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Abstract: Client puzzle protocols are widely adopted mechanisms for defending against resource
exhaustion denial-of-service (DoS) attacks. Among the simplest puzzles used by such protocols, there
are cryptographic challenges requiring the finding of hash values with some required properties.
However, by the way hash functions are designed, predicting the difficulty of finding hash values
with non-trivial properties is impossible. This is the main limitation of simple proof-of-work (PoW)
algorithms, such as hashcash. We propose a new data structure combining hashcash and Merkle
trees, also known as hash trees. In the proposed data structure, called hashcash tree, all hash values
are required to start with a given number of zeros (as for hashcash), and hash values of internal nodes
are obtained by hashing the hash values of child nodes (as for hash trees). The client is forced to
compute all hash values, but only those in the path from a leaf to the root are required by the server
to verify the proof of work. The proposed client puzzle is implemented and evaluated empirically to
show that the difficulty of puzzles can be accurately controlled.

Keywords: security; partial hash collision; price functions; denial-of-service attacks; client puzzles;
proof of work

1. Introduction

Denial-of-service (DoS) attacks are focused on making a resource (site, application,
server) unavailable for the purpose it was designed for and represent a severe threat to
the current Internet community [1]. DoS attacks cause significant losses [2,3] and motivate
the research of sophisticated detection techniques [4–8]. Dwork and Noar [9] suggested
the use of proof-of-work (PoW) schema to mitigate the proliferation of spam emails: a
computation stamp is required to obtain a service; in the context of emails, the service
can be the forwarding of a message. In general, PoW is a form of cryptographic proof in
which one party (the prover) proves to others (the verifiers) that a certain amount of a
specific computational effort has been expended; verifiers can subsequently confirm this
expenditure with minimal effort on their part [10]. PoW schema are dissymmetric in favor
of the verifier: the computation is moderately hard for the prover, while it is easy for a
verifier to check a given solution. When PoW is applied to DoS mitigation, the prover role
is played by a client aiming at accessing a service, and the verifier role is played by the
server providing the required service.

PoW is often implemented by solving a cryptographic puzzle. The puzzle can be
chosen by the sever, leading to challenge–response protocols, or self-imposed by the request
of the client, leading to solution–verification protocols. In this article, protocols of these kinds
are collectively called client puzzle protocols. Figure 1 shows the main steps of challenge–
response protocols. A client, acting as prover, needs a service provided by a server, acting
as verifier (step 1). The verifier generates a puzzle, with negligible effort, and challenges
the client (steps 2–3). The client affords a moderately hard computation to solve the puzzle,
and sends the solution to the server (steps 4–5). The server verifies the solution, again with
negligible effort, and grants access to the requested service (steps 6–7). Figure 2 shows
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the main steps of solution–verification protocols. The client generates a puzzle based on
the requested service and computes a solution (steps 1–2). After that, the client sends the
puzzle, its solution, and the request to the server (step 3). The server verifies that the puzzle
was correctly generated and that the solution is valid (step 4). If both tests succeed, the
request is processed (step 5).

Version September 20, 2023 submitted to Algorithms 2 of 19

Prover Verifier

1. request service

3. challenge

4. solve puzzle

5. solution

6. verify 

2. generate puzzle

7. grant service

1. request service

3. challenge

4. solve puzzle

5. solution

6. verify 

2. generate puzzle

7. grant service

Figure 1. Sequence of events in a challenge-response protocol

puzzle, its solution and the request to the server (step 3). The server verifies that the puzzle 41

was correctly generated, and that the solution is valid (step 4). If both tests succeed, the 42

request is processed (step 5). 43

Hashcash [11] is a cryptographic hash-based PoW algorithm that can be used for defin- 44
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algorithm. In a solution-verification protocol, the hashcash algorithm is applied to the 49

service description, with a prefix length fixed in the protocol. Dissymmetry is given by 50

the fact that the prover must try several extensions of the given string to find one with the 51

required prefix, while the verifier needs only one hash value computation to verify the 52

provided solution. 53

The main downside of hashcash is that the difficulty of the puzzle only depends on the 54

length of the required all-zeros prefix. Adding a single zero to the prefix doubles the number 55

of attempts that the prover must afford, and also the variance increases exponentially. A 56

much better control on the difficulty of the puzzle was obtained by Coelho [12], who 57

proposed a solution-verification protocol based on hash trees. In such trees, every leaf is labeled 58

by the hash value of the leaf index concatenated with the service description. Every internal 59

node is labeled by the hash value of the string obtained by concatenating child labels. 60

Finally, some leaves are selected based on the hash value of the root. The prover constructs 61

the tree, and sends to the verifier the nodes in the paths from the selected nodes, and their 62

children (actually, the set of nodes is shrunk by removing nodes whose children belongs to 63
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generated and solved correctly. While such a protocol succeeds in controlling the grow of 65

the prover effort, in practice it needs very large hash trees that must be either stored for the 66

full computation or recomputed after the root hash is determined. 67

In a nutshell, this article addresses the following research questions: 68

RQ1 Is it possible to define a client puzzle protocol based on hashcash but with more 69
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Hashcash [11] is a cryptographic hash-based PoW algorithm that can be used for defin-
ing both challenge–response protocols and solution–verification protocols. In a challenge–
response protocol based on hashcash, the verifier challenges the prover to find an extension
of a given string whose hash value starts with a given number of zeros. As a PoW, the
prover sends the extended string and its hash value, that is, the output of the hashcash
algorithm. In a solution–verification protocol, the hashcash algorithm is applied to the
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service description, with a prefix length fixed in the protocol. Dissymmetry is given by
the fact that the prover must try several extensions of the given string to find one with the
required prefix, while the verifier needs only one hash value computation to verify the
provided solution.

The main downside of hashcash is that the difficulty of the puzzle only depends on the
length of the required all-zeros prefix. Adding a single zero to the prefix doubles the number
of attempts that the prover must afford, and also the variance increases exponentially. A
much better control on the difficulty of the puzzle was obtained by Coelho [12], who
proposed a solution–verification protocol based on hash trees. In such trees, every leaf is labeled
by the hash value of the leaf index concatenated with the service description. Every internal
node is labeled by the hash value of the string obtained by concatenating child labels.
Finally, some leaves are selected based on the hash value of the root. The prover constructs
the tree and sends to the verifier the nodes in the paths from the selected nodes and their
children (actually, the set of nodes is shrunk by removing nodes whose children belongs to
the set; see Figure 3). This way, the verifier has sufficient data to verify that the puzzle was
generated and solved correctly. While such a protocol succeeds in controlling the growth of
the prover’s effort, in practice it needs very large hash trees that must be either stored for
the full computation or recomputed after the root hash is determined.
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In a nutshell, this article addresses the following research questions:

RQ1 Is it possible to define a client puzzle protocol based on hashcash but with more
controllable difficulty of puzzles?

RQ2 Is it possible to define a client puzzle protocol based on hash trees but requiring
smaller trees than those used by Coelho [12]?

RQ3 How resistant to parallel computation is the proposed client puzzle protocol?

To answer the above questions, the challenge–response protocol is modified by split-
ting the challenge in two phases, as shown in Figure 4. In the first phase, the prover is
challenged to solve a puzzle generated by the verifier (steps 2–3). After solving the puzzle
(step 4), the prover sends to the verifier a commitment to conclude the first phase (step 5). In
the second phase, the prover is asked to provide a proof of the solution, that is, sufficient
data to verify that the prover has computed the committed solution (steps 6–9). In the
proposed protocol, the puzzle consists of building a tree satisfying the following conditions:
every leaf is labeled by the output of the hashcash algorithm applied on a verifier-provided
string concatenated to the leaf index; every internal node is labeled by the output of the
hashcash algorithm applied on the verifier-provided string concatenated to the node index
and the hash values of child nodes. This way, the difficulty of the construction of the tree
can be controlled by varying the length of the all-zeros prefix and the number of nodes in
the tree. Similarly to hash trees, the verification of a solution involves the selected node,
those in the path from the selected node to the root, and their children. Given the com-
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bination of features from hashcash and hash trees, the proposed data structure is named
hashcash tree.
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Hashcash trees and the two-phases challenge–response protocol relying on them are
presented in Section 3, after introducing the required background in Section 2. Properties of
the proposed client puzzle protocol are discussed in Section 4. In particular, the computa-
tional complexity is analyzed in terms of computed hash values for both the construction of
hashcash trees and their verification. As for generating hashcash trees, the average number
of computed hash values grows exponentially on the length of the all-zeros prefix and
linearly on the number of nodes. Variance has a similar trend. It turns out that the grow can
be controlled by fixing a relatively small length for the prefix and varying only the number
of nodes depending on the workload of the verifier. As for the verification phase, the effort
only depends (logarithmically) on the number of nodes. The construction of hashcash
trees can be only partially parallelized, as the computation of a node label depends on
the label of child nodes. An empirical evaluation of a proof-of-concept implementation of
the protocol is reported in Section 5. The results confirm that the client puzzle protocol
based on hashcash trees can be used in practice to challenge the prover in generating trees
whose construction effort in terms of the number of computed hash values is controllable.
Finally, related work is discussed in Section 6, and the article conclusion is summarized in
Section 7.

In summary, the article answers RQ1 and RQ2 by introducing a new data structure
combining hashcash and hash trees, namely hashcash trees. The computation of a single
node of a hashcash tree is more expensive than a node in a hash tree because it requires
solving a hashcash challenge. Thanks to such a more expensive computation, hashcash
trees of relatively small size can be adopted by the proposed client puzzle protocol (RQ2).
At the same time, solving several hashcash challenges of modest difficulty enables a fine-
grained control on the difficulty of puzzles, which is not possible to achieve with a single
hashcash challenge (RQ1). Finally, the fact that a node in a hashcash tree can be computed
only after knowing the labels of child nodes provides a restricted form of parallel resistance
(RQ3).
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2. Background

This section introduces preliminary notions such as strings and hash functions
(Section 2.1). Moreover, a client puzzle protocol based on the hashcash nondetermin-
istic function is defined in Section 2.2. Finally, the main notation used for trees and the
notion for hash trees are given in Section 2.3.

2.1. Hash Functions

The term string is used to refer binary strings, that is, elements in {0, 1}∗; strings are
also seen as sequences of bits. The empty string is denoted by ε. The prefix of length n ∈ N
of a string s is the string consisting of the first n bits of s and is denoted by prefix(s, n).
The concatenation of two strings s, s′ is denoted by s||s′. For a string s and a non-negative
integer x, the notation s||x is abused to denote the concatenation of s with the binary string
representation of x. The concatenation of a string s with itself n ∈ N times is denoted by sn

and defined inductively as follows: s0 = ε; sn+1 = sn||s for n ≥ 1. The i-th element of a
string s, and in general of a sequence or tuple, is denoted by s|i.

Example 1. The concatenation 10101000||237, assuming an 8-bit representation of the integer
237, is 1010100011101101. The string (101)3 is 101101101.

A hash function is any function mapping strings of arbitrary length to strings of fixed
length. If m ∈ N+ is the fixed length, the signature of the hash function is

h : {0, 1}∗ → {0, 1}m. (1)

For a string s ∈ {0, 1}∗, the value h(s) returned by the hash function h is called the
hash value of s; the string s is called message. Cryptographic hash functions additionally
ensure the following properties:

(i) The probability of a particular hash value for a message is 2−m;
(ii) Finding a message that matches a given hash value is unfeasible (preimage resistance);
(iii) Finding a second message that matches the hash value of a given message is unfeasible

(second-preimage resistance);
(iv) Finding two different messages that yield the same hash value is unfeasible (collision

resistance).

Example 2. SHA-256 is a popular cryptographic hash function. It produces hash values of length
256. In Unix systems, the hexadecimal representation of the SHA-256 hash value of the string
foo can be obtained as shown in Figure 5. Note that the produced hash value starts with 0x2c =
00111100, that is, has an all-zero prefix of length 2.
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$ echo -n "foo" | sha256sum
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2.2. A Client Puzzle Protocol Based on Hashcash

Hashcash is a (nondeterministic) function parameterized by a hash function h and a
positive integer k; it associates every input string s ∈ {0, 1}∗ with any pair 〈h(s||x), x〉
such that x ∈ N and prefix(h(s||x), k) = 0k. Let hk(s) denote any valid output 〈h(s||x), x〉
of the hashcash function parameterized by h and k. Hashcash essentially asks for finding
partial hash collisions on the all-zeros prefix of length k, and the fastest algorithm for
computing partial collisions is brute force [13]; see Algorithm 1. Assuming that the brute
force algorithm increments x starting from x = 0, finding a valid 〈h(s||x′), x′〉 output
value requires the computation of x′ + 1 hash values. In general, hashcash has unbounded
probability cost, in the sense that theoretically the brute force algorithm can run forever,
though the probability that a solution is not found decreases rapidly towards zero. On the
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other hand, verifying that 〈h(s||x), x〉 is a valid output requires the computation of one
hash value, as shown in Algorithm 2.

Algorithm 1: HASHCASH(s, h, k)

1 for x ∈ N do
2 hash_value := h(s||x);
3 if prefix(hash_value, k) = 0k then
4 return 〈hash_value, x〉;

Algorithm 2: HASHCASHVERIFY(〈hash_value, x〉, s, h, k)

1 return prefix(hash_value, k) = 0k and hash_value = h(s||x);

Example 3. Figure 6 shows a Bash script implementing Algorithm 1 and its execution for different
lengths of the all-zeros prefix. Time measured on an Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz.
It can be observed that the difficulty of the problem does not increase linearly with the number of
zeros in the demanded prefix.

$ cat hcash.sh
input="$1"; prefix="$2"; x=0
while true; do

string=`echo -n "$input||$x" | sha256sum`
if [[ "$string" =∼ ^"$prefix" ]]; then

echo "hash = $string\n x = $x"; break
fi
x=$((x + 1))

done

$ for p in 0 00 000 0000; do /bin/time -f "time = %Us" bash hcash.sh foo $p; done
hash = 0aa4f8fc0f89d777a93a6784d001b017e87226998ecfbaacd1d81718f160cd9a -

x = 3
time = 0.01s

hash = 00c679e2f3093d2d437c22ef2c35673e66829ca17f575eaba81699a549d23b7e -
x = 442

time = 0.62s

hash = 0009d063183b10c0c8d1906674aac59b2831b92f771e41ecdeb69ca1aaf0f701 -
x = 479

time = 0.69s

hash = 000056ea4be004ebf657e89dd5f129bac5f199ff73d1dacafdfd0d440c0ac473 -
x = 56358

time = 89.15s

Figure 6. A Bash implementation of hashcash and its execution for prefixes 0k with k ∈ [1..4].

A client puzzle protocol (CPP) involves two entities, namely a verifier V and a prover
P. P needs to access some (computationally expensive) resource of V. V challenges P to
solve a puzzle before processing its request. A simple CPP based on hashcash comprises
the following steps:

1. The setup consists in V generating and storing a master key mk. The master key is
used to sign data so that V can complete the protocol without storing any further data.
(No signed data is extended in the protocol; no need for HMAC.)

2. P needs to send a request req to V. To this aim, P sends Req := h(req) to V. (Here req is
considered unique. For example, req can include a nonce chosen by P and a timestamp,
and V can track Req for all completed req within the allotted time window. To simplify
the presentation, such details are omitted from the discussion.)

3. V determines the difficulty parameter k ∈ N+ based on its current workload, generates a
timestamp t by which the protocol must be completed, computes s := h(mk||Req||k||t),
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and sends 〈s, k, t〉 to P. (Note that the hash value of the request is signed, not the
request, so that the signed message has fixed length.)

4. P computes S := hk(s) and sends 〈req, S, s, k, t, Req〉 to V.
5. V checks all the following conditions: s = h(mk||Req||k||t); t is in the future; S is valid,

i.e., S|1 = h(s||S|2) and prefix(S|1, k) = 0k; Req = h(req). If all conditions are met, req
is processed.

The idea of a CPP is that a legit user is willing to waste a small amount of its computa-
tional resources in order to access a resource of V, while an attacker requires an unaffordable
amount of computational resources to exhaust V capabilities. The main downside of the
above simple protocol is that the difficulty parameter k does not give a fine-grained control
on the amount of resources needed to solve the puzzle (no determinable difficulty). More-
over, the brute-force algorithm for hashcash has linear speedup (weak parallel computation
resistance).

Example 4. As shown in Example 3, for the message foo there is essentially no difference in
increasing the prefix from 08 to 012, while increasing the prefix to 016 makes the problem much more
difficult. Also note that Algorithm 1 can be easily parallelized, and a GPU with 384 cores would
solve the prefix 016 by computing around 150 hash values per core in around 0.25 s.

2.3. Trees

A labeled binary tree T is either the empty set ∅ or a quadruple 〈r, `, L, R〉, where r is the
root node (of T), ` is the label (of r), and L, R are labeled binary trees referred to as the left child
and the right child (of both T and r); r, L and R are respectively denoted by root(T), left(T)
and right(T). (In the following, the term tree is used to refer labeled binary trees.) Nodes of a
tree are defined inductively: nodes(∅) := ∅; nodes(〈r, `, L, R〉) := {r}∪nodes(L)∪nodes(R).
When L = R = ∅, node r is also called a leaf. Leaves of a tree are defined inductively:
leaves(∅) := ∅; leaves(〈r, `, ∅, ∅〉) := {r}; leaves(〈r, `, L, R〉) := leaves(L) ∪ leaves(R), if
L 6= ∅ or R 6= ∅. An internal node of T is any non-leaf node of T, that is, internal(T) :=
nodes(T) \ leaves(T).

Let v ∈ nodes(T) be a node of T = 〈r, `, L, R〉. The label of v in T is defined induc-
tively: label(v, ∅) := ε; label(v, T) := ` if v = r; label(v, T) := label(v, L) if v ∈ nodes(L);
label(v, T) := label(v, R) if v ∈ nodes(R). The level of v in T is defined inductively:
level(v, T) := 1 if v = r; level(v, T) := 1 + level(v, L) if v ∈ nodes(L); level(v, T) :=
1 + level(v, R) if v ∈ nodes(R). A tree is perfect if all interior nodes have nonempty children
and all leaves have the same level. (In the following, only perfect trees are considered.)
The height of a tree is the level of its leaves. The order of v in T is defined via breadth-
first search (BFS) or level-order search: order(r, T) := 1; for every 〈v, `′, L′, R′〉 occurring in
T, order(root(L′), T) := 2 · order(v, T) and order(root(R′), T) := 2 · order(v, T) + 1. Note
that T can be compactly represented by a one-based array arr of size |nodes(T)|, having
arr[i] = label(v, T) whenever order(v, T) = i.

Example 5. Let T be the tree of height 4 shown in Figure 7. T is such that label(v, T) = order(v, T)
for all v ∈ nodes(T). Its array representation is [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The
leaves have level 4 and are the nodes with label from 8 to 15. Inner nodes have label from 1 to 7. The
root has label 1.

A hash tree, or Merkle tree, is a tree in which every leaf is labeled with the hash value
of a data block, and every internal node is labeled with the hash value of the labels of its
child nodes. Here a data block is any piece of information in a commitment scheme, that is,
hidden data that cannot be changed. In fact, sharing the hash value associated with the
root is sufficient to guarantee that no label of the hash tree is modified. If T is the hash tree
associated with a sequence s1, . . . , s2n of data blocks (n ∈ N), in order to verify that some si
(i ∈ [1..2n]) was not modified, it is sufficient to check nodes in the path from the leaf with
label h(si) to the root. The check involves the labels of these nodes and their children; in
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formulas, if vo denotes the node of T such that oder(vo, T) = o, the labels involved in the
verification of si are label(vbi·2−jc, T) and label(vbi·2−jc+1, T), for j ∈ [0..n− 1].
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Figure 7. A perfect tree T whose nodes are labeled by their order.
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Figure 7. A perfect tree T whose nodes are labeled by their order.

Example 6. Let T be the hash tree shown in Figure 8. Let vo denote the node of T such that
oder(vo, T) = o. To verify that s5 was not modified, the nodes involved are v1, v2, v3, v6, v7, v12, v13.
In particular, the hash values that are recomputed are those associated with nodes from the leaf with
label h(s5) to the root, i.e., those of v12, v6, v3 and v1. Essentially, to modify s5 without changing
the label of v1 requires violating second-preimage resistance of h at each level of T: find new labels
for v2 and v3 matching the hash value in v1; find new labels for v6 and v7 matching the new hash
value in v3; find a new label ` for v13 such that h(h(s′5)||`) matches the new hash value in v6.
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Figure 8. A hash tree for data blocks s1, . . . , s8. The path from the leaf labeled h(s5) to the root is
shown with dashed lines. Siblings of nodes in that path are connected to their parents by dotted lines.

Algorithm 3: HASHCASHTREE(s, n, h, k)

1 height := ⌈log2(n)⌉;
2 tree := array[2height]; // new array of 2height elements
3 for i := 2height down to 1 do
4 if i > n then
5 tree[i] := ⟨ϵ, 0⟩;
6 else
7 tree[i] := HASHCASH(s||i||tree[2i][1]||tree[2i + 1][1], h, k);

8 return tree;
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Figure 8. A hash tree for data blocks s1, . . . , s8. The path from the leaf labeled h(s5) to the root is
shown with dashed lines. Siblings of nodes in that path are connected to their parents by dotted lines.

3. Hashcash Trees and Their Application to Client Puzzle Protocols

The definition of hashcash tree is parameterized with respect to a hash function h and
a positive integer k, which are assumed fixed in this section. Recall that hk(s) denotes any
pair 〈h(s||x), x〉 such that x ∈ N and prefix(h(s||x), k) = 0k. For a string s and an integer
n ∈ N+, let (`i)i∈N+ be the (nondeterministic) sequence of labels defined as follows:

`i :=
{

hk(s||i||(`2i|1)||(`2i+1|1)) if i ∈ [1..n];
〈ε, 0〉 otherwise.

(2)

The hashcash tree of size n for the string s is the perfect tree T of height dlog2(n)e
such that, for each v ∈ nodes(T), if order(v, T) = i, then label(v, T) = `i. As shown by
Algorithm 3 and Figure 9, a hashcash tree of size n is constructed by first computing the
labels of the nodes of level dlog2(n)e (i.e., leaves) and then iteratively computing the labels
of nodes of previous levels until the label of the root is obtained. In total, the algorithm
performs n hashcash computations.
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Algorithm 3: HASHCASHTREE(s, n, h, k)

1 height := dlog2(n)e;
2 tree := array[2height]; // new array of 2height elements
3 for i := 2height down to 1 do
4 if i > n then
5 tree[i] := 〈ε, 0〉;
6 else
7 tree[i] := HASHCASH(s||i||tree[2i][1]||tree[2i + 1][1], h, k);

8 return tree;
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Figure 9. Activity diagram of Algorithm 3 building a hashcash tree of size n for the string s using
hash function h and prefix length k.
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Figure 10. A hashcash tree of size 4 for the string s. The path from the first leaf (node with order 4) to
the root is shown with dashed lines. Siblings of nodes in that path are connected to their parents by
dotted lines.
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that order(vo, T) = o. Once the label of the root is disclosed, changing any label in the tree 242

is computationally unfeasible. In particular, changing the label of a leaf, say v4, requires to 243

violate second-preimage resistance of h at each level of T, with the additional difficulty that 244
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Example 7. Let T be the hashcash tree shown in Figure 10. Let vo denote the node of T such
that order(vo, T) = o. Once the label of the root is disclosed, changing any label in the tree is
computationally unfeasible. In particular, changing the label of a leaf, say v4, requires violating
second-preimage resistance of h at each level of T, with the additional difficulty that the new hash
values must also be a valid output of the hashcash algorithm.
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Algorithm 4: HASHCASHTREEVERIFY(T, i, s, n, h, k)

// Let vo be the node of T such that oder(vo, T) = o, for o ∈ [1..n].
1 while i ≥ 1 do
2 if i ≤ n then
3 left := label(v2i, T) if 2i ≤ n else ε;
4 right := label(v2i+1, T) if 2i + 1 ≤ n else ε;
5 if not HASHCASHVERIFY(label(vi, T), s||i||left||right, h, k) then
6 return false;

7 i := i div 2;
8 if prefix(label(v2i, T)|1) 6= 0k or prefix(label(v2i+1, T)|1) 6= 0k then
9 return false;

10 return true;

Similarly to a hash tree, the validation of a leaf i of a hashcash tree T involves nodes
in the path from i to the root of T and their children; see Algorithm 4 and Figure 11.
Specifically, the prefix of all hash values associated with these nodes is validated (lines 8–
9), while hash values are recomputed only for nodes in the path from i to the root of T
(lines 2–6). On the basis of Algorithms 3–4, the proposed CPP comprises the following
steps:

1. The setup consists in the verifier V generating and storing a master key mk.
2. The prover P needs to send a request req to V. To this aim, P sends Req := h(req) to V.
3. V determines the difficulty parameter n ∈ N+ based on its current workload, generates a

timestamp t by which the protocol must be completed, computes s := h(mk||Req||n||t),
and sends 〈s, n, t〉 to P.

4. P computes and stores the hashcash tree T of size n for s using Algorithm 3 and sends
〈sol, s, n, t, Req〉 to V, where sol is label(root(T))|1.

5. V checks s = h(mk||Req||n||t), verifies that t is in the future, randomly selects a
number i ∈ [2H−1..2H − 1] (a leaf), and sends 〈I, i〉 to P, where I := h(mk||Req||sol||i).

6. P sends 〈req, S, I, i, s, n, t, Req〉 to V, where S consists of labels associated with nodes in
the path from i to the root and their children; in formulas, S is the sequence comprising
`bi·2−jc and `bi·2−jc+1, for j ∈ [0..dlog2(n)e − 1]. (As an optimization, witness integers
of labels not in the path from i to the root can be discarded.)

7. V checks all the following conditions: s = h(mk||Req||n||t); t is in the future;
I = h(mk||Req||sol||i), where sol is `1|1 in S (i.e., the hash value associated with the
root of the partial hashcash tree sent by P); S is valid; Req = h(req). If all conditions
are met, req is processed.

The validation of S at step 7 amounts to check that each label `j in the path from i to
the root is actually obtained according to (2); Algorithm 4 is used.
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Figure 11. Activity diagram of Algorithm 4 verifying node i of a hashcash tree T of size n for the
string s using hash function h and prefix length k. Recall that vo denotes the node of T such that
oder(vo, T) = o, for o ∈ [1..n].

Algorithm 4: HASHCASHTREEVERIFY(T, i, s, n, h, k)

// Let vo be the node of T such that oder(vo, T) = o, for o ∈ [1..n].
1 while i ≥ 1 do
2 if i ≤ n then
3 left := label(v2i, T) if 2i ≤ n else ϵ;
4 right := label(v2i+1, T) if 2i + 1 ≤ n else ϵ;
5 if not HASHCASHVERIFY(label(vi, T), s||i||left||right, h, k) then
6 return false;

7 i := i div 2;
8 if prefix(label(v2i, T)|1) ̸= 0k or prefix(label(v2i+1, T)|1) ̸= 0k then
9 return false;

10 return true;
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7. V checks all the following conditions: s = h(mk||Req||n||t); t is in the future; I = 264

h(mk||Req||sol||i), where sol is ℓ1|1 in S (i.e., the hash value associated with the root of 265

the partial hashcash tree sent by P); S is valid; Req = h(req). If all conditions are met, 266
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Figure 11. Activity diagram of Algorithm 4 verifying node i of a hashcash tree T of size n for the
string s using hash function h and prefix length k. Recall that vo denotes the node of T such that
oder(vo, T) = o, for o ∈ [1..n].

Example 8. Let us run the CPP for req = “req”, using the hash function SHA-256 and a
prefix length k = 4. V generates the master key mk = 41416d572ab944bab51deb6ab388c434.
P sends Req = c3 f 7bd f 537c46724392c4428e47e04c148c56966190c3c9ed92114800c9 f 35bb to
V. V determines n = 4 (encoded as 0400), t = 1691442051.890254 (10 s in the future, en-
coded as ec f 9 f 8e05634d941), s = SHA-256(mk||Req||n||t) = d4b147ccb397a f 1b3a1 f 9d278e8
edaba350530291bcc0c f 211ca f d1042dc1ed6, and sends 〈s, n, t〉 to P. P computes the hashcash
tree shown in Figure 12, and sends sol = 002eb1 f 4d23d95984 f a2be7280d4e4 f dd f 65c2 f 94d757
3b31a426885b115a9e6 (with s, n, t, and Req) to V. V checks that s and t are valid, randomly
selects i = 4 (the first leaf), computes I = 8125 f c9ab943890cd3d3 f 5ec0031 f 8a5 f b3 f e392b47a59
19d4a06c f 4c371da20, and sends 〈I, i〉 to P. P sends the labels 〈sol, 3〉, 〈h2, 13〉, 〈h3, 3〉, 〈h4, 15〉
and 〈ε, 0〉 to V (with the other required data). V runs Algorithm 4 on a tree T constructed with
the received labels (other labels are irrelevant). Since the algorithm returns true, and all other
conditions are met, the request req is processed.
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⟨002eb1 f 4d23d95984 f a2be7280d4e4 f dd f 65c2 f 94d7573b31a426885b115a9e6, 3⟩

⟨h2, 13⟩

⟨h4, 15⟩ ⟨ϵ, 0⟩

⟨h3, 3⟩

⟨ϵ, 0⟩ ⟨ϵ, 0⟩

Figure 12. A hashcash tree of size 4 for d4b147ccb397a f 1b3a1 f 9d278e8edaba350530291bcc0c f 211ca f d10
42dc1ed6, where h2 = 08b706ec f 8 f 3a4 f 73a4ad f bbc3be88c39b17e970892d3e41c92935b3354acdd1,
h3 = 0e40464aa8121dc6eaa9d676c9b44d3d7ad4d9a1d48776ec f f ea0b68b6ac068e and h4 =

09803620d374bac45cdad30712578610dae021c2cd394234a2b8749d36 f cee11. The path from the
first leaf (node with order 4) to the root is shown with dashed lines. Siblings of nodes in that path are
connected to their parents by dotted lines.
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Figure 12. A hashcash tree of size 4 for d4b147ccb397a f 1b3a1 f 9d278e8edaba350530291bcc0c f 211ca f d10
42dc1ed6, where h2 = 08b706ec f 8 f 3a4 f 73a4ad f bbc3be88c39b17e970892d3e41c92935b3354acdd1,
h3 = 0e40464aa8121dc6eaa9d676c9b44d3d7ad4d9a1d48776ec f f ea0b68b6ac068e and h4 =

09803620d374bac45cdad30712578610dae021c2cd394234a2b8749d36 f cee11. The path from the
first leaf (node with order 4) to the root is shown with dashed lines. Siblings of nodes in that path are
connected to their parents by dotted lines.

4. Properties
4.1. Computational Complexity

The complexity of the algorithms introduced in the previous section is analyzed by
measuring the number of computed hash values. Let s be a message and h be a crypto-
graphic hash function producing hash values of length m ∈ N. By definition of crypto-
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graphic hash function, the probability that h(s) = s′ is 2−m, for all s′ ∈ {0, 1}m. Hence,
the probability that h(s) starts with the prefix 0k is 2−k, for all k ∈ [0..m]. Since all hash
value computations are independent, the number of hash values computed by Algorithm 1
follows the geometric distribution. As for the verification procedure (Algorithm 2), a single
hash value is computed.

Proposition 1. The probability that HASHCASH(s, h, k) terminates after computing N + 1 hash
values is (1− 2−k)N · 2−k, for all N ∈ N. On average, the number of unused hash values computed
by Algorithm 1 is (1− 2−k) · 2k, with variance (1− 2−k) · 22k.

Proof. Since all hash values are equiprobable by definition of h, the probability that 0 occurs
as a specific output bit is 0.5. As all bits are independent, the probability that a hash value
starts by 0k is p = 2−k. The algorithm terminates at the first success of independent trials,
so the probability that it terminates after computing N + 1 hash value is modeled by the
geometric distribution: the probability mass function (of observed failures) is (1− p)N · p,
the mean value (of observed failures) is (1− p)/p, and the variance is (1− p)/p2. The
proof is complete after substituting p = 2−k.

Proposition 2. HASHCASHVERIFY(〈hash_value, x〉, s, h, k) terminates after computing one hash
value.

Proof. Immediate by observing line 1 of Algorithm 2.

Regarding hashcash trees, the first n nodes of a hashcash tree of size n are labeled
by hashcash output values. The prefix 0k is common to all such hashcash output val-
ues, hence keeping the success probability constant for all hashcash computations. It
turns out that the number of hash values computed by Algorithm 3 follows the negative
binomial distribution.

Theorem 1. The probability that HASHCASHTREE(s, n, h, k) terminates after computing N + n
hash values is

(
N + n− 1

N

)
(1− 2−k)N · 2−k·n (3)

for all N ∈ N. On average, the number of unused hash values computed by Algorithm 3 (via
Algorithm 1) is n · (1− 2−k) · 2k, with variance n · (1− 2−k) · 22k.

Proof. Each call to Algorithm 1 follows the Bernoulli distribution with success probability
p = 2−k. Therefore, the total number of unused hash values (failures) follows the negative
binomial distribution: the probability mass function (of observed failures) is

(
N + n− 1

N

)
(1− p)N · pn, (4)

the mean value (of observed failures) is n · (1− p)/p, and the variance is n · (1− p)/p2.
The proof is complete after substituting p = 2−k.

Regarding the verification procedure (Algorithm 4), the labels that are verified are
those in the path from the selected leaf to the root.

Theorem 2. HASHCASHTREEVERIFY(T, i, s, n, h, k) terminates after computing at most
dlog2(n)e hash values.

Proof. Hash values are computed indirectly by calling Algorithm 2, one hash value for
each call. Algorithm 2 is called at line 5, at all iterations of the main loop in the worst case.
The main loop is repeated dlog2(n)e in the worst case because i is divided by 2 at line 7.
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4.2. Determinable Difficulty

Theorem 1 provides a clear indication that the average number of hash values com-
puted by Algorithm 3 scales linearly on the size of the hashcash tree, and exponentially on
the length of the required prefix. Similarly, and more importantly, the expected variance
is linear with respect to the size of the hashcash tree, and exponential with respect to the
prefix length. It turns out that, in order to control the average number of hash values with
a relatively small variance, Algorithm 3 must be run with small values of k, adjusting the
size n to impose the difficulty of the problem. Figure 13 reports the average number of
hash values and the expected standard deviation for several values of k and n.
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Figure 13. Average number of unused hash values computed by HASHCASHTREE(s, n, h, k) for
different values of the prefix length k. Numbers within the standard deviation are shown by a shade
of the same color.

4.3. Parallel Computation Resistance

As already observed, a parallel version of Algorithm 1 is expected to have linear
speedup. With the proposed protocol, parallel computation resistance is achieved over
the paths of the hashcash tree, as in fact the labels of internal nodes are obtained by
computing hashcash output values of strings including the hash values associated with
child nodes. It turns out that the height of the hashcash tree provides a measure on the
parallel computation resistance.

Theorem 3. Any parallel implementation of HASHCASHTREE(s, n, h, k) includes at least
dlog2(n)e sequential calls to Algorithm 1.

Proof. The computation of the label of each internal node in the hashcash tree is a synchro-
nization point: labels of child nodes must be computed before the starting the computation
of the label of the internal node. By definition, there is at least one leaf of the hashcash tree
whose label is different from 〈ε, 0〉. Hence, all nodes in the path from such a leaf to the root
have labels obtained by sequential calls to Algorithm 1. The length of such a sequence is
the height dlog2(n)e of the tree.
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5. Implementation and Experiment

A proof-of-concept implementation of the algorithm presented in Section 3 is available
at https://github.com/alviano/hashcash-tree (accessed on 28 September 2023). It is written
in Python 3.11 and uses the SHA-256 function from the hashlib package (even if other
hash functions can be easily added). Numeric computation is powered by NumPy, and
witnesses are represented as unsigned 16-bits integers. The CPP is implemented in a REST
server powered by the FastAPI framework. Master keys are universally unique identifier
(UUID) v4, i.e., 36-character alphanumeric strings. Timestamps are represented as double
precision floating-point numbers. An example client for consuming the REST API is also
provided. It performs 1000 (one thousand) requests, possibly using multiple threads or
processes. Requests themselves are not of particular importance for the example client,
which is designed so that all the computation is focused on solving the CPP provided
by the REST server. Note that fixing n = 1 in the implemented CPP essentially results
into the CPP defined in Section 2.2; the prover is challenged to solve a single hashcash
computation, for some prefix length k. On the other hand, fixing k = 0 in the implemented
CPP essentially results in a CPP using hash trees because hashcash is disabled.

In order to empirically verify the theoretical analysis carried out in Section 4, the REST
server and the example client were run with several configurations. The difficulty of the
generated puzzles was varied by modifying both the prefix length (parameter k) and the
size of the hashcash tree (parameter n); within this respect, k was tested with all values
from 0 to 8, and n was tested with value 2i − 1 for i ∈ [4..15]. As for the client, since the
experiment was run on a quad-core Intel(R) Xeon(R) CPU X3430 @ 2.40 GHz with 16 GB
of RAM, the number of workers was fixed to 4 (i.e., the 1000 requests were processed in
parallel by 4 processes). Measured values include the total CPU usage of the REST server,
and the CPU usage of the example client for each request (from starting the interaction
with the REST server to the submission of the validation data). Computed values include
the average CPU usage for completing the 1000 requests, the standard deviation, and the
minimum and maximum CPU usage.

A summary of the measured and computed values is shown in Figure 14. The plot
uses logarithmic axes and reports the average CPU usage of the prover; times within the
standard deviation are colored in dark shades, and other times between the minimum and
the maximum CPU usage are colored in light shades. As a first observation, each increment
of the prefix length (k) causes a jump in the effort required by the prover to solve the puzzle.
Recall that for n = 1, the CPP is essentially the one based on hashcash alone. On the other
hand, for every fixed value of k, the prover effort scales linearly on the size of the hashcash
tree (n). Observing the standard deviation, it is possible to conclude that all hashcash trees
are computed with similar effort once k and n are fixed. As a final observation on the plot,
note that for k = 0 (i.e., essentially using hash trees) the puzzle is solved in less than 2
s even for the largest case of n = 215 = 32,767. If storing a node takes 34 bytes (32 bytes
for the SHA-256 hash value and 2 bytes for the witness), a hashcash tree of size n = 215 =
32,767 requires around 1024 KiB of memory. In contrast, note that for k = 4 and n = 4095
the puzzle is solved in around 2.26 s and the hashcash tree can be stored in around 136 KiB.
Similarly, for k = 5 and n = 2047 the puzzle is solved in around 2.20 s and the hashcash
tree can be stored in around 68 KiB.

https://github.com/alviano/hashcash-tree
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Figure 14. Average prover effort (P’s CPU time, in seconds) over 1000 requests, with standard
deviation (dark shade), and minimum and maximum values (light shade). For each prefix length
(parameter k), the size of the hashcash tree varies from n = 24 − 1 = 15 to n = 215 − 1 = 32,767.

Figure 15 shows the measured prover effort for each solved CPP. There is a plot for
each tested value of n. Each of these plots reports one line for each tested value of k. The
lines are obtained by plotting the measured CPU time (y axis) for each solved CPP (x axis).
It can be observed that the computation of hashcash trees of size up to n = 63 is very fast,
always below 1 s. On the contrary, the computation of hashcash trees of size n = 8191 is
very slow for k ≥ 5, requiring at least 10 s. Focusing on the remaining values of n, from 127
to 4095, the values of k that lead to CPU times between 0.1 s and 10 s are 4, 5, and 6.

Figure 16 is focused on the values of k identified above. The benchmark was run by
increasing the size of the generated hashcash tree linearly, with steps of 32 nodes. For each
tested size, 1000 hashcash trees were generated. The plot reports the average CPU time
used by the prover, with values within the standard deviation and within the minimum and
maximum measured values. For all three prefix lengths, the prover effort scales linearly,
confirming that the verifier can precisely control the difficulty of the puzzle. The measured
verifier effort, including the CPU usage for running FastAPI, is the following: for k = 4, it
is around 12.7 ms per request, with standard deviation 0.3 ms; for k = 5, it is around 12.9
ms per request, with standard deviation 0.4 ms; for k = 6, it is around 13.4 ms per request,
with standard deviation 0.6 ms.
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Figure 15. Prover effort (P’s CPU time, in seconds) over 1 000 requests for different prefix lengths
(parameter k) and size of the hashcash tree (parameter n).
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Figure 16. Average prover effort (P’s CPU time, in seconds) over 1000 requests, with standard
deviation (dark shade), and minimum and maximum values (light shade). Prefix length (parameter
k) fixed to 4, size of hashcash tree varying from n = 127 to n = 4095 with steps of 32.

6. Related Work

Detecting DoS attacks is challenging and addressed by sophisticated techniques,
among them some based on machine learning [4–6]; a survey on DoS detection techniques is
given by de Neira et al. [7]. As an earlier barrier against DoS attacks, prevention techniques
can be adopted to protect sensitive services and assets of an organization [14,15]. This
article introduces a client puzzle protocol as a prevention technique to mitigate DoS attacks.

The concept of the client puzzle was introduced by Juels and Brainard [16], who sug-
gested their application to prevent denial-of-service (DoS) attacks. The main characteristic
of client puzzles is that they can be solved by a polynomial-time entity upon spending a
certain amount of resources, and therefore a server may provide access to some of its assets
in exchange of a valid solution for a new client puzzle. A similar concept is given by Dwork
and Naor [9] with the notion of pricing function to combat junk emails, and by Rivest,
Shamir, and Wagner [17] with the notion of timed-lock puzzle as a tool to realize timed-
release crypto. Client puzzles are expected to be unforgeable and difficult to solve [18] and
possibly to have determinable difficulty and parallel computation resistance [19].

Client puzzles can be categorized as CPU-bound and memory-bound. In CPU-bound
client puzzles, the prover effort is measured by the amount of CPU cycles needed to solve a
puzzle; several client puzzles belong to this category [9,11,16–18,20–22]. In memory-bound
client puzzles, the prover effort is measured by the amount of memory look-ups needed to
solve a puzzle; the main argument in support of memory-bound client puzzles is that CPU
power varies more than memory look-up speed for different computers [23–25].

The CPP presented in Section 3 is CPU-bound and combines hashcash [11] and hash
trees [26]. The main obstacle to using hashcash alone is its unbounded probability cost.
The length k of the prefix is the only parameter that can be used to control the difficulty of
the puzzle, and both difficulty and variance increase exponentially when k increases (see
Proposition 1). An attempt to gain more control on the difficulty of puzzles was performed
by Juels and Brainard [16], who essentially designed a CPP involving several sub-puzzles.
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The results shown by Theorem 1 for hashcash trees can be extended to such a CPP when
sub-puzzles are hashcash computations. On the other hand, such a CPP requires verifying
(and therefore transmitting) the solutions of all sub-puzzles, while a logarithmic number of
solutions is sufficient to verify a hashcash tree (see Theorem 2).

A CPP based on hash trees was designed by Coelho [12]. It can be seen as a solution–
verification version of the CPP proposed in Section 3; when the prefix length is fixed to
k = 0 (i.e., hashcash is disabled), the tree is computed based on the service description
and several leaves are selected for the verification phase based on the root hash value. The
difficulty of the puzzle is determinable with high precision, but the size of hash trees can
grow quickly. This is a downside of the protocol, given the fact that the hash tree must
be stored (or recomputed) by the prover in order to provide the labels for the verification
phase, which are discovered only after the root hash value is computed. The proposed
CPP can rely on smaller trees because the difficulty of computing a single node can also be
controlled via the length of the required prefix, i.e., by enabling hashcash.

Differently from previously defined protocols, in addition to the first interaction
with the server to obtain the challenge for accessing the requested service, the proposed
protocol expects a commitment on the computed solution before disclosing the portion
required to prove the legitimacy of the client (see Figure 4). This is in particular contrast
with the non-interactive approach by Raikwar and Gligoroski [27], whose protocol is
explicitly designed to limit the interaction with the server to the verification phase (see
Figure 2). Another fundamental difference with the protocol by Raikwar and Gligoroski is
the adopted crypthographic technique: Raikwar and Gligoroski opted for deterministic
verifiable delay function (VDF) [28], while the protocol proposed in this article is based on
the non-deterministic hashcash algorithm. Given the fact that the non-determinism is
essentially mitigated by the use of short prefixes, as shown in Section 5, adopting hashcash
instead of VDF is justified by a simpler implementation.

7. Conclusions

Hashcash trees combine features of the hashcash algorithm with those of hash trees.
Labels are obtained by running the hashcash algorithm and therefore are moderately hard
to compute (exponential on the length of the prefix) and easy to verify (one hash value
computation). Labels of internal nodes depend on child nodes, and therefore parallel
computation is limited. Moreover, the root is a commitment for the tree, which does not
need to be fully transmitted to the verifier. In fact, the verification involves a logarithmic
number of nodes because the selected leaf is known to the prover only after disclosing the
commitment. The associated client puzzle protocol relies on two parameters for controlling
the prover’s effort. The number of computed hash values grows exponentially on the
prefix length and linearly on the size of the hashcash tree. The empirical analysis suggests
that the prefix length can be fixed to 4 or 5, with hashcash trees of size between 127 and
4095, to generate puzzles solvable in a few seconds. Improving parallel computation
resistance is an interesting future line of research and will require the introduction of
synchronization points in the computation of labels at the same level of the tree. Other
future lines of research include the definition of a (one-phase) challenge–response protocol,
for example, by self-imposing the selected leaf based on the hash value of the root node,
and the definition of a solution–verification protocol, constructing the hashcash tree based
on publicly-available data from the server.
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