can be seen that c-CBBA can effectively
reduce communication volume while ensuring scheduling quality. In order to better
understand the algorithm, this section further analyzes the operational mechanism of
c-CBBA and the effectiveness of the two strategies in different scenarios.

6.1. Parameter Testing of TPS

The effect of TPS is influenced by parameter α. This experiment tests two scenar-
ios, local-1080-90 and global-1080-90, as examples. The algorithm results are shown in
Table 8 (local) and Table 9 (global). As parameter α changes, the relationship between
communication cost and global total benefit is shown in Figure 11.

Table 8. Parameter testing of local-1080-90 scenario. TS refers to the number of tasks successfully
scheduled; TP refers to the total profit. Comm (%) represents the percentage of communication
volume using TPS compared to the basic CBBA. P (%) represents the percentage of profit using TPS
compared to the basic CBBA.

α Iterations Comm Volume Comm (%) TS TP P (%)

0 * 55 70,533 1 765 59,501.6 1
1 14 15,671 22.22 593 47,296.6 79.49
2 22 27,120 38.45 732 56,987.2 95.77
3 30 37,602 53.31 773 59,762.6 100.44
4 35 44,228 62.71 767 59,311.4 99.68
5 41 52,124 73.90 773 59,814.5 100.53
6 42 53,425 75.74 770 59,718.6 100.36
7 42 53,409 75.72 773 59,962.9 100.78
8 49 62,637 88.81 772 59,799.1 100.50
9 49 62,637 88.81 774 59,895.3 100.66

* The basic CBBA.

Table 9. Parameter testing of global-1080-90 scenario. TS refers to the number of tasks successfully
scheduled; TP refers to the total profit. Comm (%) represents the percentage of communication
volume using TPS compared to the basic CBBA. P (%) represents the percentage of profit using TPS
compared to the basic CBBA.

α Iterations Comm Volume Comm (%) TS TP P (%)

0 * 54 69,843 1 892 69,741.8 1
1 20 23,567 33.74 635 51,651.8 74.06
2 32 39,481 56.53 846 66,763.1 95.73
3 38 48,698 69.72 874 68,634.8 98.41
4 43 54,802 78.46 891 69,642.6 99.86
5 45 57,434 82.23 891 69,673.8 99.90
6 47 60,631 86.81 892 69,741.8 100.00
7 49 63,168 90.44 892 69,741.8 100.00
8 50 64,579 92.46 892 69,732.2 99.99
9 51 65,889 94.34 892 69,732.2 99.99

* The basic CBBA.

The basic CBBA algorithm determines the winning satellite for one task after global
communication. For each task’s bidding process, it belongs to the global optimal strategy.
TPS is essentially a local optimal choice to preempt a task when the satellite still believes
it has the highest bid after communicating with neighbors α times in a row. α represents
the “local” range, and the larger it is, the more times the satellite communicates with its
neighbors, the more information it obtains, and the closer its scheduling results are to
CBBA. The purpose of TPS is to significantly reduce communication volume at the expense
of a small amount of profit. From the experiment, it can be seen that the local-1080-90
and global-1080-90 scenarios exhibit similar trends. When α = 1, the communication
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volume significantly decreased, accounting for 22.22% and 33.74% of the basic CBBA,
respectively. However, there was also a certain degree of decrease in revenue, accounting
for 79.49% and 74.06% of the basic CBBA, respectively. In addition, when α = 2, the revenue
both reach over 95% of the basic CBBA, and the communication volume is 38.45% and
56.53% of the basic CBBA, respectively. As α continues to increase, the scheduling profit is
almost equal to that of the basic CBBA, while the communication volume is significantly
lower. Therefore, the TPS policy can significantly reduce the communication volume while
effectively guaranteeing the scheduling quality.
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6.2. Tests for Algorithm Convergence

As the algorithm continues to iterate, auction information spreads globally, and satel-
lites continuously update their local cognition, gradually achieving global consistency,
and then c-CBBA tends to converge. This experiment is used to analyze the changes in
various indicators during the convergence process of c-CBBA, where c-CBBA only uses the
TPS mechanism.

This experiment takes two scenarios, local-1080-90 and global-1080-90, as examples
to test the convergence from three perspectives: (a) number of repeated tasks in all task
bundles, (b) the average length of task bundles, and (c) the total profit. The results are
shown in Figure 12.

From Figure 12, it can be seen that the trend of the above indicators with iterations
is roughly the same in global and local distribution scenarios. The global repeated tasks
in all task bundles are the most intuitive indicator for testing convergence. The statistical
method of this indicator is: if the task bundles of satellite s1, s2, and s3 all contain task tj, the
number of global repeated tasks will be increased by 2. Figure 12a shows that this indicator
continues to decrease during the iteration process, dropping to 0 at convergence. When
using TPS, the convergence speed is significantly accelerated; the smaller the setting of α,
the faster the convergence speed.

Indicator (b) also shows a downward trend. This is because satellites have less
understanding of global auction information in the early stages of algorithm operation, and
greedily add tasks to their own task bundles, resulting in longer average task bundle. With
the iteration, the satellites’ understanding of the global bidding information deepens, and
there are more and more tasks that cannot be added to the bundle set due to their own bids
being lower than other satellites, coupled with the constraints of the algorithms, which
gradually reduces the number of tasks in the task bundles. This indicator also reflects the
planning effect to some extent. The longer the average length at convergence, the better
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the planning effect. When α is small, the indicator is poor, and as α increases, the indicator
gradually approaches the basic CBBA.
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Indicator (c) considers the repeated execution of tasks as a non-profit observation, and
only calculates the profit once for repeated tasks. In the early stage of algorithm, due to a
large number of tasks being repeatedly added to the task bundles, the global total profit is
lower with limited resources, so this indicator shows the opposite trend compared to the
first two indicators.

6.3. Robustness Testing of SCS

The single-chain strategy means that when more than one neighbor exists on one
side of the satellite in constellation, one of them is selected to build the link. The above
experiments all use the closest distance as the selection rule. This experiment tests the effect
of the single-chain strategy on the convergence and the communication volume of the algo-
rithm when the communication link is partially damaged, requiring the construction of the
path as shown in Figure 8c. Additionally, it provides a comparison with the c-CBBA (SCS)
algorithm utilizing the communication topology shown in Figure 8b, as well as the basic
CBBA. The algorithm in a partially damaged communication environment is represented
by SCS (k), where k represents the number of damaged communication links. Construct
this environment by randomly deleting adjacent communication links. Figure 13a,b show
the test results in local-1080-90 and global-1080-90 scenarios, respectively.

As can be seen from Figure 13, the SCS policy in Figure 8c can still converge quickly
and will not have a significant impact on communication volume. That is, the SCS can
effectively reduce the communication volume when using different communication topol-
ogy. This indicates that this strategy does not reduce system robustness due to pruning
communication links, and it still has high adaptability to the partially damaged communi-
cation environment.
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Figure 13. Robustness test results of SCS policy. SCS (k) denotes the communication volume
generated by the algorithm in a partially compromised communication environment, where k
represents the number of damaged communication links. (a) local-1080-90 scenario; (b) global-1080-
90 scenario.

7. Conclusions

In this paper, we study the multi-satellite autonomous imaging mission planning
problem and propose the fully distributed algorithm c-CBBA. The algorithm is improved
on the basis of the basic CBBA, mainly addressing its drawbacks of high communication
volume. The Task Preemption Strategy (TPS) and Single-Chain Strategy (SCS) are pro-
posed to improve the operation efficiency of the algorithm during the actual on-board
scheduling. By analyzing the operation process of CBBA under the background of satel-
lite imaging mission planning, TPS, an acceleration convergence mechanism, is designed
to address the hidden drawbacks in its convergence process. The SCS policy is used to
prune communication links that have redundant information interactions during satellite
communication. The experimental results show that c-CBBA can achieve an average com-
munication volume reduction of 46.2% of the original algorithm while ensuring that the
average profit is not less than 97.8%, effectively improving the actual operational efficiency
of the algorithm. In further work, the application of c-CBBA to large-scale scenarios will
be explored. Task allocation modes such as dividing satellite clusters and multi-stage
allocation will be investigated, as well as designing the operation mechanism of c-CBBA
under the corresponding modes.
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