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Abstract: Energy demand and consumption have, in recent times, witnessed a rapid proliferation 

influenced by technological developments, increased population and economic growth. This has 

fuelled research trends in the domain of energy management employing tri-generation systems 

such as combined cooling, heating and power (CCHP) systems. Furthermore, the incorporation of 

renewable energy, especially solar energy, to complement the thermal input of fossil fuels has facil-

itated the effectiveness and sustainability of CCHP systems. This study proposes a new approach 

to improve the overall efficiency of CCHP systems and to compute optimal design parameters in 

order to assist decision makers to identify the best geometrical configuration. A multi-objective op-

timization formulation of a solar-assisted CCHP system was adopted to maximize the net power 

and exergy efficiency and to minimize the CO2 emission using the greywolf optimization technique. 

In addition, the effects of the decision variables on the objective functions were analysed. The pro-

posed optimization approach yielded 100 set of Pareto optimal solutions which would serve as op-

tions for the decision maker when making a selection to choose from when seeking to improve the 

performance of a solar-assisted CCHP system. It also yielded higher exergy efficiency and lower 

CO2 emission values when compared with a similar study. The results obtained indicate that a sys-

tem with high net power output does not necessarily translate to a highly efficient system. Addi-

tionally, minimal CO2 emissions were recorded for a system with low compression ratio, low com-

bustion chamber inlet temperature and high inlet turbine temperature. This study demonstrates 

that the proposed approach is potentially suitable for the optimization of a solar-assisted CCHP 

system. 

Keywords: tri-generation systems; CCHP; greywolf optimization; solar photovoltaic thermal col-

lectors; net power; exergy efficiency; CO2 emission 

 

1. Introduction 

Energy is pivotal to the economic growth of any country and its increased de-

mand/production in recent times, triggered by increasing population, has led to the ex-

treme usage of fossil fuels such as petroleum, natural gas, coal, etc. The utilization of fossil 

fuels as prime sources has drawbacks, especially in the area of global warming caused by 

greenhouse gas emission. This is in addition to the cost-intensiveness and depletion of its 

reserves [1,2]. Environmental deterioration caused by these greenhouse gas emissions 

from power plants is seen as a significant threat to societies that are concerned by the 

consequences of global warming. According to an IEA 2022 report [3], CO2 emission in-

creased by 0.9% in 2022, peaking to an all-time high value of about 36.8GT. Spahni et al. 
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[4] have reported that electricity generation accounts for about 32% of CO2 emissions fol-

lowed by heating and cooling sources, which account for 33%, and transportation media, 

which account for 35%. This demonstrates that about 65% of CO2 emission are due to 

power generation, heating and cooling, which are necessities for human survival. It justi-

fies the need for efficient systems to manage and improve energy conservation as well as 

renewable energy sources that could complement or replace fossil fuels.  

An energy management system that has gained research interest due to its fuel effi-

ciency and reduced greenhouse emission rate is the combined cooling, heating and power 

(CCHP) system. The CCHP system involves the integration of various thermodynamic 

systems to produce two or more forms of energy in such a way that a ‘top system’ can be 

employed to drive a ‘bottom system’. A ‘top system’ in this context refers to systems such 

as gas turbines that require a high degree of energy for their operation while a ‘bottom 

system’ such as the Rankine cycle, Kalina cycle, absorption chiller, etc., require a lower 

amount of energy [5]. Wu and Wang conducted an analysis to compare a usual energy 

system with the CCHP system [6]. Their study established that efficiency improved by 

about 33%, owing to the cascade energy application of the CCHP system. 

The inclusion of renewable energy, either as an adjunct to or as a replacement, for 

fossil fuels is another energy management idea that is under consideration. According to 

the 2023 BP Energy Outlook [7], wind and solar power would account for about two-

thirds of the global power generation by 2050 and their rapid adoption would be fuelled 

by a fall in their costs. The solar energy source is predominately employed in CCHP sys-

tems—though, due to its variability and the volatility of its radiation, not necessarily as a 

standalone energy source—to decrease the amount of fossil fuel expended. In CCHP sys-

tems, thermal energy is generated from the sun via solar thermal collectors which are ei-

ther concentrating or non-concentrating. Several pieces of literature have discussed the 

CCHP systems integrated with solar energy for multiple applications. The effectiveness 

of a solar energy-integrated CCHP system over one powered by an internal combustion 

engine has been confirmed by Yousefi et al. [8], who configured a solar-assisted CCHP 

system. Similarly, Zhang et al. [9] have proposed a hybrid CCHP system that yielded a 

30.4% fuel saving with a 26% solar energy input.  

CCHP systems offer a sustainable solution to improve energy conservation by reduc-

ing greenhouse emissions, heat loss and operation cost, and by improving the overall en-

ergy efficiency while ensuring the presence and reliability of several energy generation 

options [10]. However, the search for more optimal thermodynamic performance indica-

tors is on-going. The CCHP system’s performance can be enhanced through optimization 

[11]. Optimization advancements in the 1960 and 1970s saw the advent of a meta-heuristic 

approach, known as evolutionary algorithms. A predominant example of this approach is 

the genetic algorithm optimization proposed by Holland [12]. This approach is inspired 

by Charles Darwin’s principles of mutation, crossover and survival of the fittest. Another 

fundamental metaheuristic method that came into the limelight in the 1990s was the 

swarm intelligence algorithm spearheaded by Dorigo et al. [13], while Kennedy and Eber-

hart [14] proposed the ant colony optimization (ACO) and the particle swarm optimiza-

tion techniques, respectively. Real engineering problems are typically multi-objective in 

nature, and this implies that the mathematical formulation involves more than one objec-

tive function in general [15]. Multi-objective functions are solved by arbitrarily assigning 

weights in a weighted-sum problem formulation and were employed by Zeng et al. [16] 

and Song et al. [17] to effectively improve the objectives of a CCHP system. The weight-

based optimization or a priori method, however, has the drawback of requiring multiple 

runs and the need to always seek counsel from an expert/decision maker [18]. These can 

also be solved using the posteriori method, which involves retaining the multi-objective 

formulation and obtaining the Pareto optimal solutions in a single run. However, these 

are computationally intensive. There are a handful of optimization techniques in the liter-

ature, namely the response surface method (RSM) [19], non-dominated sorting genetic 
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algorithm-II (NSGA-II) [20], particle swarm optimization (PSO) [21], Harris hawk optimi-

zation (HHO) [22], grasshopper optimization (GOA) [23], ant-lion optimization [24], moth 

flame optimization (MFO) [25], and greywolf optimization(GWO) [26], etc. This research 

illustrates how GWO could be used to formulate and solve a problem related to a solar-

assisted combined cooling, heating and power system. A breakdown of the optimization 

algorithms is displayed in Figure 1. 

 

Figure 1. Optimization algorithms. 

Existing optimization studies have revealed that there are typical evaluation criteria 

that informs CCHP systems optimization and these are the exergetic, economic and envi-

ronmental factors [27]. The exergetic factors comprise the exergy efficiency, energy effi-

ciency, primary energy saving ratio, etc. The economic factors include, the product unit 

cost, total cost saving, net present value, etc. while the environmental factors are CO2 

emission and integrated performance. This manuscript is structured as follows: Section 2 

presents the literature review; Section 3 describes the tri-generation system to be opti-

mized, the greywolf optimization technique and the mathematical formulation of the 

problem; and Section 4 reports and discusses the results obtained from the optimization 

and sensitivity analysis. In the light of the above, the proposed research sets out to achieve 

the following objectives: 

• to propose a new approach for the optimization of a solar-assisted CCHP system; 

• to maximize the net power and exergy efficiency while minimizing the CO2 emission 

of a solar energy-integrated CCHP system using the multi-objective greywolf opti-

mization technique; 

• to perform an analysis to ascertain the effect that the decision variables have on the 

objective functions. 
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2. Literature Review 

The struggle to continuously improve CCHP systems with various optimization 

techniques represents a progressive research trend in the domain of energy conserva-

tion/management. Therefore, this section reviews the relevant pieces of literature that seek 

to optimize certain performance criteria of the solar-based CCHP system. 

An extensive review revealed that a greater number of researchers employed the ge-

netic algorithm for optimization applications in solar-assisted CCHP systems. Cao et al. 

[28] proposed a modified solar-integrated CCHP system and optimized the amount of 

electricity it generated, its exergy efficiency, and its total cost per unit exergy via the ge-

netic algorithm approach. They also carried out a parametric study to ascertain how their 

decision variables (oil mass ratio, Rankine inlet pressure, temperature, etc.) affect the ob-

jective functions. The proposed approach improved results in terms of the above men-

tioned performance criteria thus outperforming conventional methods. The thermody-

namic analysis and performance optimization of a solar energy- and natural-gas-inte-

grated CCHP system has been presented by Wang et al. [29]. They employed the genetic 

optimization algorithm with the purpose of maximizing the energetic and exergetic ca-

pacities of the CCHP system. Furthermore, a multi-objective optimization model via a 

genetic algorithm has been developed by Wang et al. [30], who proposed an operational 

flexibility approach determined by the sizes of the photovoltaic (PV) solar panels and gas 

turbine to improve the CCHP system’s energy savings, cost savings, CO2 emission and 

grid integration level. The results obtained illustrate that, although the operational flexi-

bility, as selected by the entropy weighting method, improved the system’s ability to ad-

just to variable conditions, corresponding decreases in grid interaction level and exergetic, 

economic and environmental factors were recorded. Song, Liu and Lin [31] employed the 

NSGA-II for the multi-objective optimization of a solar-based CCHP system modelled on 

three operational modes. Utilizing the gas turbine capacity, PV area and solar collector 

area as decision variables, an optimal solution that maximized the cost saving and energy 

saving ratio was obtained. The study confirmed that the CCHP system was significantly 

affected by energy prices and by the efficiencies of the PV, solar collector and gas turbine. 

The NSGA-II optimization approach was presented by Yousefi, Ghodusinejad and Ka-

saeian [8], with the aim of achieving the best microgrid capacities necessary to provide 

the needed tri-generation loads for a specified structure. They compared the results ob-

tained from an internal combustion engine-based CCHP system and a solar energy-inte-

grated CCHP system. This revealed that the latter had a better performance in terms of 

primary energy saving and CO2 emission, though at the expense of a slightly increased 

net present cost. 

The application of the multi-objective greywolf technique has been employed for the 

optimization of various multi-generation systems. Shakibi et al. [32] proposed a new solar-

assisted CCHP system utilizing the heliostat generation unit and employed the RSM and 

the greywolf optimizer for the multi-objective optimization of exergy performance and 

unit cost via six selected decision variables. They utilized the three weight-based methods 

to determine the optimal exergy efficiency, unit cost and performance coefficient. Asgari 

et al. [33] proposed a heliostat solar-based CCHP system incorporated with a phase 

change material to regulate the heat rate, thus ensuring a constant temperature input to 

the gas turbine. They employed the multi-objective greywolf optimization in a bid to fur-

ther increase the exergy efficiency and power generated while reducing the unit product 

cost. The optimization results show an increase in exergy efficiency, exergy and environ-

mental impact index as well as a decrease in the unit cost and cooling loads when com-

pared with a similar study. Haghghi et al. [34] employed the greywolf multi-objective 

technique, coupled with an ANN-based procedure for the optimization of a geothermal-

operated poly-generation system. Based on the energy, exergy and economic point of 

views, the study made use of four distinct approaches that involved the optimization of 

energy efficiency, investment cost, exergy efficiency and levelized cost. The study 
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achieved its optimization objective of maximizing the energy efficiency and exergy effi-

ciency while minimizing the investment and levelized costs. Habibollahzade and Housh-

far [35] remodelled an ORC-based power generation system in a bid to reduce the emis-

sion of CO2. This was achieved by incorporating a membrane separator to harness an ap-

preciable amount of the CO2 into a gasifier. Utilizing the greywolf optimizer, the proposed 

model yielded relatively lower CO2 emission rates and higher exergy efficiency and cost 

when compared with a similar study. Furthermore, Zhang and Sobhani [36] proposed the 

analysis and multi-objective optimization of a power and freshwater generation system 

based on the geothermal and gas turbine cycles. The greywolf optimizer was employed 

to maximize the net power, freshwater production, exergy efficiency and total emission 

while minimizing the payback period. The conducted sensitivity analysis confirmed that 

the air-preheater effectiveness on the system performance criteria is predominant. A solar-

based system that produces power, cooling capacity, freshwater and hydrogen has been 

presented by Azizi, Nedaei and Yari [37]. A thermodynamic analysis of the proposed 

model was carried out to ascertain the base conditions of the generated electricity, drink-

ing water, cooling capacity and hydrogen. Thereafter, the greywolf optimizer was ap-

plied, using two different scenarios, to optimize the unit cost, exergy efficiency and rate 

of freshwater production. Chen Huang and Shahabi [26] developed a hybrid CCHP sys-

tem to reduce the primary energy consumption, CO2 emission and cost. The study em-

ployed a modified version of the greywolf optimizer that is based on the non-dominated 

sorting theory, variable detection, memory-based strategy selection and fuzzy theory. The 

obtained optimization results were validated using the multi-objective particle swarm op-

timization technique. 

Behzadi et al. [38] presented a methanol-fuelled co-generation system consisting of a 

solid oxide fuel cell (SOFC), heat recovery unit and absorption power cycle (APC). The 

greywolf multi-objective technique was used to optimize the exergy efficiency and total 

cost implemented on three different systems, the SOFC, SOFC-ORC and SOFC-APC. The 

optimization results indicate a better optimal result from the SOFC-APC due to its non-

thermal evaporator, condensation process and temperature glide matching. Zhang et al. 

[39] conducted an investigation on the feasibility of a biomass-based co-generation sys-

tem. The investigations were carried out using four biomass fuels, with the best fuel—

municipal solid waste—subsequently becoming the subject of the multi-objective optimi-

zation and parametric analysis of the system. Optimum results were generated and these 

maximized the total cost and minimized the CO2 emissions. Nedaei, Azizi and Farshi [40] 

developed a heliostat solar-based multi-generation system comprising the Brayton cycle, 

absorption refrigeration cycle, humidification, dehumidification, etc. In addition to the 

conducted thermodynamic exergetic and economic analysis, the greywolf technique was 

used to compute optimum values for the exergy efficiency, freshwater production rate 

and unit product cost. Finally, Mahdavi et al. [5] developed a new, solar-based CCHP 

system and utilized the RSM for the multi-objective optimization of its net power, CO2 

emission and exergy efficiency. In the developed system, waste heat between the com-

pressors was harnessed by an intercooler to power an absorption chiller. By means of in-

teraction effects between the four decision variables, six optimal solutions were obtained 

and the technique for order preferences by similarity to ideal solution (TOPSIS) method 

was used to determine the best solution. Optimal results corresponding to the net power, 

CO2 emission and exergy efficiency were obtained. Table 1 gives a summary of some of 

the reviewed pieces of literature. 

The GWO has been applied successfully in many studies. However, no existing study 

has used this approach for the CCHP system. Hence, this paper illustrates how the grey-

wolf optimizer could be employed to improve the performance of a solar-based CCHP 

system. 
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Table 1. Summary of some related works. 

S/N References 
Optimization 

Technique 

Integrated Renewable 

Energy Type 

Performance Criteria to  

Be Optimized 
System Type 

1 Shakibi et al. [34] 
RSM+ 

MOGWO 
Solar 

Exergy efficiency, unit cost and 

performance coefficient 
Tri-generation 

2 Asgari et al. [36] MOGWO Solar 
Exergy efficiency, net power and 

unit product cost 
Tri-generation 

3 Haghghi et al. [34] 
ANN+MOGW

O 
Geothermal 

Exergy efficiency, investment 

cost, energy and levelized cost 
Poly-generation 

4 
Habibollahzade 

and Houshfar [35] 
MOGWO Not applicable 

Emission, total specific cost, cost 

rate and efficiency 
Power generation 

5 
Zhang and Sobhani 

[36] 
MOGWO Geothermal 

Net power, freshwater 

production exergy efficiency, 

levelized total emission and 

payback period 

Co-generation 

6 
Azizi, Nedaei and 

Yari [37] 
MOGWO Solar Exergy efficiency and unit cost Poly-generation 

7 
Chen, Huang and 

Shahabi [26] 
MOGWO Solar 

Energy efficiency, energy cost 

and CO2 emission 
Tri-generation 

8 Behzadi et al. [38] MOGWO Not applicable Exergy efficiency, total cost rate Co-generation 

9 
Nedaei, Azizi and 

Farshi [40] 
MOGWO Solar 

Exergy efficiency, freshwater 

production and unit product cost 
Multi-generation 

10 Zhang et al. [39] MOGWO Biomass 
Exergy efficiency and total cost 

rate 
Co-generation 

11 
Mahdavi, Mojaver 

and Khalilarya [5] 
RSM Solar 

Net power, exergy efficiency and 

CO2 emission 
Tri-generation 

3. Materials and Methods 

3.1. Description of the System 

This study considers the solar-integrated CCHP system described by Mahdavi et al. 

[5]. The system comprises three gas turbines, two compressors, a Kalina cycle, absorption 

chiller, solar collectors, heat recovery steam generator unit (HSRG) and a hot water gen-

erator (Figure 2). 

The system is operated in such a way that air is compressed by two two-stage com-

pressors (AC-1 and AC-2) with an intercooler in between them. Waste heat from the in-

tercooler is used to drive the absorption chiller via transfer of heat in a desorber. Following 

that, the air leaving the second compressor is heated through air preheater 1 (APH-1) and 

air preheater 2 (APH-2), powered by solar energy and exhaust combustion gases from gas 

turbine 3 (GT-3), respectively. Once the air warms up to the required temperature and 

pressure, it is reacted with combustion fuel (methane) to produce hot gases in the com-

bustion chamber. The hot gases flow into three consecutive gas turbines, where the first 

two turbines supply the power needed to drive the compressors while the third is respon-

sible for rotating the shaft of a generator to generate electrical power. Furthermore, ex-

haust gases from GT-3 are recovered back to the APH-2 and are used to provide heating 

power to the HSRG, the Kalina cycle through evaporator 1 (Eva-1), and to the domestic 

water heat exchanger, before being released to the environment. 
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Figure 2. Diagram illustrating the solar-integrated CCHP system. 

In the Kalina cycle, pump 1 increases the pressure of its working fluid (ammonia 

water mixture), which is then passed into two successive heat exchangers (low tempera-

ture recuperator (LTR) and high-temperature recuperator (HTR)) to improve its thermal 

energy and reduce the energy input to Eva-1 subsequently. The resulting two-phase mix-

ture at Eva-1 is sent to the separator where separation into saturated vapour and saturated 

liquid occurs. The saturated vapour is supplied to the steam turbine to generate further 

work output while the saturated liquid is sent back to the HTR to recover some thermal 

energy before being passed to expansion valve 1 (Ev-1) where its pressure is reduced. 

Subsequently, the low-pressure saturated liquid enters the mixer where it is combined 

with the output from the steam turbine. This mixture is passed through the LTR to dissi-

pate its energy before being discharged to the atmosphere through the condenser (cond-

1), thus completing the cycle. 

A series of processes is employed in the single-effect absorption chiller to acquire 

energy at the desorber (provided by rejected gases from the intercooler) used to supply 

cooling capacity at the associated evaporator (Eva-2). The working fluid (saturated LiBr-
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H2O liquid) is pumped into pump 2 before its entrance into the solution heat exchanger 

(SHE) where it gains thermal energy. In water vapour state, the working fluid enters the 

condenser (cond-2) from the desorber and condenses into saturated liquid before being 

throttled from the expansion valve (Ev-3) into Eva-2. At Eva-2, it gains energy to become 

a saturated vapour before being absorbed into the solution in Ev-2, where it transforms 

back into the saturated liquid specified at the start of the cycle. 

The following assumptions were made—that the system operates in a steady state; 

kinetic and potential energy changes are negligible; and heat losses from component sys-

tems, except the combustion chamber, are insignificant. 

Response Surface Method 

This is a mathematical and statistical approach that aims to determine the design fac-

tor settings in order to enhance the accurate implementation of a procedure [41]. The re-

gression models generated portray the relationship between a certain response variable 

and the associated design factors. The general procedures undertaken are: 

• Design of experiments: This is carried out to establish the experimental conditions. It 

involves selecting the relevant input factors that would affect the response variable. 

This is followed by the determination of the constraints used to evaluate the design 

factors during the experiment. 

• Experimental tests: Here, the necessary experiments are performed employing an al-

ready prepared experimental plan and the response variable data are collected ac-

cording to the various fusion of the design factor levels. These tests are arbitrarily 

conducted to reduce the influence of unimportant design factors. 

• Fitting the Regression models: The regression models are fitted employing the data 

obtained from the experiments using methods such as the least squares or the maxi-

mum likelihood estimation. The resulting regression models are evaluated for their 

goodness-of-fit to inspect for any discrepancies from the initial model presumptions. 

• Validation of the regression model: After the model is successfully fitted, it is vali-

dated through prediction using further experimental test with unused data. 

Based on the system described in Section 3.1, the response surface methodology was 

utilized to develop regression models capable of predicting its net power, CO2 emission 

and exergy efficiency. The decision variables and their maximum/minimum values, as 

well as the equations, are shown in Tables 2 and 3 and Equations (10)–(12) respectively 

[5]. 

Table 2. Decision variables. 

Decision Variable Symbol 

Compression ratio Cr 

Pinch point temperature difference Pp 

Inlet turbine temperature Gt 

Inlet combustion chamber temperature Ct 

Table 3. Decision variables and their values. 

Decision Variable Minimum and Maximum Values 

Compression ratio 10 ≤ Cr ≤ 15 

Pinch point temperature difference 10 ≤ Pp  ≤ 30 

Inlet turbine temperature 1420 ≤ Gt ≤ 1520 

Inlet combustion chamber temperature 850 ≤ Ct ≤ 950 

This study considers three objective functions namely: 



Algorithms 2023, 16, 463 9 of 24 
 

1. Net Power Output: The net power, which is a function of the energy analysis, is the 

summation of the work outputs from the gas turbine and Kalina cycle. Mathemati-

cally, it can be expressed as [5]: 

Ṗnet= Ṗnet, GT+ Ṗnet, KC (1) 

Ṗnet, GT=(ṖGT-1+ ṖGT-2+ ṖGT-3)-(ṖAC-1- ṖAC-2) (2) 

Ṗnet, KC= ṖST − Ṗpump-2 (3) 

ṖGT-1= ṁp(h7 − h8)= ṖAC-1 (4) 

ṖGT-2= ṁp(h8 − h9)= ṖAC-2 (5) 

ṖGT-3= ṁp(h9-h10) (6) 

where, 

Ṗnet= net power output; 

Ṗnet, GT, Ṗnet, KC= net power from the gas turbines and the Kalina cycle, respectively; 

ṖGT-1, ṖGT-2, ṖGT-3= net power from gas turbine 1, 2, and 3, respectively; 

ṖAC-1, ṖAC-2= net power to compressor 1 and 2, respectively; 

ṖST, Ṗpump-2= net power from steam turbine and pump 2 of the Kalina cycle; 

h7, h8, h9, h10= specific enthalpies at state 7, 8, 9, and 10, respectively; 

 ṁp= mass flow rate of the combustion gases from the combustion chamber. 

2. Exergy Efficiency: According Kumar [42], this is a practical and effective criterion for 

determining the type, extent and positions of irreversibility in a thermodynamic sys-

tem. Mathematically, it can be defined as the quotient obtained by dividing the out-

put exergy by the input exergy [5]. 

ℇ= 
Ṗnet+(Ė45- Ė44)+(Ė50-Ė51)+(Ė47-Ė46)  

Ėin

 (7) 

Ėin = Ėfuel+ Ėcoll (8) 

where, 

Ė44, Ė45, Ė46, Ė47, Ė50, Ė51 = Exergy at state 44, 45, 46, 47, 50 and 51, respectively; 

Ėin  = Input exergy; 

Ėfuel = Exergy of fuel; 

Ėcoll = Exergy of solar collector. 

3. CO2 Emission: The ejection of CO2 into the atmosphere has detrimental effects on the 

environment and its continuous mitigation should be the goal in thermal energy sys-

tems. The measure of the production level of CO2 is called emission and is defined as 

the ratio of the mass flow rate of CO2 to the total output energy [43]. 

Emission= 
ṁCO2

Ṗnet+ Q̇heating+ Q̇cooling

 (9) 

where, 

Q̇heating and Q̇cooling = Heating and cooling loads of the CCHP system, respectively; 
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Ṗnet (MW)  = 62.19 + 0.4573Cr + 0.0259Pp − 0.02421Gt + 0.03638Ct − 0.010867Cr × Cr

− 0.000029Pp × Pp + 0.000005Gt × Gt − 0.000009Ct × Ct − 0.0003Cr × Pp

+ 0.00022Ct × Ct − 0.00042Cr × Ct − 0.000005Pp × Gt − 0.000005Pp × Ct

− 0.000003Gt × Ct 

(10) 

Emission (
gr

MJ⁄ )

= 13.1 + 3.722Cr + 0.2003Pp −  0.0122Gt + 0.0451Ct − 0.03047Cr × Cr

+ 0.0000296Pp × Pp + 0.00004Gt × Gt + 0.000052Ct × Ct + 0.0049Cr × Pp

− 0.00294Cr × Gt + 0.00286Cr × Ct − 0.000285Pp × Gt + 0.000285Pp × Ct

− 0.000099Gt × Ct 

(11) 

(%) = −29 − 0.36Cr + 0.287Pp +  0.0659Gt + 0.0133Ct − 0.01807Cr × Cr − 0.000029Pp × Pp

− 0.000011Gt × Gt − 0.000009Ct × Ct − 0.0125Cr × Pp + 0.0003Cr × Gt + 0.00086Cr × Ct

− 0.000205Pp × Gt + 0.000195Pp × Ct − 0.000009Gt × Ct 

(12) 

Mahdavi et al. have pointed out that these three regression models exhibit remarka-

ble accuracy in estimating the outputs, with errors measuring less than 1% [5]. 

3.2. Greywolf Optimization 

The optimization technique employed in this study, called the greywolf optimization 

(GWO), is a swarm-intelligence algorithm proposed by Mirjalili, Mirjalili, and Lewis [44]. 

It draws inspiration from the behaviour, attacking method, social leadership and encir-

cling process of the wolf to determine the best solution for an optimization problem. The 

structuring of the GWO is such that the fittest solution is named the alpha (α) in order to 

reflect the social ranking of wolves. As a result, beta (β) and delta (δ) refer respectively to 

the next best solutions while the remaining solutions are called omega (ꞷ) wolves. The α, 

β and δ wolves pilot the hunting activity, with the ꞷ wolves trailing them, in their search 

for the global optimum. The following mathematical equations are used to initiate the 

encircling of a prey by the greywolves during hunting [44], 

M ⃗⃗⃗⃗  ⃗= |Q⃗⃗⃗ ∙N⃗⃗⃗ p(t) - N⃗⃗⃗ (t)| (13) 

N⃗⃗⃗ (t+1) = N⃗⃗⃗ p- H⃗⃗⃗ ∙M⃗⃗⃗  (14) 

where, 

t  = current iteration; 

H⃗⃗⃗  and Q⃗⃗⃗  = coefficient vector; 

N⃗⃗⃗  = position vector; 

N⃗⃗⃗ p = position vector of the prey. 

Furthermore, the coefficient vectors, H⃗⃗⃗  and Q⃗⃗⃗   are calculated as thus: 

H⃗⃗⃗  = 2∙h⃗⃗ ∙r 1 − h⃗⃗  (15) 

Q⃗⃗⃗  = 2∙r 2 (16) 

where the components of h⃗  decline from 2 to 0, in a linear manner, across the iterations 

while r 1 and  r 2 are randomly selected vectors in [0, 1]. 

The GWO algorithm commences optimization by producing a random solution set. 

The top three solutions generated are saved by the algorithm, which requires the other 

search agents to adjust their locus in relation to the optimum solutions. After the end con-

dition has been met, the location and value of the alpha solution becomes the optimum 

solution. The following Equations are adopted, during the optimization process, for each 

search agent to initiate the hunting process and identify potential areas of the search space. 
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The general optimization methodology used in this study and flowchart for the GWO 

technique is given in Figures 3 and 4. 

 

Figure 3. Optimization methodology. 

M⃗⃗⃗ α = |Q⃗⃗ 1 ∙ N⃗⃗ α − N⃗⃗ | (17) 

M⃗⃗⃗ β = |Q⃗⃗ 1 ∙ N⃗⃗ β − N⃗⃗ | (18) 

M⃗⃗⃗ δ = |Q⃗⃗ 1 ∙ N⃗⃗ δ − N⃗⃗ | (19) 

N⃗⃗ 1 = N⃗⃗ α − H⃗⃗ 1 ∙ (M⃗⃗⃗ α) (20) 

N⃗⃗ 2 = N⃗⃗ β − H⃗⃗ 2 ∙ (M⃗⃗⃗ β) (21) 

N⃗⃗ 3 = N⃗⃗ δ − H⃗⃗ 1 ∙ (M⃗⃗⃗ δ) (22) 

N⃗⃗ (t + 1) =  
N⃗⃗ 1 + N⃗⃗ 2 + N⃗⃗ 3

3
 (23) 

When a problem is defined by multiple objective functions and these functions are 

conflicting, a multi-objective optimization formulation is adopted. Multi-objective optimi-

zation involves the simultaneous optimization of more than one objective function to gen-

erate a set of alternative solutions that are feasible, with a compromise between the solu-

tions known as the Pareto optimal or non-dominated solutions. The flowchart for the 

multi-objective GWO technique is given in Figure 5. In order to carry out optimization 

using a multi-objective greywolf optimizer (MOGWO), two additional components are 

incorporated into the conventional GWO algorithm, and they are: 

• The archive—for keeping the non-dominated Pareto optimal solutions. 

• The leader selection approach—this assists the selection of the alpha and beta as 

heads of the search activity from the archive. 
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Figure 4. Flowchart for single-objective greywolf optimization. 
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Figure 5. Flowchart for multi-objective greywolf optimization. 

3.3. Mathematical Formulation 

Mathematically, the single optimization of net power can be formulated as follows: 
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Maximize ℱ = {Pnet(Cr, Pp, Gt, Ct)} (24) 

In the same vein the single-objective optimization of CO2 can be formulated as fol-

lows: 

Maximize ℱ = {(−emission (Cr, Pp, Gt, Ct)} (25) 

The single-objective optimization of exergy efficiency can be formulated as follows: 

Maximize ℱ = { ℇ (Cr, Pp, Gt, Ct)} (26) 

The multi-objective optimization problem is formulated as follows: 

Maximize ℱ = {Pnet(Cr, Pp, Gt, Ct), ℇ(Cr, Pp, Gt, Ct), −emission(Cr, Pp, Gt, Ct)} (27) 

Equations (24)–(27) are subject to variable restrictions: 

10 ≤ Cr ≤ 15 

10 ≤ Pp  ≤ 30 

1420 ≤ Gt ≤ 1520 

850 ≤ Ct ≤ 950. 

4. Results 

4.1. Single-Objective Optimization 

The single-objective greywolf optimization was performed on each of the objective 

functions for 100 iterations using a search agent number of 100. This was implemented on 

the MATLAB platform using an 8GB RAM Intel(R) Core(TM) i3-5005U CPU @ 2.00GHz 

laptop after editing the codes readily available online [45]. 

4.1.1. Net Power Optimization 

This is carried out by solving Equation (24), using the decision variables and their 

values shown in Table 2 and Table 3, respectively, on the GWO algorithm. The results 

obtained as shown in Table 4 depict how, in order maximize net power, the following 

should take place: 

• Minimize the compression ratio, pinch point temperature difference and inlet com-

bustion chamber temperature; 

• Maximize the inlet turbine temperature. 

Table 4. Optimal solutions maximizing the net power. 

Cr Pp Gt Ct Maximum Net Power 

10 10 1520 850 61.8462 

4.1.2. CO2 Emission Optimization 

This was carried out by solving Equation (25), using the decision variables and their 

values shown in Table 2 and Table 3, respectively, on the GWO algorithm. The results 

obtained as shown in Table 5 depict how, in order minimize the CO2 emission, the follow-

ing should take place: 

• Minimize the compression ratio, pinch point temperature difference and inlet com-

bustion chamber temperature; 

• Maximize the inlet turbine temperature. 

Table 5. Optimal solutions maximizing the net power. 

Cr Pp Gt Ct Minimum CO2 Emission 

10 10 1520 850 50.4771 
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4.1.3. Exergy Efficiency Optimization 

This was carried out by solving Equation (26), using the decision variables and their 

values shown in Table 2 and Table 3, respectively, on the GWO algorithm. The results 

obtained as shown in Table 6 depict how, in order to maximize the exergy efficiency, the 

following should take place: 

• Minimize the compression ratio, pinch point temperature difference and inlet turbine 

temperature; 

• Maximize the inlet combustion chamber temperature. 

Table 6. Optimal solutions maximizing the exergy efficiency. 

Cr Pp Gt Ct Maximum Exergy Efficiency 

10 10 1420 950 42.3507 

4.1.4. Analysis of the Single-Objective Optimization Results 

A summary of the results obtained in Sections 4.1.1–4.1.3 is shown in Table 7. It high-

lights the behaviour of the optimal solutions obtained where ↑ represents an increasing 

trend, ↓ represents a decreasing trend while ≠ signify a conflict between parameters. 

Table 7. Optimal solutions maximizing the exergy efficiency. 

Decision Variables Net Power CO2 Emission Exergy Efficiency 

Cr ↓ ↓ ↓ 

Pp ↓ ↓ ↓ 

Gt ↑ ↑ ↓≠ 

Ct ↓ ↓ ↑≠ 

Table 7 illustrates the conflicting nature of the objective functions, thus requiring the 

simultaneous optimization of the three objectives to determine the Pareto optimal solu-

tions. 

4.2. Multi-Objective Optimization 

The multi-objective greywolf optimization was performed on the objective functions. 

One hundred iterations were adopted and the MATLAB codes, implemented on an 8GB 

RAM Intel(R) Core(TM) i3-5005U CPU @ 2.00GHz laptop, were edited and adapted from 

Mirjalili [46]. The set values of the hyperparameters are given in Table 8. 

Table 8. Set values of the hyperparameters. 

Hyperparameters Value 

Archive size 100 

Number of variables 4 

Greywolf number 100 

Grid inflation parameter, alpha 0.1 

Number of grid per dimension, nGrid 4 

Leader selection pressure parameter, beta 4 

Gamma 2 

The optimization algorithm generated 100 sets of non-dominated solutions. The Pa-

reto front of all three objective functions are shown in Figure 6. Despite the conflicting 

nature of the objective functions, the sets of optimal solutions obtained proffer the best 

trade-off solutions. Each of the solutions on the Pareto front are potential optimal solu-

tions and the best optimal can be selected based on the discretion of the decision maker. 
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In order to obtain further insight into the relation between each objective function, 

three cases describing the relation CO2 emission and net power output, exergy efficiency 

and net power output, and exergy efficiency and CO2 emission were considered. Figure 6 

shows the global results representing the Pareto front of all three objective functions. This 

will be simplified into two two-dimensional Pareto fronts in order to point out some im-

portant aspects. 

 

Figure 6. Pareto front CO2 emission vs. net power vs. exergy efficiency. 

The Pareto front in Figure 7 clearly depicts a conflict in the decision-making process 

because the propensity to maximize net power will increase the emission of CO2, which in 

turn will negatively affect the environment. The net power of the CCHP system being 

investigated is significantly dependent on the power output from the GT-3, in addition to 

the extra power produced by the Kalina cycle. With this in mind, the system may be struc-

tured in such a way that combustion gases entering the unfired HRSG from APH-2 are 

forced to increase in temperature compared with those entering the combustion chamber. 

Additionally, the heating power from the photovoltaic thermal collectors may be boosted 

and the fuel consumption rate decreased, all of which is intended to minimize the CO2 

emission. This will reduce the net power produced by the GT-3, which as a ‘top’ system 

generates the larger net power, while boosting the power output from the Kalina cycle 

which would be ‘cleaner’ (i.e., not requiring combustion) but in smaller amounts. Alt-

hough this will ultimately reduce the net power generated by the system, its optimization 

will be achieved together with a minimization in the emission of CO2. 

The Pareto graph in Figure 8 suggests that the exergy efficiency and the CO2 emission 

are compatible as a lower value of CO2 emission corresponds with a higher exergy effi-

ciency. It also demonstrates that the CO2 emission value has to be minimized to a certain 

point in order to achieve a significant increase in the exergy efficiency. Further analysis 

reveals that reducing the fuel consumption would decrease the input exergy of fuel. With 

smaller input exergy, together with improved exergy outputs/useful work from the Ka-

lina cycle, the water heat exchanger and absorption chiller are able to significantly max-

imize the exergy efficiency, which invariably means that the CO2 emission is minimal. 
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Figure 7. Pareto front for CO2 emission vs. net power. 

 

Figure 8. Pareto front for exergy efficiency vs. CO2 emission. 

Furthermore, Figure 9 shows an inverse relationship between the exergy efficiency 

and the net power. This suggests that a high net power production does not necessarily 

equate to highly efficient system. However, it is the effective use of the power generated 

within the CCHP system that determines a system with maximum exergy efficiency. This 

also suggests that bottom systems (such as the Kalina cycle, absorption chiller) should be 

operated and designed in such a way as to ensure utilization of maximum waste heat and 

a reduction in exergy losses. 
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Figure 9. Pareto front for exergy efficiency vs. net power. 

For validation purposes, the MOGWO was structured to generate six optimal solu-

tions to be compared with the six solutions obtained by a similar study. The obtained data, 

as shown in Table 9, demonstrate that the MOGWO produced an optimized system with 

lower CO2 emission and higher exergy efficiency values. However, this was at the cost of 

a reduced net power, though by a small margin. 

Table 9. Validation of optimization results with a related study. 

 

Optimal Decision Variables Optimal Objective Functions 

Cr Pp Gt Ct Net Power 
CO2 

Emission 

Exergy 

Efficiency 

Present study 

10.00 10.86 1520 913.11 61.60 50.57 45.21 

10.00 10.56 1520 901.58 61.47 50.31 45.28 

10.00 10.46 1520 895.34 61.40 50.18 45.31 

10.01 10.46 1520 893.99 61.38 50.16 45.32 

10.00 10.68 1520 908.14 61.55 50.45 45.24 

10.00 10.68 1520 907.69 61.54 50.44 45.24 

Similar study (Mahdavi et al. [5]) 
11.66 11.96 1470 900 61.73 52.87 44.22 

11.11 20.00 1470 900 61.73 52.99 44.09 

 11.98 20.00 1470 890 61.75 53.84 44.12 

 12.50 16.10 1484 900 61.75 54.07 44.58 

 12.50 15.72 1470 891 61.79 54.07 44.10 

 12.50 20.00 1468 882 61.75 54.28 44.30 

4.3. Sensitivity 

The sensitivity analysis was conducted to further understand the dynamics sur-

rounding the multi-objective optimization results. It also helps to ascertain the impact a 

variation of each parameter would have on the two-dimensional Pareto front of net 

power, exergy efficiency and CO2 emission. The parameters include the compression ra-

tio, pinch point temperature difference, inlet turbine temperature and inlet combustion 

chamber temperature. The findings recorded after each analysis are consistent with the 

research of Mahdavi et al. [5], who employed the RSM for the modelling and optimization 

of a solar-based CCHP system. 



Algorithms 2023, 16, 463 19 of 24 
 

4.3.1. Analysis of the Compression Ratio 

In order to perform this analysis, the compression ratio was maintained at values of 

10, 12 and 15 while the other variables were left to vary within their range (10–30 for Pp, 

1420–1520 for Gt and 850–950 for Ct). Figure 10 shows that at Cr = 15, maximum values 

for the net power and exergy efficiency are obtained but at the cost of a high emission of 

CO2. It could also be seen that reducing the value of Cr from 15 to 10 would cause a re-

duction in the CO2 emission that is more significant than a reduction of the net power and 

exergy efficiency. This suggests that employing a lower compression ratio will greatly 

minimize the CO2 emission with negligible effects on the optimal values of the net power 

and exergy efficiency. It is interesting to note that, in comparison with other decision var-

iables, the Cr produces the greatest change/effect in the CO2 emission and yields the least 

value. 

 

Figure 10. Effects of compression ratio on the optimal objective functions. 

4.3.2. Analysis of the Pinch Point Temperature Difference 

The pinch point temperature at air preheater 1 was kept at values of 10, 20 and 30 

while the other variables were left to vary within their range (10–15 for Cr, 1420–1520 for 

Gt and 850–950 for Ct). Figure 11 shows that, at Pp = 30, maximum values for the net 

power, exergy efficiency and CO2 emission were obtained. It also reveals that a change in 

the Pp from 30 to 20 yields a greater change in the emission of CO2 (compared with that 

from 20 to 10) with an associated reduction in the net power and exergy efficiency. This 

suggests that a fairly average value of Pp would be sufficient to produce good results. In 

comparison with other decision variables, the Pp has the least effect on the objective func-

tions. 

4.3.3. Analysis of the Inlet Turbine Temperature 

The inlet turbine temperature was kept at values of 1420, 1470 and 1520 while the 

other variables were left to vary within their range (10–15 for Cr, 10–30 for Pp and 850–

950 for Ct). Figure 12 shows that, at higher values of Gt (Gt = 1520), maximum values of 

exergy efficiency are obtained as well as a minimum net power and CO2 emission. This 

suggests that higher Gt values make for a highly efficient system with minimal emission 

of CO2, although at the expense of a reduced net power. In comparison with other decision 

variables, the Gt produces the greatest effect/change on the exergy efficiency. 
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Figure 11. Effects of pinch point temperature difference on the optimal objective functions. 

 

Figure 12. Effects of turbine inlet temperature on the optimal objective functions. 

4.3.4. Analysis of the Inlet Combustion Chamber Temperature 

The combustion chamber inlet temperature was kept at values of 850, 900 and 950 

while the other variables were left to vary within their range (10–15 for Cr, 10–30 for Pp 

and 1420–1520 for Gt). As can be seen in Figure 13, a Ct value of 950 yielded maximum 

net power and CO2 emission as well as a minimum exergy efficiency. This suggests that 

lower values of Ct are required to obtain minimum values of CO2 emission, maximum 

exergy efficiency and a minimum net power. 
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Figure 13. Effects of combustion chamber inlet temperature on the optimal objective functions. 

5. Conclusions 

This study set out to employ the greywolf approach for the multi-objective optimiza-

tion of a solar-assisted CCHP system. This was undertaken in a bid to boost the overall 

efficiency by maximizing the net power and exergy efficiency of the CCHP system. It also 

sought to optimally reduce the greenhouse emission that has evidently negative health 

implications and causes global warming. This research supports the idea that there is a 

need to reduce fossil fuel depletion rate, as a solar-assisted CCHP was optimized. In so 

far as related studies have employed other optimization techniques for the multi-objective 

optimization of a solar-based CCHP system, this study proposes a new optimization ap-

proach. The results and findings from this research are outlined as follows: 

• A multi-objective optimization approach is used to determine the optimal set of pa-

rameters describing the thermodynamic configuration of the solar-based CCHP sys-

tem: compression ratio, pinch point temperature difference, inlet turbine tempera-

ture and inlet combustion chamber temperature. 

• The performance of the CCHP system is assessed through the net power, CO2 emis-

sion and exergy efficiency that are employed as objective functions to determine how 

well each set of decision variables complies with all the constraints. 

• The greywolf technique is employed for the multi-objective optimization to generate 

non-dominated Pareto optimal solutions. 

• A set of Pareto optimal solutions are computed in this study. The optimal solutions 

are provided as options for the decision maker to help them make a preferred selec-

tion based on their discretion to improve the performance of the CCHP system. A 

guide, with which to aid this decision-making process, is suggested via the conduct-

ing of a sensitivity analysis. 

• An interesting finding is the interdependency between the four decision variables. 

This suggests that a change in one of the decision variables results in respective 

changes in the other three variables. Hence, a multi-objective optimization technique 

is pertinent and helpful when evaluating the performance of the CCHP system. 

• This study found that there exists a conflict in decision-making processes between 

net power and CO2 emission as a maximum net power correlates with an undesirable 

maximum emission of CO2. Another important finding is the compatibility between 

the exergy efficiency and CO2 emission, which indicates that a system with minimal 

emission of CO2 is a highly efficient one. This study has shown that a system’s high 
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net power production is not a guarantee of its high efficiency, due to the negative 

correlation obtained between net power and exergy efficiency. 

• The findings from the sensitivity study suggest that a lower compression ratio will 

significantly reduce CO2 emission while having little impact on the optimal net 

power and energy efficiency values. It was also found that higher turbine inlet tem-

perature values will result in a system that is highly efficient and emits less CO2, but 

at the cost of having less net power. This also implies that lower values of combustion 

chamber inlet temperature are necessary to achieve the minimum CO2 emission val-

ues and maximum energy efficiency corresponding with a minimum net power. 

• Finally, the study has confirmed the finding of Mahdavi et al. [5] who found that the 

compression ratio had the most effect on the CO2 emission by virtue of having the 

highest incremental change. In the same vein, the inlet turbine temperature had the 

most effect on the exergy efficiency while the inlet combustion chamber had the most 

effect on the net power. 
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