
Citation: Alviano, M. Hashcash Tree,

a Data Structure to Mitigate Denial-

of-Service Attacks. Algorithms 2023,

16, 462. https://doi.org/10.3390/

a16100462

Academic Editors: Frank Werner,

Ali Sadiq, Houbing Song, Ahmad

Fadhil Yusof, Sushil Kumar and

Omprakash Kaiwartya

Received: 25 August 2023

Revised: 21 September 2023

Accepted: 26 September 2023

Published: 30 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Hashcash Tree, a Data Structure to Mitigate Denial-of-Service
Attacks
Mario Alviano

Department of Mathematics and Computer Science, University of Calabria, 87036 Arcavacata di Rende, CS, Italy;
mario.alviano@unical.it

Abstract: Client puzzle protocols are widely adopted mechanisms for defending against resource
exhaustion denial-of-service (DoS) attacks. Among the simplest puzzles used by such protocols, there
are cryptographic challenges requiring the finding of hash values with some required properties.
However, by the way hash functions are designed, predicting the difficulty of finding hash values
with non-trivial properties is impossible. This is the main limitation of simple proof-of-work (PoW)
algorithms, such as hashcash. We propose a new data structure combining hashcash and Merkle
trees, also known as hash trees. In the proposed data structure, called hashcash tree, all hash values
are required to start with a given number of zeros (as for hashcash), and hash values of internal nodes
are obtained by hashing the hash values of child nodes (as for hash trees). The client is forced to
compute all hash values, but only those in the path from a leaf to the root are required by the server
to verify the proof of work. The proposed client puzzle is implemented and evaluated empirically to
show that the difficulty of puzzles can be accurately controlled.

Keywords: security; partial hash collision; price functions; denial-of-service attacks; client puzzles;
proof of work

1. Introduction

Denial-of-service (DoS) attacks are focused on making a resource (site, application,
server) unavailable for the purpose it was designed for and represent a severe threat to
the current Internet community [1]. DoS attacks cause significant losses [2,3] and motivate
the research of sophisticated detection techniques [4–8]. Dwork and Noar [9] suggested
the use of proof-of-work (PoW) schema to mitigate the proliferation of spam emails: a
computation stamp is required to obtain a service; in the context of emails, the service
can be the forwarding of a message. In general, PoW is a form of cryptographic proof in
which one party (the prover) proves to others (the verifiers) that a certain amount of a
specific computational effort has been expended; verifiers can subsequently confirm this
expenditure with minimal effort on their part [10]. PoW schema are dissymmetric in favor
of the verifier: the computation is moderately hard for the prover, while it is easy for a
verifier to check a given solution. When PoW is applied to DoS mitigation, the prover role
is played by a client aiming at accessing a service, and the verifier role is played by the
server providing the required service.

PoW is often implemented by solving a cryptographic puzzle. The puzzle can be
chosen by the sever, leading to challenge–response protocols, or self-imposed by the request
of the client, leading to solution–verification protocols. In this article, protocols of these kinds
are collectively called client puzzle protocols. Figure 1 shows the main steps of challenge–
response protocols. A client, acting as prover, needs a service provided by a server, acting
as verifier (step 1). The verifier generates a puzzle, with negligible effort, and challenges
the client (steps 2–3). The client affords a moderately hard computation to solve the puzzle,
and sends the solution to the server (steps 4–5). The server verifies the solution, again with
negligible effort, and grants access to the requested service (steps 6–7). Figure 2 shows

Algorithms 2023, 16, 462. https://doi.org/10.3390/a16100462 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16100462
https://doi.org/10.3390/a16100462
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-2052-2063
https://doi.org/10.3390/a16100462
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16100462?type=check_update&version=2

Algorithms 2023, 16, 462 2 of 20

the main steps of solution–verification protocols. The client generates a puzzle based on
the requested service and computes a solution (steps 1–2). After that, the client sends the
puzzle, its solution, and the request to the server (step 3). The server verifies that the puzzle
was correctly generated and that the solution is valid (step 4). If both tests succeed, the
request is processed (step 5).

Version September 20, 2023 submitted to Algorithms 2 of 19

Prover Verifier

1. request service

3. challenge

4. solve puzzle

5. solution

6. verify

2. generate puzzle

7. grant service

1. request service

3. challenge

4. solve puzzle

5. solution

6. verify

2. generate puzzle

7. grant service

Figure 1. Sequence of events in a challenge-response protocol

puzzle, its solution and the request to the server (step 3). The server verifies that the puzzle 41

was correctly generated, and that the solution is valid (step 4). If both tests succeed, the 42

request is processed (step 5). 43

Hashcash [11] is a cryptographic hash-based PoW algorithm that can be used for defin- 44

ing both challenge-response protocols and solution-verification protocols. In a challenge- 45

response protocol based on hashcash, the verifier challenges the prover to find an extension 46

of a given string whose hash value starts with a given number of zeros. As a PoW, the 47

prover sends the extended string and its hash value, that is, the output of the hashcash 48

algorithm. In a solution-verification protocol, the hashcash algorithm is applied to the 49

service description, with a prefix length fixed in the protocol. Dissymmetry is given by 50

the fact that the prover must try several extensions of the given string to find one with the 51

required prefix, while the verifier needs only one hash value computation to verify the 52

provided solution. 53

The main downside of hashcash is that the difficulty of the puzzle only depends on the 54

length of the required all-zeros prefix. Adding a single zero to the prefix doubles the number 55

of attempts that the prover must afford, and also the variance increases exponentially. A 56

much better control on the difficulty of the puzzle was obtained by Coelho [12], who 57

proposed a solution-verification protocol based on hash trees. In such trees, every leaf is labeled 58

by the hash value of the leaf index concatenated with the service description. Every internal 59

node is labeled by the hash value of the string obtained by concatenating child labels. 60

Finally, some leaves are selected based on the hash value of the root. The prover constructs 61

the tree, and sends to the verifier the nodes in the paths from the selected nodes, and their 62

children (actually, the set of nodes is shrunk by removing nodes whose children belongs to 63

the set; see Figure 3). This way, the verifier has sufficient data to verify that the puzzle was 64

generated and solved correctly. While such a protocol succeeds in controlling the grow of 65

the prover effort, in practice it needs very large hash trees that must be either stored for the 66

full computation or recomputed after the root hash is determined. 67

In a nutshell, this article addresses the following research questions: 68

RQ1 Is it possible to define a client puzzle protocol based on hashcash but with more 69

controllable difficulty of puzzles? 70

RQ2 Is it possible to define a client puzzle protocol based on hash trees but requiring 71

smaller trees than those used by Coelho [12]? 72

RQ3 How much resistant to parallel computation is the proposed client puzzle protocol? 73

Figure 1. Sequence of events in a challenge–response protocol.

Version September 20, 2023 submitted to Algorithms 3 of 19

Prover Verifier

2. solve puzzle

3. puzzle + solution + request

4. verify

1. generate puzzle

5. process request

2. solve puzzle

3. puzzle + solution + request

4. verify

1. generate puzzle

5. process request

Figure 2. Sequence of events in a solution-verification protocol

Figure 3. In a hash tree, to verify the hash value of the red node, the hash values of the blue nodes
are used to reconstruct the hash value of the root. Pink nodes are those in the path from the selected
node to root. Blue nodes are their children not included in the path.

To answer the above questions, the challenge-response protocol is modified by splitting 74

the challenge in two phases, as shown in Figure 4. In the first phase the prover is challenged 75

to solve a puzzle generated by the verifier (steps 2–3). After solving the puzzle (step 4), 76

the prover sends to the verifier a commitment to conclude the first phase (step 5). In the 77

second phase the prover is asked to provide a proof of the solution, that is, sufficient data 78

to verify that the prover has computed the committed solution (steps 6–9). In the proposed 79

protocol, the puzzle consists of building a tree satisfying the following conditions: every 80

leaf is labeled by the output of the hashcash algorithm applied on a verifier-provided string 81

concatenated to the leaf index; every internal node is labeled by the output of the hashcash 82

algorithm applied on the verifier-provided string concatenated to the node index and the 83

hash values of child nodes. This way, the difficulty of the construction of the tree can be 84

controlled by varying the length of the all-zeros prefix and the number of nodes in the tree. 85

Similarly to hash trees, the verification of a solution involves the selected node, those in 86

the path from the selected node to the root, and their children. Given the combination of 87

features from hashcash and hash trees, the proposed data structure is named hashcash tree. 88

Hashcash trees and the two-phases challenge-response protocol relying on them are 89

presented in Section 3, after introducing the required background in Section 2. Properties of 90

Figure 2. Sequence of events in a solution–verification protocol.

Hashcash [11] is a cryptographic hash-based PoW algorithm that can be used for defin-
ing both challenge–response protocols and solution–verification protocols. In a challenge–

Algorithms 2023, 16, 462 3 of 20

response protocol based on hashcash, the verifier challenges the prover to find an extension
of a given string whose hash value starts with a given number of zeros. As a PoW, the
prover sends the extended string and its hash value, that is, the output of the hashcash
algorithm. In a solution–verification protocol, the hashcash algorithm is applied to the
service description, with a prefix length fixed in the protocol. Dissymmetry is given by
the fact that the prover must try several extensions of the given string to find one with the
required prefix, while the verifier needs only one hash value computation to verify the
provided solution.

The main downside of hashcash is that the difficulty of the puzzle only depends on the
length of the required all-zeros prefix. Adding a single zero to the prefix doubles the number
of attempts that the prover must afford, and also the variance increases exponentially. A
much better control on the difficulty of the puzzle was obtained by Coelho [12], who
proposed a solution–verification protocol based on hash trees. In such trees, every leaf is labeled
by the hash value of the leaf index concatenated with the service description. Every internal
node is labeled by the hash value of the string obtained by concatenating child labels.
Finally, some leaves are selected based on the hash value of the root. The prover constructs
the tree and sends to the verifier the nodes in the paths from the selected nodes and their
children (actually, the set of nodes is shrunk by removing nodes whose children belongs to
the set; see Figure 3). This way, the verifier has sufficient data to verify that the puzzle was
generated and solved correctly. While such a protocol succeeds in controlling the growth of
the prover’s effort, in practice it needs very large hash trees that must be either stored for
the full computation or recomputed after the root hash is determined.

Version September 20, 2023 submitted to Algorithms 3 of 19

Prover Verifier

2. solve puzzle

3. puzzle + solution + request

4. verify

1. generate puzzle

5. process request

2. solve puzzle

3. puzzle + solution + request

4. verify

1. generate puzzle

5. process request

Figure 2. Sequence of events in a solution-verification protocol

Figure 3. In a hash tree, to verify the hash value of the red node, the hash values of the blue nodes
are used to reconstruct the hash value of the root. Pink nodes are those in the path from the selected
node to root. Blue nodes are their children not included in the path.

To answer the above questions, the challenge-response protocol is modified by splitting 74

the challenge in two phases, as shown in Figure 4. In the first phase the prover is challenged 75

to solve a puzzle generated by the verifier (steps 2–3). After solving the puzzle (step 4), 76

the prover sends to the verifier a commitment to conclude the first phase (step 5). In the 77

second phase the prover is asked to provide a proof of the solution, that is, sufficient data 78

to verify that the prover has computed the committed solution (steps 6–9). In the proposed 79

protocol, the puzzle consists of building a tree satisfying the following conditions: every 80

leaf is labeled by the output of the hashcash algorithm applied on a verifier-provided string 81

concatenated to the leaf index; every internal node is labeled by the output of the hashcash 82

algorithm applied on the verifier-provided string concatenated to the node index and the 83

hash values of child nodes. This way, the difficulty of the construction of the tree can be 84

controlled by varying the length of the all-zeros prefix and the number of nodes in the tree. 85

Similarly to hash trees, the verification of a solution involves the selected node, those in 86

the path from the selected node to the root, and their children. Given the combination of 87

features from hashcash and hash trees, the proposed data structure is named hashcash tree. 88

Hashcash trees and the two-phases challenge-response protocol relying on them are 89

presented in Section 3, after introducing the required background in Section 2. Properties of 90

Figure 3. In a hash tree, to verify the hash value of the red node, the hash values of the blue nodes
are used to reconstruct the hash value of the root. Pink nodes are those in the path from the selected
node to root. Blue nodes are their children not included in the path.

In a nutshell, this article addresses the following research questions:

RQ1 Is it possible to define a client puzzle protocol based on hashcash but with more
controllable difficulty of puzzles?

RQ2 Is it possible to define a client puzzle protocol based on hash trees but requiring
smaller trees than those used by Coelho [12]?

RQ3 How resistant to parallel computation is the proposed client puzzle protocol?

To answer the above questions, the challenge–response protocol is modified by split-
ting the challenge in two phases, as shown in Figure 4. In the first phase, the prover is
challenged to solve a puzzle generated by the verifier (steps 2–3). After solving the puzzle
(step 4), the prover sends to the verifier a commitment to conclude the first phase (step 5). In
the second phase, the prover is asked to provide a proof of the solution, that is, sufficient
data to verify that the prover has computed the committed solution (steps 6–9). In the
proposed protocol, the puzzle consists of building a tree satisfying the following conditions:
every leaf is labeled by the output of the hashcash algorithm applied on a verifier-provided

Algorithms 2023, 16, 462 4 of 20

string concatenated to the leaf index; every internal node is labeled by the output of the
hashcash algorithm applied on the verifier-provided string concatenated to the node index
and the hash values of child nodes. This way, the difficulty of the construction of the tree
can be controlled by varying the length of the all-zeros prefix and the number of nodes in
the tree. Similarly to hash trees, the verification of a solution involves the selected node,
those in the path from the selected node to the root, and their children. Given the com-
bination of features from hashcash and hash trees, the proposed data structure is named
hashcash tree.

Version September 20, 2023 submitted to Algorithms 4 of 19

Prover Verifier

1. request service

3. challenge

4. solve puzzle

5. commitment

6. choose verification

2. generate puzzle

7. prove

8. extract proof

9. verify
10. grant service

1. request service

3. challenge

4. solve puzzle

5. commitment

6. choose verification

2. generate puzzle

7. prove

8. extract proof

9. verify
10. grant service

Figure 4. Sequence of events in a two-phases challenge-response protocol

the proposed client puzzle protocol are discussed in Section 4. In particular, the computa- 91

tional complexity is analyzed in terms of computed hash values, for both the construction of 92

hashcash trees and their verification. As for generating hashcash trees, the average number 93

of computed hash values grows exponentially on the length of the all-zeros prefix and 94

linearly on the number of nodes. Variance has a similar trend. It turns out that the grow can 95

be controlled by fixing a relatively small length for the prefix, and varying only the number 96

of nodes depending on the workload of the verifier. As for the verification phase, the effort 97

only depends (logarithmically) on the number of nodes. The construction of hashcash 98

trees can be only partially parallelized, as the computation of a node label depends on the 99

label of child nodes. An empirical evaluation of a proof-of-concept implementation of the 100

protocol is reported in Section 5. The results confirm that the client puzzle protocol based 101

on hashcash trees can be used in practice to challenge the prover in generating trees whose 102

construction effort in terms of number of computed hash values is controllable. Finally, 103

related work is discussed in Section 6 and the article conclusion is summarized in Section 7. 104

In summary, the article answers RQ1 and RQ2 by introducing a new data structure 105

combining hashcash and hash trees, namely hashcash trees. The computation of a single 106

node of a hashcash tree is more expensive than a node in a hash tree because it requires to 107

solve a hashcash challenge. Thanks to such a more expensive computation, hashcash trees 108

of relatively small size can be adopted by the proposed client puzzle protocol (RQ2). At the 109

same time, solving several hashcash challenges of modest difficulty enables a fine-grained 110

control on the difficulty of puzzles, which is not possible to achieve with a single hashcash 111

challenge (RQ1). Finally, the fact that a node in a hashcash tree can be computed only after 112

knowing the labels of child nodes provides a restricted form of parallel resistance (RQ3). 113

2. Background 114

This section introduces preliminary notions such as strings and hash functions (Sec- 115

tion 2.1). Moreover, a client puzzle protocol based on the hashcash nondeterministic 116

function is defined in Section 2.2. Finally, the main notation used for trees and the notion of 117

hash tree are given in Section 2.3. 118

Figure 4. Sequence of events in a two-phases challenge–response protocol.

Hashcash trees and the two-phases challenge–response protocol relying on them are
presented in Section 3, after introducing the required background in Section 2. Properties of
the proposed client puzzle protocol are discussed in Section 4. In particular, the computa-
tional complexity is analyzed in terms of computed hash values for both the construction of
hashcash trees and their verification. As for generating hashcash trees, the average number
of computed hash values grows exponentially on the length of the all-zeros prefix and
linearly on the number of nodes. Variance has a similar trend. It turns out that the grow can
be controlled by fixing a relatively small length for the prefix and varying only the number
of nodes depending on the workload of the verifier. As for the verification phase, the effort
only depends (logarithmically) on the number of nodes. The construction of hashcash
trees can be only partially parallelized, as the computation of a node label depends on
the label of child nodes. An empirical evaluation of a proof-of-concept implementation of
the protocol is reported in Section 5. The results confirm that the client puzzle protocol
based on hashcash trees can be used in practice to challenge the prover in generating trees
whose construction effort in terms of the number of computed hash values is controllable.
Finally, related work is discussed in Section 6, and the article conclusion is summarized in
Section 7.

Algorithms 2023, 16, 462 5 of 20

In summary, the article answers RQ1 and RQ2 by introducing a new data structure
combining hashcash and hash trees, namely hashcash trees. The computation of a single
node of a hashcash tree is more expensive than a node in a hash tree because it requires
solving a hashcash challenge. Thanks to such a more expensive computation, hashcash trees
of relatively small size can be adopted by the proposed client puzzle protocol (RQ2). At the
same time, solving several hashcash challenges of modest difficulty enables a fine-grained
control on the difficulty of puzzles, which is not possible to achieve with a single hashcash
challenge (RQ1). Finally, the fact that a node in a hashcash tree can be computed only after
knowing the labels of child nodes provides a restricted form of parallel resistance (RQ3).

2. Background

This section introduces preliminary notions such as strings and hash functions
(Section 2.1). Moreover, a client puzzle protocol based on the hashcash nondetermin-
istic function is defined in Section 2.2. Finally, the main notation used for trees and the
notion for hash trees are given in Section 2.3.

2.1. Hash Functions

The term string is used to refer binary strings, that is, elements in {0, 1}∗; strings are
also seen as sequences of bits. The empty string is denoted by ε. The prefix of length n ∈ N
of a string s is the string consisting of the first n bits of s and is denoted by prefix(s, n).
The concatenation of two strings s, s′ is denoted by s||s′. For a string s and a non-negative
integer x, the notation s||x is abused to denote the concatenation of s with the binary string
representation of x. The concatenation of a string s with itself n ∈ N times is denoted by sn

and defined inductively as follows: s0 = ε; sn+1 = sn||s for n ≥ 1. The i-th element of a
string s, and in general of a sequence or tuple, is denoted by s|i.

Example 1. The concatenation 10101000||237, assuming an 8-bit representation of the integer
237, is 1010100011101101. The string (101)3 is 101101101.

A hash function is any function mapping strings of arbitrary length to strings of fixed
length. If m ∈ N+ is the fixed length, the signature of the hash function is

h : {0, 1}∗ → {0, 1}m. (1)

For a string s ∈ {0, 1}∗, the value h(s) returned by the hash function h is called the
hash value of s; the string s is called message. Cryptographic hash functions additionally
ensure the following properties:

(i) The probability of a particular hash value for a message is 2−m;
(ii) Finding a message that matches a given hash value is unfeasible (preimage resistance);
(iii) Finding a second message that matches the hash value of a given message is unfeasible

(second-preimage resistance);
(iv) Finding two different messages that yield the same hash value is unfeasible (collision

resistance).

Example 2. SHA-256 is a popular cryptographic hash function. It produces hash values of
length 256. In Unix systems, the hexadecimal representation of the SHA-256 hash value of the
string foo can be obtained as shown in Figure 5. Note that the produced hash value starts with
0x2c = 00111100, that is, has an all-zero prefix of length 2.

Version September 20, 2023 submitted to Algorithms 5 of 19

$ echo -n "foo" | sha256sum
2c26b46b68ffc68ff99b453c1d30413413422d706483bfa0f98a5e886266e7ae -

Figure 5. Computing the SHA-256 hash value of the string “foo” in Unix-like systems

Algorithm 1: HASHCASH(s, h, k)

1 for x ∈ N do
2 hash_value := h(s||x);
3 if prefix(hash_value, k) = 0k then
4 return ⟨hash_value, x⟩;

2.1. Hash Functions 119

The term string is used to refer binary strings, that is, elements in {0, 1}∗; strings are 120

also seen as sequences of bits. The empty string is denoted by ϵ. The prefix of length n ∈ N 121

of a string s is the string consisting of the first n bits of s, and is denoted by prefix(s, n). 122

The concatenation of two strings s, s′ is denoted by s||s′. For a string s and a non-negative 123

integer x, the notation s||x is abused to denote the concatenation of s with the binary string 124

representation of x. The concatenation of a string s with itself n ∈ N times is denoted by sn
125

and defined inductively as follows: s0 = ϵ; sn+1 = sn||s for n ≥ 1. The i-th element of a 126

string s, and in general of a sequence or tuple, is denoted by s|i. 127

Example 1. The concatenation 10101000||237, assuming a 8-bit representation of the integer 128

237, is 1010100011101101. The string (101)3 is 101101101. ■ 129

A hash function is any function mapping strings of arbitrary length to strings of fixed
length. If m ∈ N+ is the fixed length, the signature of the hash function is

h : {0, 1}∗ → {0, 1}m. (1)

For a string s ∈ {0, 1}∗, the value h(s) returned by the hash function h is called the hash 130

value of s; the string s is called message. Cryptographic hash functions additionally ensure 131

the following properties: 132

(i) the probability of a particular hash value for a message is 2−m; 133

(ii) finding a message that matches a given hash value is unfeasible (preimage resistance); 134

(iii) finding a second message that matches the hash value of a given message is unfeasible 135

(second-preimage resistance); 136

(iv) finding two different messages that yield the same hash value is unfeasible (collision 137

resistance). 138

Example 2. SHA-256 is a popular cryptographic hash function. It produces hash values of 139

length 256. In Unix systems, the hexadecimal representation of the SHA-256 hash value of 140

the string foo can be obtained as shown in Figure 5. Note that the produced hash value 141

starts with 0x2c = 00111100, that is, has an all-zero prefix of length 2. ■ 142

2.2. A Client Puzzle Protocol based on Hashcash 143

Hashcash is a (nondeterministic) function parameterized by a hash function h and a 144

positive integer k; it associates every input string s ∈ {0, 1}∗ with any pair ⟨h(s||x), x⟩ 145

such that x ∈ N and prefix(h(s||x), k) = 0k. Let hk(s) denote any valid output ⟨h(s||x), x⟩ 146

of the hashcash function parameterized by h and k. Hashcash essentially asks for finding 147

partial hash collisions on the all-zeros prefix of length k, and the fastest algorithm for 148

computing partial collisions is brute force [13]; see Algorithm 1. Assuming that the brute 149

force algorithm increments x starting from x = 0, finding a valid ⟨h(s||x′), x′⟩ output 150

value requires the computation of x′ + 1 hash values. In general, hashcash has unbounded 151

probability cost, in the sense that theoretically the brute force algorithm can run forever, 152

Figure 5. Computing the SHA-256 hash value of the string “foo” in Unix-like systems.

Algorithms 2023, 16, 462 6 of 20

2.2. A Client Puzzle Protocol Based on Hashcash

Hashcash is a (nondeterministic) function parameterized by a hash function h and a
positive integer k; it associates every input string s ∈ {0, 1}∗ with any pair 〈h(s||x), x〉
such that x ∈ N and prefix(h(s||x), k) = 0k. Let hk(s) denote any valid output 〈h(s||x), x〉
of the hashcash function parameterized by h and k. Hashcash essentially asks for finding
partial hash collisions on the all-zeros prefix of length k, and the fastest algorithm for
computing partial collisions is brute force [13]; see Algorithm 1. Assuming that the brute
force algorithm increments x starting from x = 0, finding a valid 〈h(s||x′), x′〉 output
value requires the computation of x′ + 1 hash values. In general, hashcash has unbounded
probability cost, in the sense that theoretically the brute force algorithm can run forever,
though the probability that a solution is not found decreases rapidly towards zero. On the
other hand, verifying that 〈h(s||x), x〉 is a valid output requires the computation of one
hash value, as shown in Algorithm 2.

Algorithm 1: HASHCASH(s, h, k)

1 for x ∈ N do
2 hash_value := h(s||x);
3 if prefix(hash_value, k) = 0k then
4 return 〈hash_value, x〉;

Algorithm 2: HASHCASHVERIFY(〈hash_value, x〉, s, h, k)

1 return prefix(hash_value, k) = 0k and hash_value = h(s||x);

Example 3. Figure 6 shows a Bash script implementing Algorithm 1 and its execution for different
lengths of the all-zeros prefix. Time measured on an Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz.
It can be observed that the difficulty of the problem does not increase linearly with the number of
zeros in the demanded prefix.

$ cat hcash.sh
input="$1"; prefix="$2"; x=0
while true; do

string=`echo -n "$input||$x" | sha256sum`
if [["$string" =∼ ^"$prefix"]]; then

echo "hash = $string\n x = $x"; break
fi
x=$((x + 1))

done

$ for p in 0 00 000 0000; do /bin/time -f "time = %Us" bash hcash.sh foo $p; done
hash = 0aa4f8fc0f89d777a93a6784d001b017e87226998ecfbaacd1d81718f160cd9a -

x = 3
time = 0.01s

hash = 00c679e2f3093d2d437c22ef2c35673e66829ca17f575eaba81699a549d23b7e -
x = 442

time = 0.62s

hash = 0009d063183b10c0c8d1906674aac59b2831b92f771e41ecdeb69ca1aaf0f701 -
x = 479

time = 0.69s

hash = 000056ea4be004ebf657e89dd5f129bac5f199ff73d1dacafdfd0d440c0ac473 -
x = 56358

time = 89.15s

Figure 6. A Bash implementation of hashcash and its execution for prefixes 0k with k ∈ [1..4].

A client puzzle protocol (CPP) involves two entities, namely a verifier V and a prover
P. P needs to access some (computationally expensive) resource of V. V challenges P to

Algorithms 2023, 16, 462 7 of 20

solve a puzzle before processing its request. A simple CPP based on hashcash comprises
the following steps:

1. The setup consists in V generating and storing a master key mk. The master key is
used to sign data so that V can complete the protocol without storing any further data.
(No signed data is extended in the protocol; no need for HMAC.)

2. P needs to send a request req to V. To this aim, P sends Req := h(req) to V. (Here req is
considered unique. For example, req can include a nonce chosen by P and a timestamp,
and V can track Req for all completed req within the allotted time window. To simplify
the presentation, such details are omitted from the discussion.)

3. V determines the difficulty parameter k ∈ N+ based on its current workload, generates a
timestamp t by which the protocol must be completed, computes s := h(mk||Req||k||t),
and sends 〈s, k, t〉 to P. (Note that the hash value of the request is signed, not the
request, so that the signed message has fixed length.)

4. P computes S := hk(s) and sends 〈req, S, s, k, t, Req〉 to V.
5. V checks all the following conditions: s = h(mk||Req||k||t); t is in the future; S is valid,

i.e., S|1 = h(s||S|2) and prefix(S|1, k) = 0k; Req = h(req). If all conditions are met, req
is processed.

The idea of a CPP is that a legit user is willing to waste a small amount of its computa-
tional resources in order to access a resource of V, while an attacker requires an unaffordable
amount of computational resources to exhaust V capabilities. The main downside of the
above simple protocol is that the difficulty parameter k does not give a fine-grained control
on the amount of resources needed to solve the puzzle (no determinable difficulty). More-
over, the brute-force algorithm for hashcash has linear speedup (weak parallel computation
resistance).

Example 4. As shown in Example 3, for the message foo there is essentially no difference in
increasing the prefix from 08 to 012, while increasing the prefix to 016 makes the problem much more
difficult. Also note that Algorithm 1 can be easily parallelized, and a GPU with 384 cores would
solve the prefix 016 by computing around 150 hash values per core in around 0.25 s.

2.3. Trees

A labeled binary tree T is either the empty set ∅ or a quadruple 〈r, `, L, R〉, where r is the
root node (of T), ` is the label (of r), and L, R are labeled binary trees referred to as the left child
and the right child (of both T and r); r, L and R are respectively denoted by root(T), left(T)
and right(T). (In the following, the term tree is used to refer labeled binary trees.) Nodes of a
tree are defined inductively: nodes(∅) := ∅; nodes(〈r, `, L, R〉) := {r}∪nodes(L)∪nodes(R).
When L = R = ∅, node r is also called a leaf. Leaves of a tree are defined inductively:
leaves(∅) := ∅; leaves(〈r, `, ∅, ∅〉) := {r}; leaves(〈r, `, L, R〉) := leaves(L) ∪ leaves(R), if
L 6= ∅ or R 6= ∅. An internal node of T is any non-leaf node of T, that is, internal(T) :=
nodes(T) \ leaves(T).

Let v ∈ nodes(T) be a node of T = 〈r, `, L, R〉. The label of v in T is defined induc-
tively: label(v, ∅) := ε; label(v, T) := ` if v = r; label(v, T) := label(v, L) if v ∈ nodes(L);
label(v, T) := label(v, R) if v ∈ nodes(R). The level of v in T is defined inductively:
level(v, T) := 1 if v = r; level(v, T) := 1 + level(v, L) if v ∈ nodes(L); level(v, T) :=
1 + level(v, R) if v ∈ nodes(R). A tree is perfect if all interior nodes have nonempty children
and all leaves have the same level. (In the following, only perfect trees are considered.)
The height of a tree is the level of its leaves. The order of v in T is defined via breadth-
first search (BFS) or level-order search: order(r, T) := 1; for every 〈v, `′, L′, R′〉 occurring in
T, order(root(L′), T) := 2 · order(v, T) and order(root(R′), T) := 2 · order(v, T) + 1. Note
that T can be compactly represented by a one-based array arr of size |nodes(T)|, having
arr[i] = label(v, T) whenever order(v, T) = i.

Example 5. Let T be the tree of height 4 shown in Figure 7. T is such that label(v, T) = order(v, T)
for all v ∈ nodes(T). Its array representation is [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The

Algorithms 2023, 16, 462 8 of 20

leaves have level 4 and are the nodes with label from 8 to 15. Inner nodes have label from 1 to 7. The
root has label 1.

A hash tree, or Merkle tree, is a tree in which every leaf is labeled with the hash value
of a data block, and every internal node is labeled with the hash value of the labels of its
child nodes. Here a data block is any piece of information in a commitment scheme, that is,
hidden data that cannot be changed. In fact, sharing the hash value associated with the
root is sufficient to guarantee that no label of the hash tree is modified. If T is the hash tree
associated with a sequence s1, . . . , s2n of data blocks (n ∈ N), in order to verify that some si
(i ∈ [1..2n]) was not modified, it is sufficient to check nodes in the path from the leaf with
label h(si) to the root. The check involves the labels of these nodes and their children; in
formulas, if vo denotes the node of T such that oder(vo, T) = o, the labels involved in the
verification of si are label(vbi·2−jc, T) and label(vbi·2−jc+1, T), for j ∈ [0..n− 1].

Version September 20, 2023 submitted to Algorithms 7 of 19

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

Figure 7. A perfect tree T whose nodes are labeled by their order.

5. V checks all the following conditions: s = h(mk||Req||k||t); t is in the future; S is valid, 176

i.e., S|1 = h(s||S|2) and prefix(S|1, k) = 0k; Req = h(req). If all conditions are met, req 177

is processed. 178

The idea of a CPP is that a legit user is willing to waste a small amount of its computational 179

resources in order to access a resource of V, while an attacker requires an unaffordable 180

amount of computational resources to exhaust V capabilities. The main downside of the 181

above simple protocol is that the difficulty parameter k does not give a fine-grained control 182

on the amount of resources needed to solve the puzzle (no determinable difficulty). More- 183

over, the brute-force algorithm for hashcash has linear speedup (weak parallel computation 184

resistance). 185

Example 4. As shown in Example 3, for the message foo there is essentially no difference 186

in increasing the prefix from 08 to 012, while increasing the prefix to 016 makes the problem 187

much more difficult. Also note that Algorithm 1 can be easily parallelized, and a GPU 188

with 384 cores would solve the prefix 016 by computing around 150 hash values per core in 189

around 0.25 seconds. ■ 190

2.3. Trees 191

A labeled binary tree T is either the empty set ∅, or a quadruple ⟨r, ℓ, L, R⟩, where r is the 192

root node (of T), ℓ is the label (of r), and L, R are labeled binary trees referred to as the left child 193

and the right child (of both T and r); r, L and R are respectively denoted by root(T), left(T) 194

and right(T). (In the following, the term tree is used to refer labeled binary trees.) Nodes of a 195

tree are defined inductively: nodes(∅) := ∅; nodes(⟨r, ℓ, L, R⟩) := {r}∪nodes(L)∪nodes(R). 196

When L = R = ∅, node r is also called a leaf. Leaves of a tree are defined inductively: 197

leaves(∅) := ∅; leaves(⟨r, ℓ, ∅, ∅⟩) := {r}; leaves(⟨r, ℓ, L, R⟩) := leaves(L) ∪ leaves(R), if 198

L ̸= ∅ or R ̸= ∅. An internal node of T is any non-leaf node of T, that is, internal(T) := 199

nodes(T) \ leaves(T). 200

Let v ∈ nodes(T) be a node of T = ⟨r, ℓ, L, R⟩. The label of v in T is defined induc- 201

tively: label(v, ∅) := ϵ; label(v, T) := ℓ if v = r; label(v, T) := label(v, L) if v ∈ nodes(L); 202

label(v, T) := label(v, R) if v ∈ nodes(R). The level of v in T is defined inductively: 203

level(v, T) := 1 if v = r; level(v, T) := 1 + level(v, L) if v ∈ nodes(L); level(v, T) := 204

1 + level(v, R) if v ∈ nodes(R). A tree is perfect if all interior nodes have nonempty children 205

and all leaves have the same level. (In the following, only perfect trees are considered.) 206

The height of a tree is the level of its leaves. The order of v in T is defined via breadth- 207

first search (BFS) or level-order search: order(r, T) := 1; for every ⟨v, ℓ′, L′, R′⟩ occurring in 208

T, order(root(L′), T) := 2 · order(v, T) and order(root(R′), T) := 2 · order(v, T) + 1. Note 209

that T can be compactly represented by a one-based array arr of size |nodes(T)|, having 210

arr[i] = label(v, T) whenever order(v, T) = i. 211

Example 5. Let T be the tree of height 4 shown in Figure 7. T is such that label(v, T) = 212

order(v, T) for all v ∈ nodes(T). Its array representation is [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 213

Figure 7. A perfect tree T whose nodes are labeled by their order.

Example 6. Let T be the hash tree shown in Figure 8. Let vo denote the node of T such that
oder(vo, T) = o. To verify that s5 was not modified, the nodes involved are v1, v2, v3, v6, v7, v12, v13.
In particular, the hash values that are recomputed are those associated with nodes from the leaf with
label h(s5) to the root, i.e., those of v12, v6, v3 and v1. Essentially, to modify s5 without changing
the label of v1 requires violating second-preimage resistance of h at each level of T: find new labels
for v2 and v3 matching the hash value in v1; find new labels for v6 and v7 matching the new hash
value in v3; find a new label ` for v13 such that h(h(s′5)||`) matches the new hash value in v6.

Version September 20, 2023 submitted to Algorithms 8 of 19

h(
︷ ︸︸ ︷
h(h(h(s1)||h(s2))︸ ︷︷ ︸ || h(h(s3)||h(s4))︸ ︷︷ ︸) ||

︷ ︸︸ ︷
h(h(h(s5)||h(s6))︸ ︷︷ ︸ || h(h(s7)||h(s8))︸ ︷︷ ︸))

h(h(h(s1)||h(s2))︸ ︷︷ ︸ || h(h(s3)||h(s4))︸ ︷︷ ︸)

h(h(s1)||h(s2))

h(s1) h(s2)

h(h(s3)||h(s4))

h(s3) h(s4)

h(h(h(s5)||h(s6))︸ ︷︷ ︸ || h(h(s7)||h(s8))︸ ︷︷ ︸)

h(h(s5)||h(s6))

h(s5) h(s6)

h(h(s7)||h(s8))

h(s7) h(s8)

Figure 8. A hash tree for data blocks s1, . . . , s8. The path from the leaf labeled h(s5) to the root is
shown with dashed lines. Siblings of nodes in that path are connected to their parents by dotted lines.

Algorithm 3: HASHCASHTREE(s, n, h, k)

1 height := ⌈log2(n)⌉;
2 tree := array[2height]; // new array of 2height elements
3 for i := 2height down to 1 do
4 if i > n then
5 tree[i] := ⟨ϵ, 0⟩;
6 else
7 tree[i] := HASHCASH(s||i||tree[2i][1]||tree[2i + 1][1], h, k);

8 return tree;

14, 15]. The leaves have level 4 and are the nodes with label from 8 to 15. Inner nodes have 214

label from 1 to 7. The root has label 1. ■ 215

A hash tree, or Merkle tree, is a tree in which every leaf is labelled with the hash value 216

of a data block, and every internal node is labelled with the hash value of the labels of its 217

child nodes. Here a data block is any piece of information in a commitment scheme, that is, 218

hidden data that cannot be changed. In fact, sharing the hash value associated with the 219

root is sufficient to guarantee that no label of the hash tree is modified. If T is the hash tree 220

associated with a sequence s1, . . . , s2n of data blocks (n ∈ N), in order to verify that some si 221

(i ∈ [1..2n]) was not modified, it is sufficient to check nodes in the path from the leaf with 222

label h(si) to the root. The check involves the labels of these nodes and their children; in 223

formulas, if vo denotes the node of T such that oder(vo, T) = o, the labels involved in the 224

verification of si are label(v⌊i·2−j⌋, T) and label(v⌊i·2−j⌋+1, T), for j ∈ [0..n − 1]. 225

Example 6. Let T be the hash tree shown in Figure 8. Let vo denote the node of T 226

such that oder(vo, T) = o. To verify that s5 was not modified, the nodes involved are 227

v1, v2, v3, v6, v7, v12, v13. In particular, the hash values that are recomputed are those asso- 228

ciated with nodes from the leaf with label h(s5) to the root, i.e., those of v12, v6, v3 and 229

v1. Essentially, to modify s5 without changing the label of v1 requires to violate second- 230

preimage resistance of h at each level of T: find new labels for v2 and v3 matching the hash 231

value in v1; find new labels for v6 and v7 matching the new hash value in v3; find a new 232

label ℓ for v13 such that h(h(s′5)||ℓ) matches the new hash value in v6. ■ 233

3. Hashcash Trees and Their Application to Client Puzzle Protocols 234

The definition of hashcash tree is parameterized with respect to a hash function h and
a positive integer k, which are assumed fixed in this section. Recall that hk(s) denotes any

Figure 8. A hash tree for data blocks s1, . . . , s8. The path from the leaf labeled h(s5) to the root is
shown with dashed lines. Siblings of nodes in that path are connected to their parents by dotted lines.

Algorithms 2023, 16, 462 9 of 20

3. Hashcash Trees and Their Application to Client Puzzle Protocols

The definition of hashcash tree is parameterized with respect to a hash function h and
a positive integer k, which are assumed fixed in this section. Recall that hk(s) denotes any
pair 〈h(s||x), x〉 such that x ∈ N and prefix(h(s||x), k) = 0k. For a string s and an integer
n ∈ N+, let (`i)i∈N+ be the (nondeterministic) sequence of labels defined as follows:

`i :=
{

hk(s||i||(`2i|1)||(`2i+1|1)) if i ∈ [1..n];
〈ε, 0〉 otherwise.

(2)

The hashcash tree of size n for the string s is the perfect tree T of height dlog2(n)e
such that, for each v ∈ nodes(T), if order(v, T) = i, then label(v, T) = `i. As shown by
Algorithm 3 and Figure 9, a hashcash tree of size n is constructed by first computing the
labels of the nodes of level dlog2(n)e (i.e., leaves) and then iteratively computing the labels
of nodes of previous levels until the label of the root is obtained. In total, the algorithm
performs n hashcash computations.

Algorithm 3: HASHCASHTREE(s, n, h, k)

1 height := dlog2(n)e;
2 tree := array[2height]; // new array of 2height elements
3 for i := 2height down to 1 do
4 if i > n then
5 tree[i] := 〈ε, 0〉;
6 else
7 tree[i] := HASHCASH(s||i||tree[2i][1]||tree[2i + 1][1], h, k);

8 return tree;

Version September 20, 2023 submitted to Algorithms 9 of 19

Figure 9. Activity diagram of Algorithm 3 building a hashcash tree of size n for the string s using
hash function h and prefix length k.

hk(s||1||
︷ ︸︸ ︷
(hk(s||2|| (hk(s||4)|1)︸ ︷︷ ︸)|1) ||

︷ ︸︸ ︷
(hk(s||3)))

hk(s||2|| (hk(s||4)|1)︸ ︷︷ ︸)

hk(s||4) ⟨ϵ, 0⟩

hk(s||3)

⟨ϵ, 0⟩ ⟨ϵ, 0⟩

Figure 10. A hashcash tree of size 4 for the string s. The path from the first leaf (node with order 4) to
the root is shown with dashed lines. Siblings of nodes in that path are connected to their parents by
dotted lines.

pair ⟨h(s||x), x⟩ such that x ∈ N and prefix(h(s||x), k) = 0k. For a string s and an integer
n ∈ N+, let (ℓi)i∈N+ be the (nondeterministic) sequence of labels defined as follows:

ℓi :=
{

hk(s||i||(ℓ2i|1)||(ℓ2i+1|1)) if i ∈ [1..n];
⟨ϵ, 0⟩ otherwise.

(2)

The hashcash tree of size n for the string s is the perfect tree T of height ⌈log2(n)⌉ such that, 235

for each v ∈ nodes(T), if order(v, T) = i then label(v, T) = ℓi. As shown by Algorithm 3 236

and Figure 9, a hashcash tree of size n is constructed by first computing the labels of the 237

nodes of level ⌈log2(n)⌉ (i.e., leaves), and then iteratively computing the labels of nodes of 238

previous levels, until the label of the root is obtained. In total, the algorithm performs n 239

hashcash computations. 240

Example 7. Let T be the hashcash tree shown in Figure 10. Let vo denote the node of T such 241

that order(vo, T) = o. Once the label of the root is disclosed, changing any label in the tree 242

is computationally unfeasible. In particular, changing the label of a leaf, say v4, requires to 243

violate second-preimage resistance of h at each level of T, with the additional difficulty that 244

the new hash values must also be a valid output of the hashcash algorithm. ■ 245

Similarly to a hash tree, the validation of a leaf i of a hashcash tree T involves nodes in 246

the path from i to the root of T, and their children; see Algorithm 4. Specifically, the prefix 247

of all hash values associated with these nodes is validated (lines 8–9), while hash values 248

are recomputed only for nodes in the path from i to the root of T (lines 2–6). On the basis of 249

Algorithms 3–4, the proposed CPP comprises the following steps: 250

Figure 9. Activity diagram of Algorithm 3 building a hashcash tree of size n for the string s using
hash function h and prefix length k.

Example 7. Let T be the hashcash tree shown in Figure 10. Let vo denote the node of T such
that order(vo, T) = o. Once the label of the root is disclosed, changing any label in the tree is
computationally unfeasible. In particular, changing the label of a leaf, say v4, requires violating
second-preimage resistance of h at each level of T, with the additional difficulty that the new hash
values must also be a valid output of the hashcash algorithm.

Algorithms 2023, 16, 462 10 of 20

Version September 20, 2023 submitted to Algorithms 9 of 19

Figure 9. Activity diagram of Algorithm 3 building a hashcash tree of size n for the string s using
hash function h and prefix length k.

hk(s||1||
︷ ︸︸ ︷
(hk(s||2|| (hk(s||4)|1)︸ ︷︷ ︸)|1) ||

︷ ︸︸ ︷
(hk(s||3)))

hk(s||2|| (hk(s||4)|1)︸ ︷︷ ︸)

hk(s||4) ⟨ϵ, 0⟩

hk(s||3)

⟨ϵ, 0⟩ ⟨ϵ, 0⟩

Figure 10. A hashcash tree of size 4 for the string s. The path from the first leaf (node with order 4) to
the root is shown with dashed lines. Siblings of nodes in that path are connected to their parents by
dotted lines.

pair ⟨h(s||x), x⟩ such that x ∈ N and prefix(h(s||x), k) = 0k. For a string s and an integer
n ∈ N+, let (ℓi)i∈N+ be the (nondeterministic) sequence of labels defined as follows:

ℓi :=
{

hk(s||i||(ℓ2i|1)||(ℓ2i+1|1)) if i ∈ [1..n];
⟨ϵ, 0⟩ otherwise.

(2)

The hashcash tree of size n for the string s is the perfect tree T of height ⌈log2(n)⌉ such that, 235

for each v ∈ nodes(T), if order(v, T) = i then label(v, T) = ℓi. As shown by Algorithm 3 236

and Figure 9, a hashcash tree of size n is constructed by first computing the labels of the 237

nodes of level ⌈log2(n)⌉ (i.e., leaves), and then iteratively computing the labels of nodes of 238

previous levels, until the label of the root is obtained. In total, the algorithm performs n 239

hashcash computations. 240

Example 7. Let T be the hashcash tree shown in Figure 10. Let vo denote the node of T such 241

that order(vo, T) = o. Once the label of the root is disclosed, changing any label in the tree 242

is computationally unfeasible. In particular, changing the label of a leaf, say v4, requires to 243

violate second-preimage resistance of h at each level of T, with the additional difficulty that 244

the new hash values must also be a valid output of the hashcash algorithm. ■ 245

Similarly to a hash tree, the validation of a leaf i of a hashcash tree T involves nodes in 246

the path from i to the root of T, and their children; see Algorithm 4. Specifically, the prefix 247

of all hash values associated with these nodes is validated (lines 8–9), while hash values 248

are recomputed only for nodes in the path from i to the root of T (lines 2–6). On the basis of 249

Algorithms 3–4, the proposed CPP comprises the following steps: 250

Figure 10. A hashcash tree of size 4 for the string s. The path from the first leaf (node with order 4) to
the root is shown with dashed lines. Siblings of nodes in that path are connected to their parents by
dotted lines.

Algorithm 4: HASHCASHTREEVERIFY(T, i, s, n, h, k)

// Let vo be the node of T such that oder(vo, T) = o, for o ∈ [1..n].
1 while i ≥ 1 do
2 if i ≤ n then
3 left := label(v2i, T) if 2i ≤ n else ε;
4 right := label(v2i+1, T) if 2i + 1 ≤ n else ε;
5 if not HASHCASHVERIFY(label(vi, T), s||i||left||right, h, k) then
6 return false;

7 i := i div 2;
8 if prefix(label(v2i, T)|1) 6= 0k or prefix(label(v2i+1, T)|1) 6= 0k then
9 return false;

10 return true;

Similarly to a hash tree, the validation of a leaf i of a hashcash tree T involves nodes in
the path from i to the root of T and their children; see Algorithm 4 and Figure 11. Specifically,
the prefix of all hash values associated with these nodes is validated (lines 8–9), while hash
values are recomputed only for nodes in the path from i to the root of T (lines 2–6). On the
basis of Algorithms 3–4, the proposed CPP comprises the following steps:

1. The setup consists in the verifier V generating and storing a master key mk.
2. The prover P needs to send a request req to V. To this aim, P sends Req := h(req) to V.
3. V determines the difficulty parameter n ∈ N+ based on its current workload, generates a

timestamp t by which the protocol must be completed, computes s := h(mk||Req||n||t),
and sends 〈s, n, t〉 to P.

4. P computes and stores the hashcash tree T of size n for s using Algorithm 3 and sends
〈sol, s, n, t, Req〉 to V, where sol is label(root(T))|1.

5. V checks s = h(mk||Req||n||t), verifies that t is in the future, randomly selects a
number i ∈ [2H−1..2H − 1] (a leaf), and sends 〈I, i〉 to P, where I := h(mk||Req||sol||i).

6. P sends 〈req, S, I, i, s, n, t, Req〉 to V, where S consists of labels associated with nodes in
the path from i to the root and their children; in formulas, S is the sequence comprising
`bi·2−jc and `bi·2−jc+1, for j ∈ [0..dlog2(n)e − 1]. (As an optimization, witness integers
of labels not in the path from i to the root can be discarded.)

7. V checks all the following conditions: s = h(mk||Req||n||t); t is in the future;
I = h(mk||Req||sol||i), where sol is `1|1 in S (i.e., the hash value associated with the
root of the partial hashcash tree sent by P); S is valid; Req = h(req). If all conditions
are met, req is processed.

The validation of S at step 7 amounts to check that each label `j in the path from i to
the root is actually obtained according to (2); Algorithm 4 is used.

Algorithms 2023, 16, 462 11 of 20Version September 20, 2023 submitted to Algorithms 10 of 19

Figure 11. Activity diagram of Algorithm 4 verifying node i of a hashcash tree T of size n for the
string s using hash function h and prefix length k. Recall that vo denotes the node of T such that
oder(vo, T) = o, for o ∈ [1..n].

Algorithm 4: HASHCASHTREEVERIFY(T, i, s, n, h, k)

// Let vo be the node of T such that oder(vo, T) = o, for o ∈ [1..n].
1 while i ≥ 1 do
2 if i ≤ n then
3 left := label(v2i, T) if 2i ≤ n else ϵ;
4 right := label(v2i+1, T) if 2i + 1 ≤ n else ϵ;
5 if not HASHCASHVERIFY(label(vi, T), s||i||left||right, h, k) then
6 return false;

7 i := i div 2;
8 if prefix(label(v2i, T)|1) ̸= 0k or prefix(label(v2i+1, T)|1) ̸= 0k then
9 return false;

10 return true;

1. The setup consists in the verifier V generating and storing a master key mk. 251

2. The prover P needs to send a request req to V. To this aim, P sends Req := h(req) to V. 252

3. V determines the difficulty parameter n ∈ N+ based on its current workload, gen- 253

erates a timestamp t by which the protocol must be completed, computes s := 254

h(mk||Req||n||t), and sends ⟨s, n, t⟩ to P. 255

4. P computes and stores the hashcash tree T of size n for s using Algorithm 3, and sends 256

⟨sol, s, n, t, Req⟩ to V, where sol is label(root(T))|1. 257

5. V checks s = h(mk||Req||n||t), verifies that t is in the future, randomly selects a 258

number i ∈ [2H−1..2H − 1] (a leaf), and sends ⟨I, i⟩ to P, where I := h(mk||Req||sol||i). 259

6. P sends ⟨req, S, I, i, s, n, t, Req⟩ to V, where S consists of labels associated with nodes in 260

the path from i to the root, and their children; in formulas, S is the sequence comprising 261

ℓ⌊i·2−j⌋ and ℓ⌊i·2−j⌋+1, for j ∈ [0..⌈log2(n)⌉ − 1]. (As an optimization, witness integers 262

of labels not in the path from i to the root can be discarded.) 263

7. V checks all the following conditions: s = h(mk||Req||n||t); t is in the future; I = 264

h(mk||Req||sol||i), where sol is ℓ1|1 in S (i.e., the hash value associated with the root of 265

the partial hashcash tree sent by P); S is valid; Req = h(req). If all conditions are met, 266

req is processed. 267

Figure 11. Activity diagram of Algorithm 4 verifying node i of a hashcash tree T of size n for the
string s using hash function h and prefix length k. Recall that vo denotes the node of T such that
oder(vo, T) = o, for o ∈ [1..n].

Example 8. Let us run the CPP for req = “req”, using the hash function SHA-256 and a
prefix length k = 4. V generates the master key mk = 41416d572ab944bab51deb6ab388c434.
P sends Req = c3 f 7bd f 537c46724392c4428e47e04c148c56966190c3c9ed92114800c9 f 35bb to
V. V determines n = 4 (encoded as 0400), t = 1691442051.890254 (10 s in the future, en-
coded as ec f 9 f 8e05634d941), s = SHA-256(mk||Req||n||t) = d4b147ccb397a f 1b3a1 f 9d278e8
edaba350530291bcc0c f 211ca f d1042dc1ed6, and sends 〈s, n, t〉 to P. P computes the hashcash
tree shown in Figure 12, and sends sol = 002eb1 f 4d23d95984 f a2be7280d4e4 f dd f 65c2 f 94d757
3b31a426885b115a9e6 (with s, n, t, and Req) to V. V checks that s and t are valid, randomly
selects i = 4 (the first leaf), computes I = 8125 f c9ab943890cd3d3 f 5ec0031 f 8a5 f b3 f e392b47a59
19d4a06c f 4c371da20, and sends 〈I, i〉 to P. P sends the labels 〈sol, 3〉, 〈h2, 13〉, 〈h3, 3〉, 〈h4, 15〉
and 〈ε, 0〉 to V (with the other required data). V runs Algorithm 4 on a tree T constructed with
the received labels (other labels are irrelevant). Since the algorithm returns true, and all other
conditions are met, the request req is processed.

Version September 20, 2023 submitted to Algorithms 11 of 19

⟨002eb1 f 4d23d95984 f a2be7280d4e4 f dd f 65c2 f 94d7573b31a426885b115a9e6, 3⟩

⟨h2, 13⟩

⟨h4, 15⟩ ⟨ϵ, 0⟩

⟨h3, 3⟩

⟨ϵ, 0⟩ ⟨ϵ, 0⟩

Figure 12. A hashcash tree of size 4 for d4b147ccb397a f 1b3a1 f 9d278e8edaba350530291bcc0c f 211ca f d10
42dc1ed6, where h2 = 08b706ec f 8 f 3a4 f 73a4ad f bbc3be88c39b17e970892d3e41c92935b3354acdd1,
h3 = 0e40464aa8121dc6eaa9d676c9b44d3d7ad4d9a1d48776ec f f ea0b68b6ac068e and h4 =

09803620d374bac45cdad30712578610dae021c2cd394234a2b8749d36 f cee11. The path from the
first leaf (node with order 4) to the root is shown with dashed lines. Siblings of nodes in that path are
connected to their parents by dotted lines.

The validation of S at step 7 amounts to check that each label ℓj in the path from i to the 268

root is actually obtained according to (2); Algorithm 4 is used. 269

Example 8. Let us run the CPP for req = “req”, using the hash function SHA-256 and a pre- 270

fix length k = 4. V generates the master key mk = 41416d572ab944bab51deb6ab388c434. P 271

sends Req = c3 f 7bd f 537c46724392c4428e47e04c148c56966190c3c9ed92114800c9 f 35bb to V. 272

V determines n = 4 (encoded as 0400), t = 1691442051.890254 (10 seconds in the future, en- 273

coded as ec f 9 f 8e05634d941), s = SHA-256(mk||Req||n||t) = d4b147ccb397a f 1b3a1 f 9d278e8 274

edaba350530291bcc0c f 211ca f d1042dc1ed6, and sends ⟨s, n, t⟩ to P. P computes the hashcash 275

tree shown in Figure 12, and sends sol = 002eb1 f 4d23d95984 f a2be7280d4e4 f dd f 65c2 f 94d757 276

3b31a426885b115a9e6 (with s, n, t, and Req) to V. V checks that s and t are valid, randomly se- 277

lect i = 4 (the first leaf), computes I = 8125 f c9ab943890cd3d3 f 5ec0031 f 8a5 f b3 f e392b47a59 278

19d4a06c f 4c371da20, and sends ⟨I, i⟩ to P. P sends the labels ⟨sol, 3⟩, ⟨h2, 13⟩, ⟨h3, 3⟩, ⟨h4, 15⟩ 279

and ⟨ϵ, 0⟩ to V (with the other required data). V runs Algorithm 4 on a tree T constructed 280

with the received labels (other labels are irrelevant). Since the algorithm returns true, and 281

all other conditions are met, the request req is processed. ■ 282

4. Properties 283

4.1. Computational Complexity 284

The complexity of the algorithms introduced in the previous section is analyzed 285

by measuring the number of computed hash values. Let s be a message, and h be a 286

cryptographic hash function producing hash values of length m ∈ N. By definition of cryp- 287

tographic hash function, the probability that h(s) = s′ is 2−m, for all s′ ∈ {0, 1}m. Hence, 288

the probability that h(s) starts with the prefix 0k is 2−k, for all k ∈ [0..m]. Since all hash 289

value computations are independent, the number of hash values computed by Algorithm 1 290

follows the geometric distribution. As for the verification procedure (Algorithm 2), a single 291

hash value is computed. 292

Proposition 1. The probability that HASHCASH(s, h, k) terminates after computing N + 1 hash 293

values is (1− 2−k)N · 2−k, for all N ∈ N. On average, the number of unused hash values computed 294

by Algorithm 1 is (1 − 2−k) · 2k, with variance (1 − 2−k) · 22k. 295

Proof. Since all hash values are equi-probable by definition of h, the probability that 0 296

occurs as a specific output bit is 0.5. As all bits are independent, the probability that 297

a hash value starts by 0k is p = 2−k. The algorithm terminates at the first success of 298

independent trials, so the probability that it terminates after computing N + 1 hash value is 299

modeled by the geometric distribution: the probability mass function (of observed failures) 300

is (1 − p)N · p, the mean value (of observed failures) is (1 − p)/p, and the variance is 301

(1 − p)/p2. The proof is complete after substituting p = 2−k. 302

Figure 12. A hashcash tree of size 4 for d4b147ccb397a f1b3a1 f9d278e8edaba350530291bcc0c f211ca f d10
42dc1ed6, where h2 = 08b706ec f8 f3a4 f73a4ad f bbc3be88c39b17e970892d3e41c92935b3354acdd1, h3 = 0e404
64aa8121dc6eaa9d676c9b44d3d7ad4d9a1d48776ec f f ea0b68b6ac068e and h4 = 09803620d374bac45cdad30712
578610dae021c2cd394234a2b8749d36 f cee11. The path from the first leaf (node with order 4) to the root is
shown with dashed lines. Siblings of nodes in that path are connected to their parents by dotted lines.

4. Properties
4.1. Computational Complexity

The complexity of the algorithms introduced in the previous section is analyzed by
measuring the number of computed hash values. Let s be a message and h be a crypto-

Algorithms 2023, 16, 462 12 of 20

graphic hash function producing hash values of length m ∈ N. By definition of crypto-
graphic hash function, the probability that h(s) = s′ is 2−m, for all s′ ∈ {0, 1}m. Hence,
the probability that h(s) starts with the prefix 0k is 2−k, for all k ∈ [0..m]. Since all hash
value computations are independent, the number of hash values computed by Algorithm 1
follows the geometric distribution. As for the verification procedure (Algorithm 2), a single
hash value is computed.

Proposition 1. The probability that HASHCASH(s, h, k) terminates after computing N + 1 hash
values is (1− 2−k)N · 2−k, for all N ∈ N. On average, the number of unused hash values computed
by Algorithm 1 is (1− 2−k) · 2k, with variance (1− 2−k) · 22k.

Proof. Since all hash values are equiprobable by definition of h, the probability that 0 occurs
as a specific output bit is 0.5. As all bits are independent, the probability that a hash value
starts by 0k is p = 2−k. The algorithm terminates at the first success of independent trials,
so the probability that it terminates after computing N + 1 hash value is modeled by the
geometric distribution: the probability mass function (of observed failures) is (1− p)N · p,
the mean value (of observed failures) is (1− p)/p, and the variance is (1− p)/p2. The
proof is complete after substituting p = 2−k.

Proposition 2. HASHCASHVERIFY(〈hash_value, x〉, s, h, k) terminates after computing one hash
value.

Proof. Immediate by observing line 1 of Algorithm 2.

Regarding hashcash trees, the first n nodes of a hashcash tree of size n are labeled
by hashcash output values. The prefix 0k is common to all such hashcash output val-
ues, hence keeping the success probability constant for all hashcash computations. It
turns out that the number of hash values computed by Algorithm 3 follows the negative
binomial distribution.

Theorem 1. The probability that HASHCASHTREE(s, n, h, k) terminates after computing N + n
hash values is

(
N + n− 1

N

)
(1− 2−k)N · 2−k·n (3)

for all N ∈ N. On average, the number of unused hash values computed by Algorithm 3 (via
Algorithm 1) is n · (1− 2−k) · 2k, with variance n · (1− 2−k) · 22k.

Proof. Each call to Algorithm 1 follows the Bernoulli distribution with success probability
p = 2−k. Therefore, the total number of unused hash values (failures) follows the negative
binomial distribution: the probability mass function (of observed failures) is

(
N + n− 1

N

)
(1− p)N · pn, (4)

the mean value (of observed failures) is n · (1− p)/p, and the variance is n · (1− p)/p2.
The proof is complete after substituting p = 2−k.

Regarding the verification procedure (Algorithm 4), the labels that are verified are
those in the path from the selected leaf to the root.

Theorem 2. HASHCASHTREEVERIFY(T, i, s, n, h, k) terminates after computing at most
dlog2(n)e hash values.

Algorithms 2023, 16, 462 13 of 20

Proof. Hash values are computed indirectly by calling Algorithm 2, one hash value for
each call. Algorithm 2 is called at line 5, at all iterations of the main loop in the worst case.
The main loop is repeated dlog2(n)e in the worst case because i is divided by 2 at line 7.

4.2. Determinable Difficulty

Theorem 1 provides a clear indication that the average number of hash values com-
puted by Algorithm 3 scales linearly on the size of the hashcash tree, and exponentially on
the length of the required prefix. Similarly, and more importantly, the expected variance
is linear with respect to the size of the hashcash tree, and exponential with respect to the
prefix length. It turns out that, in order to control the average number of hash values with
a relatively small variance, Algorithm 3 must be run with small values of k, adjusting the
size n to impose the difficulty of the problem. Figure 13 reports the average number of
hash values and the expected standard deviation for several values of k and n.

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

HASHCASH TREE SIZE (n)

U
N

U
SE

D
H

A
SH

V
A

L
U

E
S

k = 8
k = 7
k = 6
k = 5
k = 4
k = 3
k = 2
k = 1
k = 0

Figure 13. Average number of unused hash values computed by HASHCASHTREE(s, n, h, k) for
different values of the prefix length k. Numbers within the standard deviation are shown by a shade
of the same color.

4.3. Parallel Computation Resistance

As already observed, a parallel version of Algorithm 1 is expected to have linear
speedup. With the proposed protocol, parallel computation resistance is achieved over
the paths of the hashcash tree, as in fact the labels of internal nodes are obtained by
computing hashcash output values of strings including the hash values associated with
child nodes. It turns out that the height of the hashcash tree provides a measure on the
parallel computation resistance.

Theorem 3. Any parallel implementation of HASHCASHTREE(s, n, h, k) includes at least
dlog2(n)e sequential calls to Algorithm 1.

Proof. The computation of the label of each internal node in the hashcash tree is a synchro-
nization point: labels of child nodes must be computed before the starting the computation

Algorithms 2023, 16, 462 14 of 20

of the label of the internal node. By definition, there is at least one leaf of the hashcash tree
whose label is different from 〈ε, 0〉. Hence, all nodes in the path from such a leaf to the root
have labels obtained by sequential calls to Algorithm 1. The length of such a sequence is
the height dlog2(n)e of the tree.

5. Implementation and Experiment

A proof-of-concept implementation of the algorithm presented in Section 3 is available
at https://github.com/alviano/hashcash-tree (accessed on 28 September 2023). It is written
in Python 3.11 and uses the SHA-256 function from the hashlib package (even if other
hash functions can be easily added). Numeric computation is powered by NumPy, and
witnesses are represented as unsigned 16-bits integers. The CPP is implemented in a REST
server powered by the FastAPI framework. Master keys are universally unique identifier
(UUID) v4, i.e., 36-character alphanumeric strings. Timestamps are represented as double
precision floating-point numbers. An example client for consuming the REST API is also
provided. It performs 1000 (one thousand) requests, possibly using multiple threads or
processes. Requests themselves are not of particular importance for the example client,
which is designed so that all the computation is focused on solving the CPP provided
by the REST server. Note that fixing n = 1 in the implemented CPP essentially results
into the CPP defined in Section 2.2; the prover is challenged to solve a single hashcash
computation, for some prefix length k. On the other hand, fixing k = 0 in the implemented
CPP essentially results in a CPP using hash trees because hashcash is disabled.

In order to empirically verify the theoretical analysis carried out in Section 4, the REST
server and the example client were run with several configurations. The difficulty of the
generated puzzles was varied by modifying both the prefix length (parameter k) and the
size of the hashcash tree (parameter n); within this respect, k was tested with all values
from 0 to 8, and n was tested with value 2i − 1 for i ∈ [4..15]. As for the client, since the
experiment was run on a quad-core Intel(R) Xeon(R) CPU X3430 @ 2.40 GHz with 16 GB
of RAM, the number of workers was fixed to 4 (i.e., the 1000 requests were processed in
parallel by 4 processes). Measured values include the total CPU usage of the REST server,
and the CPU usage of the example client for each request (from starting the interaction
with the REST server to the submission of the validation data). Computed values include
the average CPU usage for completing the 1000 requests, the standard deviation, and the
minimum and maximum CPU usage.

A summary of the measured and computed values is shown in Figure 14. The plot
uses logarithmic axes and reports the average CPU usage of the prover; times within the
standard deviation are colored in dark shades, and other times between the minimum and
the maximum CPU usage are colored in light shades. As a first observation, each increment
of the prefix length (k) causes a jump in the effort required by the prover to solve the puzzle.
Recall that for n = 1, the CPP is essentially the one based on hashcash alone. On the other
hand, for every fixed value of k, the prover effort scales linearly on the size of the hashcash
tree (n). Observing the standard deviation, it is possible to conclude that all hashcash trees
are computed with similar effort once k and n are fixed. As a final observation on the plot,
note that for k = 0 (i.e., essentially using hash trees) the puzzle is solved in less than 2
s even for the largest case of n = 215 = 32,767. If storing a node takes 34 bytes (32 bytes
for the SHA-256 hash value and 2 bytes for the witness), a hashcash tree of size n = 215 =
32,767 requires around 1024 KiB of memory. In contrast, note that for k = 4 and n = 4095
the puzzle is solved in around 2.26 s and the hashcash tree can be stored in around 136 KiB.
Similarly, for k = 5 and n = 2047 the puzzle is solved in around 2.20 s and the hashcash
tree can be stored in around 68 KiB.

https://github.com/alviano/hashcash-tree

Algorithms 2023, 16, 462 15 of 20

100 1000 10000
0.01

0.1

1

10

HACHCASH TREE SIZE (n)

P
R

O
V

E
R

E
FF

O
R

T
(S

E
C

O
N

D
S)

k = 8
k = 7
k = 6
k = 5
k = 4
k = 3
k = 2
k = 1
k = 0

Figure 14. Average prover effort (P’s CPU time, in seconds) over 1000 requests, with standard
deviation (dark shade), and minimum and maximum values (light shade). For each prefix length
(parameter k), the size of the hashcash tree varies from n = 24 − 1 = 15 to n = 215 − 1 = 32,767.

Figure 15 shows the measured prover effort for each solved CPP. There is a plot for
each tested value of n. Each of these plots reports one line for each tested value of k. The
lines are obtained by plotting the measured CPU time (y axis) for each solved CPP (x axis).
It can be observed that the computation of hashcash trees of size up to n = 63 is very fast,
always below 1 s. On the contrary, the computation of hashcash trees of size n = 8191 is
very slow for k ≥ 5, requiring at least 10 s. Focusing on the remaining values of n, from 127
to 4095, the values of k that lead to CPU times between 0.1 s and 10 s are 4, 5, and 6.

Figure 16 is focused on the values of k identified above. The benchmark was run by
increasing the size of the generated hashcash tree linearly, with steps of 32 nodes. For each
tested size, 1000 hashcash trees were generated. The plot reports the average CPU time
used by the prover, with values within the standard deviation and within the minimum and
maximum measured values. For all three prefix lengths, the prover effort scales linearly,
confirming that the verifier can precisely control the difficulty of the puzzle. The measured
verifier effort, including the CPU usage for running FastAPI, is the following: for k = 4,
it is around 12.7 ms per request, with standard deviation 0.3 ms; for k = 5, it is around
12.9 ms per request, with standard deviation 0.4 ms; for k = 6, it is around 13.4 ms per
request, with standard deviation 0.6 ms.

Algorithms 2023, 16, 462 16 of 20Version September 20, 2023 submitted to Algorithms 15 of 19

k = 0 1 2 3 4 5 6 7 8

0.01

0.10

n = 15

0.01

0.1

n = 31

0.1

1
n = 63

0.1

1

n = 127

0.1

1

n = 255

0.1

1

n = 511

0.1

1

10

n = 1 023

0.1

1

10

n = 2 047

1

10

n = 4 097

1

10

100
n = 8 191

1

10

100

n = 16 383

10

100

n = 32 767

Figure 15. Prover effort (P’s CPU time, in seconds) over 1 000 requests for different prefix lengths
(parameter k) and size of the hashcash tree (parameter n).

tree (n). Observing the standard deviation, it is possible to conclude that all hashcash trees 381

are computed with similar effort once k and n are fixed. As a final observation on the plot, 382

note that for k = 0 (i.e., essentially using hash trees) the puzzle is solved in less than 2 383

seconds even for the largest case of n = 215 = 32 767. If storing a node takes 34 bytes 384

(32 bytes for the SHA-256 hash value and 2 bytes for the witness), a hashcash tree of size 385

n = 215 = 32 767 requires around 1 024 KiB of memory. In contrast, note that for k = 4 and 386

n = 4 095 the puzzle is solved in around 2.26 seconds and the hashcash tree can be stored 387

in around 136 KiB. Similarly, for k = 5 and n = 2 047 the puzzle is solved in around 2.20 388

seconds and the hashcash tree can be stored in around 68 KiB. 389

Figure 15 shows the measured prover effort for each solved CPP. There is a plot for 390

each tested value of n. Each of these plots reports one line for each tested value of k. The 391

lines are obtained by plotting the measured CPU time (y axis) for each solved CPP (x axis). 392

It can be observed that the computation of hashcash trees of size up to n = 63 is very 393

fast, always below 1 second. On the contrary, the computation of hashcash trees of size 394

n = 8 191 is very slow for k ≥ 5, requiring at least 10 seconds. Focusing on the remaining 395

values of n, from 127 to 4, 095, the values of k that lead to CPU times between 0.1 seconds 396

and 10 seconds are 4, 5 and 6. 397

Figure 15. Prover effort (P’s CPU time, in seconds) over 1000 requests for different prefix lengths
(parameter k) and size of the hashcash tree (parameter n).

Algorithms 2023, 16, 462 17 of 20

500 1000 1500 2000 2500 3000 3500 4000

1

2

3

4

5

6

7

8

9

10

HACHCASH TREE SIZE (n)

P
R

O
V

E
R

E
FF

O
R

T
(S

E
C

O
N

D
S)

k = 6
k = 5
k = 4

Figure 16. Average prover effort (P’s CPU time, in seconds) over 1000 requests, with standard
deviation (dark shade), and minimum and maximum values (light shade). Prefix length (parameter
k) fixed to 4, size of hashcash tree varying from n = 127 to n = 4095 with steps of 32.

6. Related Work

Detecting DoS attacks is challenging and addressed by sophisticated techniques,
among them some based on machine learning [4–6]; a survey on DoS detection techniques is
given by de Neira et al. [7]. As an earlier barrier against DoS attacks, prevention techniques
can be adopted to protect sensitive services and assets of an organization [14,15]. This
article introduces a client puzzle protocol as a prevention technique to mitigate DoS attacks.

The concept of the client puzzle was introduced by Juels and Brainard [16], who sug-
gested their application to prevent denial-of-service (DoS) attacks. The main characteristic
of client puzzles is that they can be solved by a polynomial-time entity upon spending a
certain amount of resources, and therefore a server may provide access to some of its assets
in exchange of a valid solution for a new client puzzle. A similar concept is given by Dwork
and Naor [9] with the notion of pricing function to combat junk emails, and by Rivest,
Shamir, and Wagner [17] with the notion of timed-lock puzzle as a tool to realize timed-
release crypto. Client puzzles are expected to be unforgeable and difficult to solve [18] and
possibly to have determinable difficulty and parallel computation resistance [19].

Client puzzles can be categorized as CPU-bound and memory-bound. In CPU-bound
client puzzles, the prover effort is measured by the amount of CPU cycles needed to solve a
puzzle; several client puzzles belong to this category [9,11,16–18,20–22]. In memory-bound
client puzzles, the prover effort is measured by the amount of memory look-ups needed to
solve a puzzle; the main argument in support of memory-bound client puzzles is that CPU
power varies more than memory look-up speed for different computers [23–25].

The CPP presented in Section 3 is CPU-bound and combines hashcash [11] and hash
trees [26]. The main obstacle to using hashcash alone is its unbounded probability cost.
The length k of the prefix is the only parameter that can be used to control the difficulty of
the puzzle, and both difficulty and variance increase exponentially when k increases (see
Proposition 1). An attempt to gain more control on the difficulty of puzzles was performed
by Juels and Brainard [16], who essentially designed a CPP involving several sub-puzzles.

Algorithms 2023, 16, 462 18 of 20

The results shown by Theorem 1 for hashcash trees can be extended to such a CPP when
sub-puzzles are hashcash computations. On the other hand, such a CPP requires verifying
(and therefore transmitting) the solutions of all sub-puzzles, while a logarithmic number of
solutions is sufficient to verify a hashcash tree (see Theorem 2).

A CPP based on hash trees was designed by Coelho [12]. It can be seen as a solution–
verification version of the CPP proposed in Section 3; when the prefix length is fixed to
k = 0 (i.e., hashcash is disabled), the tree is computed based on the service description
and several leaves are selected for the verification phase based on the root hash value. The
difficulty of the puzzle is determinable with high precision, but the size of hash trees can
grow quickly. This is a downside of the protocol, given the fact that the hash tree must
be stored (or recomputed) by the prover in order to provide the labels for the verification
phase, which are discovered only after the root hash value is computed. The proposed
CPP can rely on smaller trees because the difficulty of computing a single node can also be
controlled via the length of the required prefix, i.e., by enabling hashcash.

Differently from previously defined protocols, in addition to the first interaction
with the server to obtain the challenge for accessing the requested service, the proposed
protocol expects a commitment on the computed solution before disclosing the portion
required to prove the legitimacy of the client (see Figure 4). This is in particular contrast
with the non-interactive approach by Raikwar and Gligoroski [27], whose protocol is
explicitly designed to limit the interaction with the server to the verification phase (see
Figure 2). Another fundamental difference with the protocol by Raikwar and Gligoroski is
the adopted crypthographic technique: Raikwar and Gligoroski opted for deterministic
verifiable delay function (VDF) [28], while the protocol proposed in this article is based on
the non-deterministic hashcash algorithm. Given the fact that the non-determinism is
essentially mitigated by the use of short prefixes, as shown in Section 5, adopting hashcash
instead of VDF is justified by a simpler implementation.

7. Conclusions

Hashcash trees combine features of the hashcash algorithm with those of hash trees.
Labels are obtained by running the hashcash algorithm and therefore are moderately hard
to compute (exponential on the length of the prefix) and easy to verify (one hash value
computation). Labels of internal nodes depend on child nodes, and therefore parallel
computation is limited. Moreover, the root is a commitment for the tree, which does not
need to be fully transmitted to the verifier. In fact, the verification involves a logarithmic
number of nodes because the selected leaf is known to the prover only after disclosing the
commitment. The associated client puzzle protocol relies on two parameters for controlling
the prover’s effort. The number of computed hash values grows exponentially on the
prefix length and linearly on the size of the hashcash tree. The empirical analysis suggests
that the prefix length can be fixed to 4 or 5, with hashcash trees of size between 127 and
4095, to generate puzzles solvable in a few seconds. Improving parallel computation
resistance is an interesting future line of research and will require the introduction of
synchronization points in the computation of labels at the same level of the tree. Other
future lines of research include the definition of a (one-phase) challenge–response protocol,
for example, by self-imposing the selected leaf based on the hash value of the root node,
and the definition of a solution–verification protocol, constructing the hashcash tree based
on publicly-available data from the server.

Funding: This research was partially funded by Italian Ministry of Research (MUR) under PNRR
project FAIR “Future AI Research”, CUP H23C22000860006, under PNRR project Tech4You “Tech-
nologies for climate change adaptation and quality of life improvement”, CUP H23C22000370006,
and under PNRR project SERICS “SEcurity and RIghts in the CyberSpace”, CUP H73C22000880001;
by Italian Ministry of Health (MSAL) under POS project RADIOAMICA, CUP H53C22000650006; by
the LAIA lab (part of the SILA labs), and by GNCS-INdAM.

Algorithms 2023, 16, 462 19 of 20

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Mahjabin, T.; Xiao, Y.; Sun, G.; Jiang, W. A survey of distributed denial-of-service attack, prevention, and mitigation techniques.

Int. Distrib. Sens. Netw. 2017, 13. [CrossRef]
2. Bendovschi, A. Cyber-Attacks—Trends, Patterns and Security Countermeasures. Procedia Econ. Financ. 2015, 28, 24–31. [CrossRef]
3. Biju, J.M.; Gopal, N.; Prakash, A.J. Cyber attacks and its different types. Int. Res. J. Eng. Technol. 2019, 6, 4849–4852.
4. He, Z.; Zhang, T.; Lee, R.B. Machine Learning Based DDoS Attack Detection from Source Side in Cloud. In Proceedings of the

2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), New York, NY, USA, 26–28 June
2017; pp. 114–120.

5. Luong, T.K.; Tran, T.D.; Le, G.T. Ddos attack detection and defense in sdn based on machine learning. In Proceedings of the
IEEE 7th NAFOSTED Conference on Information and Computer Science (NICS), Ho Chi Minh, Vietnam, 26–27 November 2020;
pp. 31–35.

6. Jyoti, N.; Behal, S. A meta-evaluation of machine learning techniques for detection of DDoS attacks. In Proceedings of the IEEE
8th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 17–19 March
2021; pp. 522–526.

7. de Neira, A.B.; Kantarci, B.; Nogueira, M. Distributed denial of service attack prediction: Challenges, open issues and opportuni-
ties. Comput. Netw. 2023, 222, 109553. [CrossRef]

8. Aldhyani, T.H.H.; Alkahtani, H. Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep
Learning Model. Mathematics 2023, 11, 233. [CrossRef]

9. Dwork, C.; Naor, M. Pricing via Processing or Combatting Junk Mail. In Proceedings of the Advances in Cryptology—CRYPTO
’92, 12th Annual International Cryptology Conference, Lecture Notes in Computer Science, Santa Barbara, CA, USA, 16–20
August 1992; Brickell, E.F., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; Volume 740, pp. 139–147. [CrossRef]

10. Lachtar, N.; Elkhail, A.A.; Bacha, A.; Malik, H. A Cross-Stack Approach Towards Defending Against Cryptojacking. IEEE Comput.
Archit. Lett. 2020, 19, 126–129. [CrossRef]

11. Back, A. Hashcash—Amortizable Publicly Auditable Cost-Functions. Technical Report. 2002. Available online: http://www.
hashcash.org/papers/amortizable.pdf (accessed on 28 September 2023).

12. Coelho, F. An (Almost) Constant-Effort Solution-Verification Proof-of-Work Protocol Based on Merkle Trees. In Proceedings of the
Progress in Cryptology—AFRICACRYPT 2008, 1st International Conference on Cryptology in Africa, Lecture Notes in Computer
Science, Casablanca, Morocco, 11–14 June 2008; Vaudenay, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5023,
pp. 80–93. [CrossRef]

13. Chiriaco, V.; Franzen, A.; Thayil, R.; Zhang, X. Finding partial hash collisions by brute force parallel programming. In Proceedings
of the 37th IEEE Sarnoff Symposium 2016, Newark, NJ, USA, 19–21 September 2016; pp. 1–2. [CrossRef]

14. Pettis, B.T. reCAPTCHA challenges and the production of the ideal web user. Convergence 2022, 29, 886–900. [CrossRef]
15. Gaggi, O. A study on Accessibility of Google ReCAPTCHA Systems. In Open Challenges in Online Social Networks; Association for

Computing Machinery: New York, NY, USA, 2022.
16. Juels, A.; Brainard, J.G. Client Puzzles: A Cryptographic Countermeasure Against Connection Depletion Attacks. In Proceedings

of the Network and Distributed System Security Symposium, NDSS 1999, San Diego, CA, USA, 4 February 1999.
17. Rivest, R.L.; Shamir, A.; Wagner, D. Time-lock Puzzles and Timed-release Crypto. In Proceedings of the Technical Report

MIT/LCS/TR-684; Massachusetts Institute of Technology: Cambridge, MA, USA, 1996.
18. Chen, L.; Morrissey, P.; Smart, N.P.; Warinschi, B. Security Notions and Generic Constructions for Client Puzzles. In Proceedings

of the Advances in Cryptology—ASIACRYPT 2009, 15th International Conference on the Theory and Application of Cryptology
and Information Security, Lecture Notes in Computer Science, Tokyo, Japan, 6–10 December 2009; Matsui, M., Ed.; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 5912, pp. 505–523. [CrossRef]

19. Tang, Q.; Jeckmans, A. Towards a security model for computational puzzle schemes. Int. J. Comput. Math. 2011, 88, 2246–2257.
[CrossRef]

20. Jakobsson, M.; Juels, A. Proofs of Work and Bread Pudding Protocols. In Proceedings of the Secure Information Networks:
Communications and Multimedia Security, IFIP TC6/TC11 Joint Working Conference on Communications and Multimedia
Security (CMS ’99), IFIP Conference Proceedings, Leuven, Belgium, 20–21 September 1999; Preneel, B., Ed.; Kluwer: Alphen aan
den Rijn, The Netherlands, 1999; Volume 152, pp. 258–272.

http://doi.org/10.1177/1550147717741463
http://dx.doi.org/10.1016/S2212-5671(15)01077-1
http://dx.doi.org/10.1016/j.comnet.2022.109553
http://dx.doi.org/10.3390/math11010233
http://dx.doi.org/10.1007/3-540-48071-4_10
http://dx.doi.org/10.1109/LCA.2020.3017457
http://www.hashcash.org/papers/amortizable.pdf
http://www.hashcash.org/papers/amortizable.pdf
http://dx.doi.org/10.1007/978-3-540-68164-9_6
http://dx.doi.org/10.1109/SARNOF.2016.7846725
http://dx.doi.org/10.1177/13548565221145449
http://dx.doi.org/10.1007/978-3-642-10366-7_30
http://dx.doi.org/10.1080/00207160.2010.543951

Algorithms 2023, 16, 462 20 of 20

21. Tritilanunt, S.; Boyd, C.; Foo, E.; Nieto, J.M.G. Toward Non-parallelizable Client Puzzles. In Proceedings of the Cryptology and
Network Security, 6th International Conference, CANS 2007; Lecture Notes in Computer Science; Bao, F., Ling, S., Okamoto, T.,
Wang, H., Xing, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4856, pp. 247–264. [CrossRef]

22. Waters, B.; Juels, A.; Halderman, J.A.; Felten, E.W. New client puzzle outsourcing techniques for DoS resistance. In Proceedings
of the 11th ACM Conference on Computer and Communications Security, CCS 2004, Washington, DC, USA, 25–29 October 2004;
Atluri, V., Pfitzmann, B., McDaniel, P.D., Eds.; ACM: New York, NY, USA, 2004; pp. 246–256. [CrossRef]

23. Abadi, M.; Burrows, M.; Manasse, M.S.; Wobber, T. Moderately hard, memory-bound functions. ACM Trans. Internet Technol.
2005, 5, 299–327. [CrossRef]

24. Dean, D.; Stubblefield, A. Using Client Puzzles to Protect TLS. In Proceedings of the 10th USENIX Security Symposium,
Washington, DC, USA, 13–17 August 2001; Wallach, D.S., Ed.; USENIX: Berkeley, CA, USA, 2001.

25. Doshi, S.; Monrose, F.; Rubin, A.D. Efficient Memory Bound Puzzles Using Pattern Databases. In Proceedings of the Applied
Cryptography and Network Security, 4th International Conference, ACNS 2006, Singapore, 6–9 June 2006; Zhou, J., Yung, M.,
Bao, F., Eds.; Lecture Notes in Computer Science; Springer International Publishing: New York, NY, USA, 2006; Volume 3989,
pp. 98–113. [CrossRef]

26. Merkle, R.C. Method of Providing Digital Signatures. U.S. Patent No. 4,309,569, 5 January 1982.
27. Raikwar, M.; Gligoroski, D. Non-Interactive VDF Client Puzzle for DoS Mitigation. In Proceedings of the EICC 2021, European

Interdisciplinary Cybersecurity Conference, New York, NY, USA, 10–11 November 2021; pp. 32–38. [CrossRef]
28. Boneh, D.; Bonneau, J.; Bünz, B.; Fisch, B. Verifiable Delay Functions. In Proceedings of the Advances in Cryptology–CRYPTO

2018: 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2018; Part I; Springer International
Publishing: Berlin/Heidelberg, Germany, 2018; pp. 757–788. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-540-76969-9_16
http://dx.doi.org/10.1145/1030083.1030117
http://dx.doi.org/10.1145/1064340.1064341
http://dx.doi.org/10.1007/11767480_7
http://dx.doi.org/10.1145/3487405.3487406
http://dx.doi.org/10.1007/978-3-319-96884-1_25

	Introduction
	Background
	Hash Functions
	A Client Puzzle Protocol Based on Hashcash
	Trees

	Hashcash Trees and Their Application to Client Puzzle Protocols
	Properties
	Computational Complexity
	Determinable Difficulty
	Parallel Computation Resistance

	Implementation and Experiment
	Related Work
	Conclusions
	References

