
Citation: Lange, K. Computation of

the Hausdorff Distance between Two

Compact Convex Sets. Algorithms

2023, 16, 471. https://doi.org/

10.3390/a16100471

Academic Editor: George Karakostas

Received: 4 September 2023

Revised: 25 September 2023

Accepted: 25 September 2023

Published: 6 October 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Computation of the Hausdorff Distance between Two Compact
Convex Sets
Kenneth Lange 1,2,3

1 Department of Computational Medicine, University of California, Los Angeles, CA 90095, USA;
klange@ucla.edu; Tel.: +1-310-206-8076

2 Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
3 Department of Statistics, University of California, Los Angeles, CA 90095, USA

Abstract: The Hausdorff distance between two closed sets has important theoretical and practical ap-
plications. Yet apart from finite point clouds, there appear to be no generic algorithms for computing
this quantity. Because many infinite sets are defined by algebraic equalities and inequalities, this a
huge gap. The current paper constructs Frank–Wolfe and projected gradient ascent algorithms for
computing the Hausdorff distance between two compact convex sets. Although these algorithms
are guaranteed to go uphill, they can become trapped by local maxima. To avoid this defect, we
investigate a homotopy method that gradually deforms two balls into the two target sets. The
Frank–Wolfe and projected gradient algorithms are tested on two pairs (A, B) of compact convex
sets, where: (1) A is the box [−1, 1] translated by 1 and B is the intersection of the unit ball and the
non-negative orthant; and (2) A is the probability simplex and B is the `1 unit ball translated by 1. For
problem (2), we find the Hausdorff distance analytically. Projected gradient ascent is more reliable
than the Frank–Wolfe algorithm and finds the exact solution of problem (2). Homotopy improves the
performance of both algorithms when the exact solution is unknown or unattained.

Keywords: convex set; distance; Frank–Wolfe; projected gradient

1. Introduction

The Hausdorff distance [1,2] between two compact sets A and B in a Euclidean space
Rp is defined as

dH(A, B) = max{d(A, B), d(B, A)},

where

d(A, B) = max
x∈A

dist(x, B), d(B, A) = max
x∈B

dist(x, A),

dist(x, A) = miny∈A ‖x − y‖, and dist(x, B) = miny∈B ‖x − y‖. Here, ‖·‖ denotes the
standard Euclidean norm in Rp. The Blaschke formula

dH(A, B) = max
x
|dist(x, A)− dist(x, B)|

serves as an alternative definition of Hausdorff distance [3]. Wikipedia has a helpful
entry on Hausdorff distance with a two-dimensional illustration. The theoretical value of
Hausdorff distance stems from the fact that it turns the collection of compact sets into a
complete separable metric space. In general, Hausdorff distance is challenging to compute.

Hausdorff distance has many applications. For instance, it is instrumental in defining
continuity, compactness, and completeness for integral operators, differential operators,
and Fourier transforms in functional analysis [4,5]. These concepts are in turn relevant

Algorithms 2023, 16, 471. https://doi.org/10.3390/a16100471 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16100471
https://doi.org/10.3390/a16100471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a16100471
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16100471?type=check_update&version=1

Algorithms 2023, 16, 471 2 of 18

to the analysis of the existence, uniqueness, and stability of solutions to various equa-
tions in mathematics and physics [6]. In computer vision, Hausdorff distance enables
object recognition [7] and allows one to quantify the difference between two different
representations of the same object [8]. Edge detection and pixelization are usually nec-
essary preprocessing steps. Other applications include robotics [9], the fractal modeling
of biological structures [10], and the numerical computation of attractors in dynamical
systems [11].

The current paper derives and tests two new algorithms for computing the distance
dH(A, B) between two compact convex sets. The previous work on this intrinsically
interesting problem is mostly limited to finite point clouds, usually in two and three
dimensions [12–16]. The formulas

d(A, B) = max
x∈A

min
y∈B
‖x− y‖ and d(B, A) = max

x∈B
min
y∈A
‖x− y‖

can be naively implemented for finite sets A and B. The naive implementation benefits
from fast software such as the Julia Distances package, which exploits matrix multipli-
cation to find all Euclidean distances between the column vectors of two matrices. The
ImageDistances.jl package (github.com/JuliaImages/Images.jl) appears to rely on the naive
method [12] for computing Hausdorff distances. Once the distances dij = ‖xi − yj‖ are
computed, the computational complexity of the naive method is O(mn), where m and n
equal the number of points xi ∈ A and yj ∈ B, respectively. This complexity can be reduced
by various devices, as suggested in the cited references.

The algorithms for computing the Hausdorff distance between two polygons [17],
two curves [18] in the plane, and a curve and a surface [19] represent exceptions to the
discrete point-cloud method. More complicated sets defined by algebraic formulas can
be attacked by pixelating the sets or sampling them at a dense set of random points. The
methods of continuous optimization offer an attractive alternative to the various current
methods. Although the calculation of dH(A, B) takes us outside the comfortable realm
of convex optimization, the tools of convex calculus are highly pertinent. To their credit,
these tools perform well in higher dimensions. It remains to be seen whether the Hausdorff
distance will have practical value in shape recognition in this regime. It would be prudent
to keep the possibility in mind.

To calculate dH(A, B), it clearly suffices to calculate d(A, B) and d(B, A) separately
and take the maximum. For many sets B, dist(x, B) is explicitly known or can be computed
by an efficient algorithm [20,21]. The Euclidean distance dist(x, B) can be expressed as

dist(x, B) = ‖x− PB(x)‖,

where PB(x) is the projection of x onto B. When B is convex, the projection operator PB(x)
is single-valued. For closed nonconvex sets, the projection is multiple-valued for some x,
but these points are very rare; indeed, they are of Lebesgue measure 0 [22]. The scaled
squared distance 1

2 dist(x, B)2 function is smoother than dist(x, B). One can show that the
former function is differentiable with gradient

∇1
2

dist(x, B)2 = x− PB(x) (1)

at all points x where PB(x) is single-valued [23].
The support function σA(v) = maxx∈A v>x and the corresponding support set

suppA(v) = argmaxx∈A v>x also play key roles in our algorithm development. The
maximum of d(A, B) exists and necessarily occurs on the boundary of A. In fact, Bauer’s
maximum principle [24,25] implies that the maximum is achieved at an extreme point x of
A. The point of B corresponding to x occurs on the boundary of B, but not necessarily at
an extreme point of B. The supporting set suppA(v) is a singleton if and only if σA(v) is
differentiable at v.

Algorithms 2023, 16, 471 3 of 18

Our first algorithm for computing d(A, B),

xn+1 ∈ suppA(vn) = suppA[xn − PB(xn)] (2)

is a Frank–Wolfe algorithm [26,27]. Our second algorithm,

xn+1 = PA(xn + vn) = PA[2xn − PB(xn)] (3)

is a projected gradient algorithm [21,28]. Both algorithms force the objective function
1
2 dist(x, B)2 uphill and are iterated until convergence. Because the algorithms can become
trapped by local maxima, they are not infallible in finding a global maximum. To overcome
this tendency, we introduce a homotopy method that gradually transitions the calculation
of the Hausdorff distance from the simple case of two balls to the actual problem of finding
d(A, B). Homotopy is one of several heuristics for maximizing multi-modal functions [29].
The crucial difference between projected gradient ascent and the Frank–Wolfe algorithm is
that one depends on projection while the other depends on both projection and supporting
sets. This difference obviously favors projected gradient ascent.

As a roadmap to the rest of this paper, Section 2 presents (a) the basic notation,
(b) a brief overview of the minorization–maximization principle that stands behind the
new iterative algorithms (2) and (3), (c) a summary of the support functions and supporting
sets, (d) the derivation of both algorithms, (e) a description of the homotopy method, and (f)
an explanation of relevant convergence theory. Section 3 tests our two iterative algorithms
and the point-cloud method on two representative problems. Both iterative algorithms are
orders of magnitude faster than the point-cloud method and benefit from the homotopy
heuristic. Projected gradient ascent is also more accurate than the point-cloud method.
Section 4 summarizes our conclusions, mentions limitations, and suggests new avenues for
research. Appendix A, proves some of the mathematical assertions made in the text and
provides the full Julia code for our numerical examples. Note that the code is organized
from bottom to top, with the main program occurring at the bottom.

2. Materials and Methods

As a prelude to the derivation of the two algorithms, it would be helpful to clarify our
notation and make a few remarks about MM algorithms, support functions, and supporting
sets. For projected gradient ascent and its homotopy modification, we provide algorithm
flowcharts.

2.1. Notation

Here are the notational conventions used throughout this article. All vectors appear in
boldface. All entries of the vectors 0 and 1 equal 0 or 1, respectively. The > superscript indi-
cates a vector transpose. The Euclidean norm of a vector x is denoted by ‖x‖. For a smooth
real-valued function f (x), we write its gradient (column vector of partial derivatives) as
∇ f (x) and its first differential (row vector of partial derivatives) as d f (x) = ∇ f (x)>. Fi-
nally, we denote the directional derivative of f (x) in the direction v by dv f (x). When f (x)
is differentiable, dv f (x) = d f (x)v.

2.2. MM Algorithms

The algorithms explored here are minorization–maximization (MM) algorithms [23,30].
They depend on surrogate functions g(x | xn) that minorize the original objective f (x)
around the current iterate xn in the sense of satisfying the tangency condition g(xn | xn) =
f (xn) and the domination condition g(x | xn) ≤ f (x) for all x. The surrogate balances the
two goals of hugging the objective tightly and simplifying maximization. Maximizing the
surrogate produces the next iterate xn+1 and drives the objective uphill because

f (xn+1) ≥ g(xn+1 | xn) ≥ g(xn | xn) = f (xn).

Algorithms 2023, 16, 471 4 of 18

In minimization, the surrogate majorizes the objective and is instead minimized. The
tangency condition remains the same, but the domination condition g(x | xn) ≥ f (x) is
now reversed. The celebrated EM (expectation–maximization) principle for maximum
likelihood estimation with missing data [31] is a special case of minorization–maximization.
In the EM setting, Jensen’s inequality supplies the surrogate as the expectation of the
complete data log-likelihood conditional on the observed data.

2.3. Support Functions and Supporting Sets

The set of supporting points suppS(v) = argmaxx∈S v>x determines the support
function σS(v). For instance, the `1 unit ball has suppS(v) equal to the convex hull of
the vertices ±ei where |vi| is largest. For the unit simplex, suppS(v) equals the convex
hull of the vertices ei where vi is largest. For a Minkowski sum A + B, suppA+B(v) =
suppA(v)+ suppB(v). If S is either a convex cone or a compact convex set that is symmetric
about the origin with a non-empty interior, then its support function σS(y) has a special
form. In the former case, σS(y) is the indicator of the dual cone, and in the latter case, σS(y)
is a norm. The support function of a Cartesian product is the Cartesian product of the
separate support functions. For instance, the support function of rectangle [a, b] reduces to
the one-dimensional case, where supp[a,b](v) is a when vi < 0, b when vi > 0, and all of
[a, b] when vi = 0. There are many other known support functions. For instance, one-sided
penalties such as c max{y, 0} and asymmetric penalties such as σ[−a,b](y) are covered by
the current theory. Indeed, the former is the support function generated by the interval
[0, c]. The latter is the tilted absolute value equal to by for y ≥ 0 and to −ay for y < 0. The
support function of a singleton {a} is the linear function a>y. More generally, the support
function of the convex hull of the set {a1, . . . , ad} is max1≤i≤d a>i y. The support function
of the line segment from −a to a is the absolute value |a>y|. Adding a constant vector a to
a set S produces the support function σS(y) + a>y. It is trivial to project onto S + a if one
can project onto S. For any non-negative scalar c, the set cS has support function cσS(y).
Again, it is trivial to project onto cS if one can project onto S.

2.4. Derivation of the Algorithms

When B is convex, the supporting hyperplane inequality

1
2

dist(x, B)2 ≥ 1
2

dist(xn, B)2 + v>n (x− xn)

for vn = xn − PB(xn) generates our first algorithm. Maximizing this minorization over
x ∈ A is equivalent to calculating the support function σA(vn) = supx∈A v>n x. If suppA(v)
denotes the set of points in A where σA(v) is attained, then the Frank–Wolfe algorithm just
described can be phrased as

xn+1 ∈ suppA(vn) = suppA[xn − PB(xn)].

The MM principle guarantees that the next iterate xn+1 will tend to increase the objective
1
2 dist(x, B)2 unless vn = 0. This exception occurs when xn ∈ B. Fortunately, when the
iterates begin in A \ B, they remain in A \ B. Indeed, if xn ∈ A \ B but xn+1 ∈ B, then the
obtuse angle condition [23] requires

[xn − PB(xn)]
>xn+1 ≤ [xn − PB(xn)]

>PB(xn)

< [xn − PB(xn)]
>xn,

contradicting the optimality of xn+1. To achieve the requirement x0 ∈ A \B of the Frank–Wolfe
method, we put x0 = PA(r) for a random vector r and then check that ‖PB(x0)− x‖ > 0.

Algorithms 2023, 16, 471 5 of 18

If B is closed and convex, then the gradient of the function 1
2 dist(x, B)2 is Lipschitz

with constant 1 [23]. This fact plus the outcome of completing the square entails the
minorization

1
2

dist(x, B)2 ≥ 1
2

dist(xn, B)2 + v>n (x− xn)−
1
2
‖x− xn‖2

=
1
2

dist(xn, B)2 − 1
2
‖x− xn − vn‖2 +

1
2
‖vn‖2.

Hence, the MM principle implies that defining

xn+1 = PA(xn + vn) = PA[2xn − PB(xn)]

also increases 1
2 dist(x, B)2. This second of our two algorithms is a special case of projected

gradient ascent. Its flowchart (Algorithm 1) summarizes this straightforward strategy
started from many random points x0.

Algorithm 1 Computation of d(A, B) by Projected Gradient Ascent

Require: Projection operators PA(x) and PB(y), initial point x0, maximum iterations n,
and convergence criterion ε > 0.

1: x = x0
2: for iter = 1 : n do
3: xnew = PA[2x− PB(x)]
4: if ‖xnew − x‖ < ε then
5: break
6: else
7: x = xnew
8: end if
9: end for

10: Return xnew

2.5. A Homotopy Method

Although both algorithms are guaranteed to increase the objective, they both suffer
from the danger of being trapped by local maxima. One obvious remedy is to launch
the algorithms from different random points. A more systematic alternative is to exploit
homotopy. The idea is to gradually deform both sets A and B from the unit ball U at the
origin, where dH(U, U) = 0 is known, into the target sets A and B. In practice, we follow the
solution path along the family of set pairs [tA + (1− t)U, tB + (1− t)U] from t = 0 to t = 1.
This strategy is viable for projected gradient ascent because we can project points onto the
Minkowski convex combination tC + (1− t)D by three devices. First, it is well known that
when A and B are balls with radii rA and rB and centers cA and cB, respectively, the distance
dist(x, B) is maximized by taking x = cA − rA

(cB−cA)
‖cB−cA‖

, unless A ⊂ B, in which case the
maximum is 0 [32]. For the convenience of the reader, Proposition A1 of Appendix A
proves this assertion. Second, one can exploit the projection identity PtS(z) = tPS(t−1z)
for any t > 0. Third, there is an effective algorithm for projecting onto a Minkowski
sum C + D [33]. The idea is to alternate the minimization of ‖z− c− d‖ with respect to
c ∈ C and d ∈ D. The iteration scheme cn+1 = PC(z− dn) and dn+1 = PD(z− cn+1) is
guaranteed to converge at a linear rate when either set is strongly convex. Recall that a
convex K is strongly convex if there exists an r > 0 such that

αx + (1− α)y +
r
2

α(1− α)‖x− y‖2z ∈ K

for all x and y in K, α ∈ [0, 1], and unit vectors z [34]. In particular, (1− t)U is strongly
convex when t ∈ [0, 1). Furthermore, the Cartesian product of two strongly convex sets
is strongly convex [35]. The homotopy method succeeds because the early sets are more

Algorithms 2023, 16, 471 6 of 18

rounded and the objective generates fewer local maxima. The price for better performance is
iterations within iterations and an overall slower algorithm. Algorithms 2 and 3 summarize
our homotopy strategy for projected gradient ascent.

Algorithm 2 Minkowski Set Projection

Require: Projection operators PA(x) and PB(y), external point y, convexity constant c,
maximum iterations n, and convergence criterion ε > 0.

1: a = b = 0
2: for iter = 1 : n do
3: anew = cPA[(y− b)/c]
4: bnew = (1− c)PB[(y− anew)/(1− c)]
5: if ‖anew − a‖+ ‖bnew − b‖ < ε then
6: break
7: else
8: a = anew
9: b = bnew

10: end if
11: end for
12: Return anew and bnew

Algorithm 3 Homotopy Modification of Projected Gradient Ascent

Require: Projection operators PA(x) and PB(x), centers cA and cB, and homotopy points h.
1: Set d = ‖cA − cB‖ and x = cA − (cB−cA)

d . distance between two balls of radius 1
2: Let PU be projection onto the unit ball
3: for i = 1 : h− 2 do . intermediate homotopy phases
4: c = i

h−1
5: Put PMA = Minkowski sum projection for PA and PU and constant c
6: Put PMB = Minkowski sum projection for PB and PU and constant c
7: Perform projected gradient ascent with PMA, PMB, and initial point x
8: Let x be the outcome
9: end for

10: Perform projected gradient ascent with PA and PB and initial point x
11: Return converged value of x . output final phase of homotopy

For the Frank–Wolfe algorithm, similar homotopy tactics apply. For a Minkowski
sum C + D, suppC+D(v) = suppC(v) + suppD(v). This fact plus the identity supptC(v) =
suppC(tv) for t ≥ 0 makes it possible to carry out the homotopy method.

2.6. Convergence

Because this topic has been covered in previous studies [21,36–39], we give an ab-
breviated treatment here. Each algorithm is summarized by a closed algorithm map
xn+1 ∈ M(xn) that increases the objective f (x). The limit points of the map occur among the
stationary points of f (x). By definition, a stationary point x satisfies dv f (x) = d f (x)v ≤ 0
for all tangent vectors v at x. The set of tangent vectors v is the closure of the set of points
c(y− x) with y ∈ C and c > 0. This is a place where the convexity of C comes into play.
Hence, x is a stationary point if and only if d f (x)x ≥ d f (x)y for all y ∈ C. With this
distinction in mind, we state our basic theoretical findings for the Frank–Wolfe method.
Homotopy is omitted in these considerations.

Proposition 1. The limit points of the Frank–Wolfe iterates (2) are stationary points of the objective
f (x) = miny∈B ‖x− y‖ on A. Furthermore, the bound

Algorithms 2023, 16, 471 7 of 18

min
0≤k≤n

max
y∈A

d f (xk)(y− xk) ≤
1

n + 1
[max

x∈A
f (x)− f (x0)]

holds. Thus, the stationary condition maxy∈A d f (x)(y− x) ≤ 0 is reasonable to expect at a limit
point x of the Frank–Wolfe algorithm.

Here is the corresponding finding for projected gradient ascent.

Proposition 2. The limit points of the projected gradient ascent iterates (3) are also stationary
points of the objective f (x) = miny∈B ‖x− y‖ on A. Furthermore, the bound

min
0≤k≤n

‖xk+1 − xk‖ ≤
√

2
(n + 1)

[f (x0)−min
x∈A

f (x)]

holds.

Although the convergence rate O(1√
n) of projected gradient ascent is slower than

the corresponding slow convergence rate O(1
n) of the Frank–Wolfe method, in practice,

both algorithms usually converge in fewer than 100 iterations. In the case of the Frank–
Wolfe algorithm, each iterate is an extreme point. Many convex sets possess only a finite
number of extreme points, and convergence to one of them is guaranteed. Unfortunately,
the converged point often provides just a local maximum.

3. Results

We tested the Frank–Wolfe and projected gradient ascent algorithms on two pairs
(A, B) of compact convex sets: (1) where A is the box [−1, 1] translated by 1 and B is the
intersection of the unit ball and the non-negative orthant; and (2) where A is the probability
simplex and B is the `1 unit ball translated by 1. These examples are representative, and
for the second pair one can show that dH(A, B) =

√
p, where p is the dimension of the

ambient space. See Proposition A2 of Appendix A. Table 1 presents our findings. The
computation times are in seconds per trial across 100 random initializations and appear to
scale affinely (a constant plus linear) in p. The columns Maximum, Mean, and Std convey
summary statistics of the converged values of the Hausdorff distance. The point-cloud
method generated 104 random points to mimic each continuous set. Because the point-
cloud method is non-iterative, a single run captured its performance. For the record, all
computations were carried out on a MacBook Pro with a 2.3 GHz 8-core i9 chip and 16 GB
of memory. Although the algorithms were embarrassingly parallel across trials, our Julia
code is completely serial.

The random point-cloud method was not remotely competitive with projected gradient
ascent in either accuracy or speed on these sample problems. It did produce approximate
distances that confirmed the best results of the iterative methods. As measured by the
quality of its solution, projected gradient ascent also outperformed the Frank–Wolfe algo-
rithm. The Frank–Wolfe method was probably too aggressive, perhaps because it moved
directly to an extreme point of A in computing d(A, B). On the second problem, projected
gradient ascent attained the global maximum across all trials. When the standard deviation
of the converged values is positive, it follows that some trials were trapped by inferior
local maxima. Both iterative algorithms benefit from the homotopy heuristic, which is fully
deterministic. Accordingly, the standard deviations under homotopy equaled 0. Homotopy
increased the computation times by less than an order of magnitude for 11 evenly spaced
homotopy points. Finally, as p increased, both problems appeared easier to solve by the
iterative methods. This behavior was particularly evident when p = 1000. In contrast, the
random point-cloud solutions deteriorated as p increased.

Algorithms 2023, 16, 471 8 of 18

Table 1. Computation of dH(A, B) by various methods.

Set Pair p Method Homotopy Maximum Mean Std Secs

(box, ball ∩ orthant) 2 proj grad false 1.8284 1.3314 0.40789 0.00163
(box, ball ∩ orthant) 2 proj grad true 1.8284 1.8284 0.0 0.00349
(box, ball ∩ orthant) 2 Frank-Wolfe false 0.41421 0.16569 0.20394 0.000564
(box, ball ∩ orthant) 2 Frank-Wolfe true 0.41421 0.41421 0.0 0.00101
(box, ball ∩ orthant) 2 point cloud false 1.8159 1.8159 0.0 0.625

(simplex, L1 ball) 2 proj grad false 1.4142 1.4142 0.0 0.001
(simplex, L1 ball) 2 proj grad true 1.4142 1.4142 0.0 0.00272
(simplex, L1 ball) 2 Frank-Wolfe false 1.4142 1.4142 0.0 0.000358
(simplex, L1 ball) 2 Frank-Wolfe true 1.4142 1.4142 0.0 0.0574
(simplex, L1 ball) 2 point cloud false 1.4142 1.4142 0.0 0.639

(box, ball ∩ orthant) 3 proj grad false 2.4641 1.6358 0.50531 7.34× 10−5

(box, ball ∩ orthant) 3 proj grad true 2.4641 2.4641 0.0 0.000605
(box, ball ∩ orthant) 3 Frank-Wolfe false 0.73205 0.31788 0.25266 7.08× 10−5

(box, ball ∩ orthant) 3 Frank-Wolfe true 0.73205 0.73205 0.0 0.000145
(box, ball ∩ orthant) 3 point cloud false 2.4221 2.4221 0.0 0.63

(simplex, L1 ball) 3 proj grad false 1.7321 1.7321 0.0 5.86× 10−6

(simplex, L1 ball) 3 proj grad true 1.7321 1.7321 0.0 0.000158
(simplex, L1 ball) 3 Frank-Wolfe false 1.2247 1.2247 0.0 4.44× 10−6

(simplex, L1 ball) 3 Frank-Wolfe true 1.2247 1.2247 0.0 0.00186
(simplex, L1 ball) 3 point cloud false 1.732 1.732 0.0 0.615

(box, ball ∩ orthant) 10 proj grad false 5.0 3.4576 0.73165 0.0001
(box, ball ∩ orthant) 10 proj grad true 5.3246 5.3246 0.0 0.000666
(box, ball ∩ orthant) 10 Frank-Wolfe false 2.0 1.2288 0.36583 9.71× 10−5

(box, ball ∩ orthant) 10 Frank-Wolfe true 2.1623 2.1623 0.0 0.000183
(box, ball ∩ orthant) 10 point cloud false 4.8158 4.8158 0.0 0.629

(simplex, L1 ball) 10 proj grad false 3.1623 3.1623 0.0 7.66× 10−6

(simplex, L1 ball) 10 proj grad true 3.1623 3.1623 0.0 0.000749
(simplex, L1 ball) 10 Frank-Wolfe false 2.6667 2.6667 0.0 7.83× 10−6

(simplex, L1 ball) 10 Frank-Wolfe true 2.6667 2.6667 0.0 0.00196
(simplex, L1 ball) 10 point cloud false 3.1626 3.1626 0.0 0.613

(box, ball ∩ orthant) 100 proj grad false 15.248 13.016 0.69754 0.000621
(box, ball ∩ orthant) 100 proj grad true 19.0 19.0 0.0 0.00126
(box, ball ∩ orthant) 100 Frank-Wolfe false 7.124 6.0078 0.34877 0.00168
(box, ball ∩ orthant) 100 Frank-Wolfe true 9.0 9.0 0.0 0.000304
(box, ball ∩ orthant) 100 point cloud false 15.598 15.598 0.0 0.629

(simplex, L1 ball) 100 proj grad false 10.0 10.0 0.0 2.77× 10−5

(simplex, L1 ball) 100 proj grad true 10.0 10.0 0.0 0.000852
(simplex, L1 ball) 100 Frank-Wolfe false 9.8494 9.8494 0.0 2.21× 10−5

(simplex, L1 ball) 100 Frank-Wolfe true 9.8494 9.8494 0.0 0.00299
(simplex, L1 ball) 100 point cloud false 9.9493 9.9493 0.0 0.64

(box, ball ∩ orthant) 1000 proj grad false 45.174 43.698 0.6652 0.00591
(box, ball ∩ orthant) 1000 proj grad true 62.246 62.246 0.0 0.00875
(box, ball ∩ orthant) 1000 Frank-Wolfe false 22.087 21.349 0.3326 0.00256
(box, ball ∩ orthant) 1000 Frank-Wolfe true 30.623 30.623 0.0 0.00531
(box, ball ∩ orthant) 1000 point cloud false 48.627 48.627 0.0 1.13

(simplex, L1 ball) 1000 proj grad false 31.623 31.623 0.0 0.000377
(simplex, L1 ball) 1000 proj grad true 31.623 31.623 0.0 0.0113
(simplex, L1 ball) 1000 Frank-Wolfe false 31.575 31.575 0.0 0.000303
(simplex, L1 ball) 1000 Frank-Wolfe true 31.575 31.575 0.0 0.013
(simplex, L1 ball) 1000 point cloud false 31.597 31.597 0.0 1.11

4. Discussion

The Hausdorff distance problem is intrinsically interesting, with theoretical applica-
tions throughout mathematics and practical applications in image processing. Given the
non-convexity of the problem, it has not received nearly the attention in the mathematical
literature as the closest point problem. Exact values of dH(A, B) are available in a few spe-
cial cases such as the two highlighted in our appendix. Research on fast algorithms tends

Algorithms 2023, 16, 471 9 of 18

to be limited to random point clouds. Infinite sets defined by mathematical formulas have
been largely ignored. The current paper partially rectifies this omission and demonstrates
the value of continuous optimization techniques. The Frank–Wolfe and projected gradient
ascent algorithms are relatively easy to code and extremely fast, even in high dimensions.
Our preliminary experiments tilt toward projected gradient ascent as the more reliable
of the two options. A naive implementation of the point-cloud method is not remotely
competitive with projected gradient ascent. More exhaustive studies are warranted beyond
the proof of principle examples presented here.

The standard convergence arguments covered in Section 2.6 guarantee that all limit
points of the two algorithm classes are stationary points. In practice, convergence appears
much faster than the slow rates mentioned in Propositions 1 and 2. We suspect, but have
not proved, that full convergence to a stationary point always occurs. This exercise would
require a foray into the difficult terrain of real algebraic geometry [40]. In any event,
convergence to a global maximum is not guaranteed. Fortunately, safeguards can be put in
place to improve the chances of successful convergence. The homotopy method capitalizes
on the exact distance between two balls. Minkowski set rounding smooths the boundary of
the target sets and steers iterates in a productive direction.

The computation of the Hausdorff distance dH(A, B) is apt to be much more challeng-
ing when either A or B is non-convex. Many sets can be represented as finite unions of
compact convex sets. If A = ∪i Ai and B = ∪jBj, then the computation of dH(A, B) reduces
to the computation of d(Ai, B) for each index i and d(Bj, A) for each index j. The identities
d(A, B) = maxi d(Ai, B) and d(B, A) = maxi d(Bj, A) make this claim obvious. The further
identity dist(x, B) = minj dist(x, Bj) implies that

d(A, B) = max
i

d(Ai, B) = max
i

max
x∈Ai

min
j

dist(x, Bj).

In general, saddlepoint problems of this sort are hard to solve. One possible line of attack
is to minorize minj dist(x, Bj) and then maximize the minorization.

The validation and implementation of this strategy will require substantial effort
beyond the introduction to the problem pursued in the current paper. Let us merely add
that the fast implementation of a more general Hausdorff distance algorithm will depend
on the nature of the candidate sets Ai and Bj. In the plane, triangles are appealing [41,42].
It is straightforward to project onto a triangle, and a triangle by definition possesses exactly
three extreme points. Furthermore, a great deal of research under the heading of finite
elements has identified good algorithms for triangulating complicated regions of the plane.
The software Triangle for generating two-dimensional meshes and Delaunay triangulations
is surely pertinent [43]. The triangularization of surfaces forms part of the MESH software
for Hausdorff distance estimation [44].

We hope this paper will provoke a greater focus on the Hausdorff distance prob-
lem. As a prototype non-convex problem, it is worthy of far more attention. Continuous
optimization tools can be brought to bear on the problem and may ultimately generate
more efficient algorithms than the discrete algorithms designed for finite point clouds.
The fact that our algorithms scale well in higher dimensions is a plus. We would also
like to highlight the illumination that the MM principle brings to the construction of new
high-dimensional optimization algorithms, including those considered here. Although
neglected in the past, MM may well be the single most unifying principle of algorithm
construction in continuous optimization.

Funding: Research supported in part by USPHS grants GM53275 and HG006139.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Algorithms 2023, 16, 471 10 of 18

Appendix A

Appendix A.1. Proofs

Proposition A1. If A and B are balls with radii rA and rB and centers cA and cB, respectively,
then dist(x, B) = ‖x− cB‖ − rB for x 6∈ B, and d(A, B) = ‖cA − cB‖+ rA − rB, unless A ⊂ B,
in which case the maximum is 0.

Proof. The first assertion is obvious. To maximize dist(x, B) over A, we form the Lagrangian

L(x, λ) = −1
2
‖x− cB‖2 +

1
2

λ(‖x− cA‖2 − r2
A).

The stationary condition

0 = −x + cB + λ(x− cA)

implies that

x− cA =
cB − λcA

1− λ
− cA =

(cB − cA)

1− λ

and determines λ through

r2
A =

‖cB − cA‖2

(1− λ)2 .

It follows that

x = cA ± rA
(cB − cA)

‖cB − cA‖

and that

dist(x, B) = ‖x− cB‖ − rB

= ‖cA − cB ± rA
(cB − cA)

‖cB − cA‖
‖ − rB

=
∣∣∣1∓ rA

‖cA − cB‖

∣∣∣‖cA − cB‖ − rB.

Geometrically, maxx∈A dist(x, B) = ‖cA− cB‖+ rA− rB should hold, so x = cA− rA
(cB−cA)
‖cB−cA‖

gives the correct sign.

Proposition A2. If A is the probability simplex in Rp and B is the `1 ball U translated by 1, then
dH(A, B) =

√
p.

Proof. Consider first d(A, B). The maximum of d(x, B) occurs at an extreme point of A,
say x = (1, 0, . . . , 0)> = e1 by symmetry. On U the convex function

f (y) = ‖y + 1− e1‖2 = y2
1 + ∑

i>1
(yi + 1)2

achieves its minimum value when all yi are equal for i > 1. The common value z should
satisfy z ≤ 0, while y1 can have either sign. For y1 ∈ [0, 1], we accordingly minimize
y2

1 + (p− 1)(z + 1)2 subject to y1 − (p− 1)z ≤ 1. We can decrease z until y1 − (p− 1)z = 1

and solve for z = y1−1
p−1 . Thus, we must minimize q(y1) = y2

1 + (p − 1) (y1+p−2)2

(p−1)2 over

[0, 1]. Now the stationary point − p−2
p of q(y1) falls outside [0, 1], so the minimum occurs

Algorithms 2023, 16, 471 11 of 18

at either 0 or 1. Because q(0) = (p−2)2

(p−1) and q(1) = 1 + p− 1 = p, the point 0 wins, and

d(A, B) =
√

(p−2)2

p−1 .
Next, consider d(B, A). The maximum of d(y, A) occurs at an extreme point of B, say

y = ±e1 + 1 by symmetry. On A the convex function

f (x) = ‖x−∓e1 − 1‖2 = (x1 ∓ 1− 1)2 + ∑
i>1

(xi − 1)2

is maximized by taking y = e1 + 1. We make this choice and again assume xi = z for i > 1.
Now z ≥ 0, and we increase z until x1 + (p− 1)z = 1. This gives z = 1−x1

p−1 and reduces
f (x) to the quadratic

q(x1) = x2
1 + (p− 1)

(2− p− x1)
2

(p− 1)2 .

Now the stationary point − p−2
p of q(x1) falls outside [0, 1], so the minimum occurs at either

0 or 1. Thus, q(0) = (p−2)2

p−1 and q(1) = 1 + p − 1 = p, and the point 1 wins. Finally,

dH(A, B) = max
{√

(p−2)2

(p−1) ,
√

p
}
=
√

p.

Appendix A.2. Julia Computer Code

using LinearAlgebra, Distances, Random, StatsBase

"""Generates a random point in the box [a,b]."""
function RandomBox(a, b)

n = length(a)
return a + rand(n) .* (b - a)

end

"""Generates a random point in a Euclidean ball."""
function RandomBall(radius, center)

n = length(center)
x = randn(n)
x = x / norm(x)
r = rand()^(1 / n)
return (radius * r) * x + center

end

"""Generates a random point in the intersection of a ball centered
at the origin and the nonnegative orthant."""
function RandomBallOrthant(radius, n)

x = RandomBall(radius, zeros(n))
return abs.(x)

end

"""Generates a random point in the probability simplex."""
function RandomSimplex(n)

x = -log.(rand(n))
return x / sum(x)

end

"""Generates a random point in an L1 ball."""
function RandomL1Ball(radius, center)

n = length(center)
x = -log.(rand(n))
x = x / sum(x)
for i = 1:n

if rand() < 1 / 2
x[i] = - x[i]

end
end

Algorithms 2023, 16, 471 12 of 18

r = rand()^(1 / n)
return (radius * r) * x + center

end

"""Computes the Hausdorff distance between the point sets A and B."""
function hausdorff(A, B)

D = pairwise(Euclidean(), A, B)
dAB = maximum(minimum(D, dims = 2))
dBA = maximum(minimum(D, dims = 1))
return max(dAB, dBA)

end

"""Projects the point y onto a re-centered set."""
function RecenterProjection(Proj, y::Vector{T}, c::Vector{T}) where T <: Real

return Proj(y - c) + c # set is translated by c
end

"""Projects the point y onto a scaled set."""
function ScaleProjection(Proj, y::Vector{T}, s::T) where T <: Real

return s * Proj(y / s) # s > 0 is the scaling factor
end

"""Projects the point y onto the closed ball with radius r."""
function BallProjection(y::Vector{T}, r = one(T)) where T <: Real
#

distance = norm(y)
if distance > r

return (r / distance) * y
else

return y
end

end

"""Projects the point y onto the closed box with bounds a and b."""
function BoxProjection(y::Vector{T}, a = -ones(T, length(y)),

b = ones(T, length(y))) where T <: Real
#

return clamp.(y, a, b)
end

"""Projects the point y onto the simplex {x | x >= 0, sum(x) = r}."""
function SimplexProjection(y::Vector{T}, r = one(T)) where T <: Real
#

n = length(y)
z = sort(y, rev = true)
(s, lambda) = (zero(T), zero(T))
for i = 1:n

s = s + z[i]
lambda = (s - r) / i
if i < n && lambda < z[i] && lambda >= z[i + 1]

break
end

end
return max.(y .- lambda, zero(T))

end

"""Projects the point y onto the ell_1 ball with radius r."""
function L1BallProjection(y::Vector{T}, r = one(T)) where T <: Real
#

p = abs.(y)
if norm(p, 1) <= r

return y
else

x = SimplexProjection(p, r)
return sign.(y) .* x

end
end

"""Projects the point y onto the intersection of the ball of

Algorithms 2023, 16, 471 13 of 18

radius r and the nonnegative orthant."""
function BallAndOrthantProjection(y::Vector{T}, r = one(T)) where T <: Real
#

x = copy(y)
x = max.(x, zero(T)) # project onto orthant
return (r / max(norm(x), r)) .* x

end

"""Finds the support point for y on the inflated unit ball."""
function BallSupp(y::Vector{T}, r = one(T)) where T <: Real
#

return (r / norm(y)) * y
end

"""Finds the support point for y on the box [a, b]."""
function BoxSupp(y::Vector{T}, a = -ones(T, length(y)),

b = ones(T, length(y))) where T <: Real
#

n = length(y)
x = zeros(T, n)
for i = 1:n

if y[i] > zero(T)
x[i] = b[i]

elseif y[i] < zero(T)
x[i] = a[i]

else
x[i] = (a[i] + b[i]) / 2

end
end
return x

end

"""Finds the support point for y on the simplex {x | x >= 0, sum(x) = r}."""
function SimplexSupp(y::Vector{T}, r = one(T)) where T <: Real
#

x = zeros(T, length(y))
(v, m) = findmax(y)
x[m] = r
return x

end

"""Finds the support point for y on the L1 ball."""
function L1BallSupp(y::Vector{T}, r = one(T)) where T <: Real
#

x = zeros(T, length(y))
(v, m) = findmax(abs, y)
x[m] = sign(y[m]) * r
return x

end

"""Finds the support point for y on the intersection of the ball of
radius r and the nonnegative orthant."""
function BallAndOrthantSupp(y::Vector{T}, r = one(T)) where T <: Real
#

x = max.(y, zero(T))
if sum(x) <= zero(T)

return zeros(T, length(y))
else

return (r / norm(x)) * x
end

end

"""Projects the point y onto the Minkowski rounded set
R = c * S + (1 - c) * B. Here B is the unit ball, Proj
is projection onto S, and Proj_R(y) = a + b."""
function MinkowskiNear(Proj, y, c, conv)
#

n = length(y)
(aold, bold) = (zeros(n), zeros(n))

Algorithms 2023, 16, 471 14 of 18

(anew, bnew) = (zeros(n), zeros(n))
for iter = 1:100

anew = c .* Proj((y - bold) ./ c) # project onto c * S
bnew = (1 - c) .* BallProjection((y - anew) ./ (1 - c))
if norm(aold - anew) + norm(bold - bnew) < conv

break
else

@. aold = anew
@. bold = bnew

end
end
return anew + bnew

end

"""Finds the farthest point on A from B by Frank-Wolfe."""
function FrankWolfe(SuppA, PB, x0)

(xold, xnew) = (copy(x0), similar(x0))
for iter = 1:100

xnew = SuppA(xold - PB(xold))
if norm(xnew - xold) < 1.0e-10

break
else

xold .= xnew
end

end
far = norm(xnew - PB(xnew))
return (far, xnew)

end

"""Finds the farthest point on A from B by projected gradient ascent."""
function farthest(PA, PB, x0)

(xold, xnew) = (copy(x0),copy(x0))
for iter = 1:100

xnew = PA(2xold - PB(xold))
if norm(xnew - xold) < 1.0e-10

break
else

xold .= xnew
end

end
far = norm(xnew - PB(xnew))
return (far, xnew)

end

"""Finds the farthest point on A from B by homotopy."""
function farthest_homotopy(PA, PB, SA, CenterA, CenterB, x0, n, method)

x = BallProjection(x0)
(far, homotopy_points, conv) = (0.0, 10, 1.0e-10)
for iter = 0:homotopy_points

if iter == 0 # ball to ball
d = norm(CenterA - CenterB)
(far, x) = (d, (1 + 1 / d) * CenterA - CenterB / d)

elseif iter == homotopy_points # d(A, B)
if method == "proj grad"

(far, x) = farthest(PA, PB, x)
elseif method == "Frank-Wolfe"

(far, x) = FrankWolfe(SA, PB, x)
end

else # intermediate case
t = iter / homotopy_points
PMB(z) = MinkowskiNear(PB, z, t, conv)
if method == "proj grad"

PMA(z) = MinkowskiNear(PA, z, t, conv)
(far, x) = farthest(PMA, PMB, x)

elseif method == "Frank-Wolfe"
SM(z) = SA(t * z) + BallSupp((1 - t) * z)
(far, x) = FrankWolfe(SM, PMB, x)

end
end

Algorithms 2023, 16, 471 15 of 18

end
return (far, x)

end

"""Orchestrates Hausdorff distance estimation."""
function master(ProjA, ProjB, SuppA, SuppB, CenterA, CenterB, method,

homotopy, n, trials, io)
#

(count, tries, optimum, obj) = (0, 100, 0.0, zeros(trials))
x0 = zeros(n)
PA(z) = RecenterProjection(ProjA, z, CenterA)
PB(z) = RecenterProjection(ProjB, z, CenterB)
for trial = 1:trials

success = false
for i = 1:tries # find a point in A \ B

x0 = PA(randn(n))
if norm(PB(x0) - x0) > 1.0e-10

success = true
break

end
end
if homotopy # solve for d(A, B)

(objA, xA) = farthest_homotopy(PA, PB, SuppA, CenterA, CenterB,
x0, n, method)

else
if method == "proj grad" && success # solve for d(A, B)

(objA, xA) = farthest(PA, PB, x0)
elseif method == "Frank-Wolfe" && success

(objA, xA) = FrankWolfe(SuppA, PB, x0)
else

objA = 0.0
end

end
success = false
for i = 1:tries # find point in B \ A

x0 = PB(randn(n))
if norm(PA(x0) - x0) > 1.0e-10
success = true

break
end

end
if homotopy # solve for d(B, A)

(objB, xB) = farthest_homotopy(PB, PA, SuppB, CenterB, CenterA,
x0, n, method)

else
if method == "proj grad" && success

(objB, xB,) = farthest(PB, PA, x0)
elseif method == "Frank-Wolfe" && success

(objB, xB) = FrankWolfe(SuppB, PA, x0)
else

objB = 0.0
end

end
obj[trial] = max(objA, objB) # Hausdorff distance
if obj[trial] > optimum + 10.0e-10 # update count of maximum distance

count = 1
optimum = obj[trial]

elseif obj[trial] > optimum - 10.0e-8
count = count + 1

end
end
(avg, stdev) = (mean(obj), std(obj))
if stdev < 1.0e-10 stdev = 0.0 end
return (fraction = count / trials, optimum, avg, stdev)

end

outfile = "Hausdorff.out";
io = open(outfile, "w");
trials = 100;

Algorithms 2023, 16, 471 16 of 18

points = 10000
println(io,"Set Pair"," & ","p"," & ","Method"," & ","Homotopy"," & ",

"Maximum"," & ","Mean"," & ","Std"," & ","Seconds"," \\ ")
for n in [2, 3, 10, 100, 1000]

for i = 1:2
if i == 1

CenterA = ones(n)
CenterB = zeros(n)
ProjA = BoxProjection
ProjB = BallAndOrthantProjection
SuppA = BoxSupp
SuppB = BallAndOrthantSupp
title = "dH(box, ball and orthant)"

elseif i == 2
CenterA = zeros(n)
CenterB = ones(n)
ProjA = SimplexProjection
ProjB = L1BallProjection
SuppA = SimplexSupp
SuppB = L1BallSupp
title = "dH(simplex, L1 ball)"

end
#

(method, homotopy) = ("proj grad", false);
Random.seed!(1234)
time = @elapsed (fraction, optimum, avg, stdev) = master(ProjA,

ProjB, SuppA, SuppB, CenterA, CenterB, method, homotopy, n,
trials, io)

println(io,title," & ",n," & ",method," & ",homotopy," & ",
round(optimum, sigdigits=5)," & ",round(avg, sigdigits=5)," & ",
round(stdev, sigdigits=5)," & ",round(time/trials, sigdigits=3)," \\ ")

#
(method, homotopy) = ("proj grad", true);
Random.seed!(1234)
time = @elapsed (fraction, optimum, avg, stdev) = master(ProjA,

ProjB, SuppA, SuppB, CenterA, CenterB, method, homotopy, n,
trials, io)

println(io,title," & ",n," & ",method," & ",homotopy," & ",
round(optimum, sigdigits=5)," & ",round(avg, sigdigits=5)," & ",
round(stdev, sigdigits=5)," & ",round(time/trials,sigdigits=3)," \\ ")

#
(method, homotopy) = ("Frank-Wolfe", false);
Random.seed!(1234)
time = @elapsed (fraction, optimum, avg, stdev) = master(ProjA,

ProjB, SuppA, SuppB, CenterA, CenterB, method, homotopy, n,
trials, io)

println(io,title," & ",n," & ",method," & ",homotopy," & ",
round(optimum, sigdigits=5)," & ",round(avg, sigdigits=5)," & ",
round(stdev, sigdigits=5)," & ",round(time/trials,sigdigits=3)," \\ ")

#
(method, homotopy) = ("Frank-Wolfe", true);
Random.seed!(1234)
time = @elapsed (fraction, optimum, avg, stdev) = master(ProjA,

ProjB, SuppA, SuppB, CenterA, CenterB, method, homotopy, n,
trials, io)

println(io,title," & ",n," & ",method," & ",homotopy," & ",
round(optimum, sigdigits=5)," & ",round(avg, sigdigits=5)," & ",
round(stdev, sigdigits=5)," & ",round(time/trials,sigdigits=3)," \\ ")

#
(method, homotopy) = ("point cloud", false);
Random.seed!(1234)
points = 10000
A = zeros(n, points)
B = zeros(n, points)
if i == 1

(a, b) = (ones(n), 2 * ones(n))
for j = 1:points

A[:, j] = RandomBox(a, b)
B[:, j] = RandomBallOrthant(1.0, n)

Algorithms 2023, 16, 471 17 of 18

end
else

for j = 1:points
A[:, j] = RandomSimplex(n)
B[:, j] = RandomL1Ball(1.0, ones(n))

end
end
time = @elapsed optimum = hausdorff(A, B)
println(io,title," & ",n," & ",method," & ",homotopy," & ",

round(optimum, sigdigits=5)," & ",round(optimum, sigdigits=5)," & ",
round(0.0, sigdigits=5)," & ",round(time, sigdigits=3)," \\ ")

end
end
close(io)

References
1. Aubin, J.-P. Applied Abstract Analysis; Wiley: New York, NY, USA, 1977.
2. Munkres, J. Topology, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999.
3. Conci, A.; Kubrusly, C.S. Distance between sets: A survey. Adv. Math. Sci. Appl. 2017, 26, 1–18.
4. Ortigosa, R.; Martínez-Frutos, J.; Mora-Corral, C.; Pedregal, P.; Periago, F. Optimal control of soft materials using a Hausdorff

distance functional. SIAM J. Control. Optim. 2021, 59, 393–416. [CrossRef]
5. Sendov, B. Some questions of the theory of approximations of functions and sets in the Hausdorff metric. Russ. Math. Surv. 1969,

24, 143–183. [CrossRef]
6. Cornean, H.D.; Purice, R. On the regularity of the Hausdorff distance between spectra of perturbed magnetic Hamiltonians. In

Spectral Analysis of Quantum Hamiltonians: Spectral Days 2010; Springer: Berlin/Heidelberg, Germany, 2012; pp. 55–66.
7. Kumar, K.S.; Manigandan, T.; Chitra, D.; Murali, L. Object recognition using Hausdorff distance for multimedia applications.

Multimed. Tools Appl. 2020, 79, 4099–4114. [CrossRef]
8. Huttenlocher, D.P.; Klanderman, G.A.; Rucklidge, W.J. Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal.

Mach. Intell. 1993, 15, 850–863. [CrossRef]
9. Lertchuwongsa, N.; Gouiffes, M.; Zavidovique, B. Enhancing a disparity map by color segmentation. Integr.-Comput.-Aided Eng.

2012, 19, 381–397. [CrossRef]
10. Barnsley, M.F.; Massopust, P.; Strickl, H.; Sloan, A.D. Fractal modeling of biological structures. Ann. N. Y. Acad. Sci. 1987,

504, 179–194. [CrossRef]
11. Aulbach, B.; Rasmussen, M.; Siegmund, S. Approximation of attractors of nonautonomous dynamical systems. Discret. Contin.

Dyn. Syst. Ser. B 2005, 5, 215–238.
12. Dubuisson, M.-P.; Jain, A.K. A modified Hausdorff distance for object matching. In Proceedings of the 12th International

Conference on Pattern Recognition, Jerusalem, Israel, 9–13 October 1994; Volume 1, pp. 566–568.
13. Kim, I.-S.; McLean, W. Computing the Hausdorff distance between two sets of parametric curves. Commun. Korean Math. Soc.

2013, 28, 833–850. [CrossRef]
14. Rote, G. Computing the minimum Hausdorff distance between two point sets on a line under translation. Inf. Process. Lett. 1991,

38, 123–127. [CrossRef]
15. Taha, A.A.; Hanbury, A. An efficient algorithm for calculating the exact Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell.

2015, 37, 2153–2163. [CrossRef]
16. Zhang, D.; He, F.; Han, S.; Zou, L.; Wu, Y.; Chen, Y. An efficient approach to directly compute the exact Hausdorff distance for 3D

point sets. Integr. Comput.-Aided Eng. 2017, 24, 261–277. [CrossRef]
17. Atallah, M.J. A linear time algorithm for the Hausdorff distance between convex polygons. Inf. Process. Lett. 1983, 17, 207–209.

[CrossRef]
18. Belogay, E.; Cabrelli, C.; Molter, U.; Shonkwiler, R. Calculating the Hausdorff distance between curves. Inf. Process. Lett. 1997,

64, 17–22. [CrossRef]
19. Elber, G.; Grandine, T. Hausdorff and minimal distances between parametric freeforms in R2 and R3. In Proceedings of the

International Conference on Geometric Modeling and Processing, Hangzhou, China, 23–25 April 2008; pp. 191–204.
20. Bauschke, H.H.; Combettes, Patrick, L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: Berlin/Heidelberg,

Germany, 2017.
21. Beck, A. First-Order Methods in Optimization; SIAM: Philadelphia, PA, USA, 2017.
22. Keys, K.L.; Zhou, H.; Lange, K. Proximal distance algorithms: theory and practice. J. Mach. Learn. Res. 2019, 20, 2384–2421.
23. Lange, K. MM Optimization Algorithms; SIAM: Philadelphia, PA, USA, 2016.
24. Bauer, H. Minimalstellen von funktionen und extremalpunkte. Arch. Math. 1958, 9, 389–393. [CrossRef]
25. Clarke, F. Functional Analysis, Calculus of Variations and Optimal Control; Springer: New York, NY, USA, 2013.
26. Frank, M.; Wolfe, P. An algorithm for quadratic programming. Nav. Res. Logist. Q. 1956, 3, 95–110. [CrossRef]
27. Jaggi, M. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the International Conference on

Machine Learning, PMLR, Atlanta, Georgia, 17–19 June 2013; pp. 427–435.

http://doi.org/10.1137/19M1307299
http://dx.doi.org/10.1070/RM1969v024n05ABEH001359
http://dx.doi.org/10.1007/s11042-019-07774-z
http://dx.doi.org/10.1109/34.232073
http://dx.doi.org/10.3233/ICA-2012-0413
http://dx.doi.org/10.1111/j.1749-6632.1987.tb48732.x
http://dx.doi.org/10.4134/CKMS.2013.28.4.833
http://dx.doi.org/10.1016/0020-0190(91)90233-8
http://dx.doi.org/10.1109/TPAMI.2015.2408351
http://dx.doi.org/10.3233/ICA-170544
http://dx.doi.org/10.1016/0020-0190(83)90042-X
http://dx.doi.org/10.1016/S0020-0190(97)00140-3
http://dx.doi.org/10.1007/BF01898615
http://dx.doi.org/10.1002/nav.3800030109

Algorithms 2023, 16, 471 18 of 18

28. Parikh, N.; Boyd, S. Proximal algorithms. Found. Trends Optim. 2014, 1, 127–239. [CrossRef]
29. Zhou, H.; Lange, K. On the bumpy road to the dominant mode. Scand. J. Stat. 2009, 37, 612–631. [CrossRef]
30. Hunter, D.R.; Lange, K. A tutorial on MM algorithms. Am. Stat. 2004, 58, 30–37. [CrossRef]
31. McLachlan, G.J.; Krishnan, T. The EM Algorithm and Extensions, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008.
32. Marošević, T. The Hausdorff distance between some sets of points. Math. Commun. 2018, 23, 247–257.
33. Won, J.-H.; Zu, J.; Lange, K. Projection onto Minkowski sums with application to constrained learning. In Proceedings of the 36th

International Conference on Machine Learning 2019, Long Beach, CA, USA, 9–15 June 2019; pp. 3642–3651.
34. Garber, D.; Hazan, E. Faster rates for the Frank-Wolfe method over strongly-convex sets. In Proceedings of the International

Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 541–549.
35. Majeed, S.N. On strongly E-convex sets and strongly E-convex cone sets. J. AL-Qadisiyah Comput. Sci. Math. 2019, 11, 52–59.
36. Beck, A. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB; SIAM: Philadelphia, PA,

USA, 2014.
37. Bertsekas, D.P. Nonlinear Programming, 2nd ed.; Athena Scientific: Belmont, MA, USA, 1999.
38. Lacoste-Julien, S. Convergence rate of Frank-Wolfe for non-convex objectives. arXiv 2016, arXiv:1607.00345.
39. Lange, K. Closest Farthest Widest. 2023, unpublished.
40. Lange, K.; Won, J.-H.; Landeros, A.; Zhou, H. Nonconvex optimization via MM algorithms: Convergence theory. In Wiley StatsRef:

Statistics Reference Online; Wiley: Hoboken, NJ, USA, 2020; pp. 1–22.
41. Bartoň, M.; Hanniel, I.; Elber, G.; Kim, M.-S. Precise Hausdorff distance computation between polygonal meshes. Comput. Aided

Geom. Des. 2010, 27, 580–591. [CrossRef]
42. Guthe, M.; Borodin, P.; Klein, R. Fast and accurate Hausdorff distance calculation between meshes. J. WSCG 2005, 13, 41–48.
43. Shewchuk, J.R. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Applied Computational Geometry

towards Geometric Engineering; Lin, M.C., Manocha, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 203–222.
44. Aspert, N.; Santa-Cruz, D.; Ebrahimi, T. Mesh: Measuring errors between surfaces using the Hausdorff distance. In Proceedings of

the IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, 26–29 August 2002; Volume 1, pp. 705–708.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1561/2400000003
http://dx.doi.org/10.1111/j.1467-9469.2009.00681.x
http://dx.doi.org/10.1198/0003130042836
http://dx.doi.org/10.1016/j.cagd.2010.04.004

	Introduction
	Materials and Methods
	Notation
	MM Algorithms
	Support Functions and Supporting Sets
	Derivation of the Algorithms
	A Homotopy Method
	Convergence

	Results
	Discussion
	Appendix A
	Appendix A.1
	Julia Computer Code

	References

