
Citation: García-Olmedo, F.M.;

García-Miranda, J.; González-

Rodelas, P. Mathematical Foundation

of a Functional Implementation of

the CNF Algorithm. Algorithms 2023,

16, 459. https://doi.org/10.3390/

a16100459

Academic Editors: Eugene Semenkin,

Todor Ganchev, Predrag S.

Stanimirovic and Frank Werner

Received: 14 August 2023

Revised: 24 September 2023

Accepted: 24 September 2023

Published: 27 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Mathematical Foundation of a Functional Implementation of
the CNF Algorithm
Francisco Miguel García-Olmedo 1,*,† , Jesús García-Miranda 1,† and Pedro González-Rodelas 2,*,†

1 Departamento de Álgebra, Granada University, 18071 Granada, Spain; jesusgm@ugr.es
2 Departamento de Matemática Aplicada, Granada University, 18071 Granada, Spain
* Correspondence: folmedo@ugr.es (F.M.G.-O.); prodelas@ugr.es (P.G.-R.)
† These authors contributed equally to this work.

Abstract: The conjunctive normal form (CNF) algorithm is one of the best known and most widely
used algorithms in classical logic and its applications. In its algebraic approach, it makes use in a
loop of a certain well-defined operation related to the “distributivity” of logical disjunction versus
conjunction. For those types of implementations, the loop iteration runs a comparison between
formulas to decide when to stop. In this article, we explain how to pre-calculate the exact number
of loop iterations, thus avoiding the work involved in the above-mentioned comparison. After that,
it is possible to concatenate another loop focused now on the “associativity” of conjunction and
disjunction. Also for that loop, we explain how to calculate the optimal number of rounds, so that the
decisional comparison phase for stopping can be also avoided.

Keywords: CNF; SAT problem; classical logic; Boolean algebra; Horn clauses; reverse engineering;
automatic theorems proving; algorithm implementation; functional programming; Haskell

1. Introduction

The conjunctive normal form (CNF) is famous in the history of thought because it
organizes discourse by normalizing potentially chaotic statements through the conjunction
of a series of statements in the form of disjunctions of other simple statements, namely
atomic statements, or the negation of them.

CNF has proven to be essential in the treatment of the SAT problem (from “satisfi-
ability”, usually abbreviated to SAT), which in turn is at the core of automated theorem
proving, thanks to the effectiveness of the resolution rule and what is known about the
treatment of Horn clauses (see [1]).

The other great utility of CNF lies in the minimization of Boolean expressions under
the condition of being expressed as a product of sums (POS) (see [2,3]). It is clear that the
POS criterion is the dual concept of the sum of products (SOP) criterion.

In general, transforming a formula into CNF is the essence of Petrick’s method, an al-
gorithm widely used in various fields: cybernetics, economics, linguistics, philosophy, psy-
chology, etc. For an explanation of the algorithm and detailed applications, see [2] (p. 157),
plus extensive comments and applications of the CNF algorithm. In [4] (pp. 69–71), we
find a brilliant application of Petrick’s method to finite Boolean algebra.

Given a propositional formula or a Boolean expression, it is possible to obtain for it
an equivalent formula or expression, as the case may be, in CNF by semantic means or
by algebraic manipulations. Both procedures are described in [5–7]; however, algebraic
manipulation may be faster.

If we focus on the method of syntactic analysis for obtaining CNF, we will con-
sider propositional logic formulas, without loss of generality, in the appropriate language.
In this line of thought, the essence of the algorithm is quite simple: after internalizing
negation and eliminating double negation, the main task is to replace subformulas of

Algorithms 2023, 16, 459. https://doi.org/10.3390/a16100459 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16100459
https://doi.org/10.3390/a16100459
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0382-0288
https://orcid.org/0000-0003-2528-0566
https://orcid.org/0000-0002-0567-3939
https://doi.org/10.3390/a16100459
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16100459?type=check_update&version=1

Algorithms 2023, 16, 459 2 of 18

the form (α ∨ (β ∧ γ)) by their equivalent ((α ∨ β) ∧ (α ∨ γ)) (distributivity). For the
sake of efficiency, we will use Polish notation here as was introduced by Jan Łukasiewicz
in [8] (pp. 33–34). Łukasiewicz selected K (resp. A) to represent conjunction (resp. disjunc-
tion). Disjunction was originally called “alternation” by Łukasiewicz (in Polish “alternacja”,
hence the symbol “A”). The word “disjunction” in Polish is “koniunkcja”, hence the sym-
bol “K”. Our notation in this logical work, which is classical notation, is based on this
Łukasiewicz guideline because it has the great advantage of avoiding parentheses and at
the same time being univocal. Furthermore, Polish notation is ideal for transitioning to
a functional implementation in the Haskell language given the peculiarities of its syntax
(see [9]). Since de functor A stands for disjunction and functor K for conjunction in stan-
dard Polish notation, what we are saying is that the application of distributivity translates
A α K βγ to K A αβ A αγ.

With regard to the CNF algorithm, the current state of the art can be found, for
example, at [5,6]. To fix ideas, we will focus on [5] (p. 26) and look at Algorithm 2.3, called
TREE-EQ-CNF. Its pseudocode contains the following snippet:

...
{

do {
αorig = α

. . .
} while (αorig! = α);
return(α)

}

Therefore, we note that the basis of the algorithm is a while loop with the sentinel
condition αorig 6= α, where αorig is a copy of the value of the α at the start of the current round.
Therefore, each round of the while loop requires a comparison operation between the
formula we are transforming in that round and the result of its transformation, stopping the
process when there is a match. The basis of this work is to avoid all the comparisons we have
just detected, the number of which will depend on the case, and instead to carry out a single
inspection of the formula passed as a parameter initially to the coding of the algorithm;
that single inspection, ultimately related to “distributivity”, will give us the minimum
number of rounds for the correct operation of the loop. However, the expression of the
resulting formula in the CNF algorithm is not satisfactory until we express it canonically
with the functors K and A left-loaded. This has to do with “associativity” and will lead us
a second time to the situation where we have to calculate the minimum number of rounds
for another while loop beforehand; that calculation will be carried out with the function
akr defined below in Section 3.

The basis of the classical algorithm, which is essentially the substitution of subfor-
mulas by equivalents, does not change in our work, but we will provide a very formal
presentation of the substitution process in the algorithm. That presentation will be based
on the specialized theory of recursive works, namely the lambda calculus.

Finally, as a result of the work, we provide a functional implementation (https://
github.com/ringstellung/CNF, accessed on 23 September 2023) of the algorithm in the
Haskell programming language with these and other contributions.

In summary, the sections of this article contain the following. Since the aim of this
paper is the manipulation of formulas over a language, in Section 2, we suggest the rigorous
definition of language and formula. Four subsets of formulas generated by a non-empty
subset of formulas according to appropriate rules are then suggested; essentially they are
the support for defining the concept of clause and formula in conjunctive normal forms.
The section continues by giving several different concepts of the complexity of a formula.
The rest of the section is devoted to defining the concept of semantic equivalence of
formulas, according to classical propositional logic; some examples; and the statement of
a classical result on distributivity. Negation is not mentioned because it is not relevant
to the theoretical framework of the article. Section 3 is devoted to the treatment of the

https://github.com/ringstellung/CNF
https://github.com/ringstellung/CNF

Algorithms 2023, 16, 459 3 of 18

distributivity that, in a broad sense of the term, classical propositional logic contains
between disjunction and conjunction. In that section, the function dak is defined (see
Figure 1), which, when applied to formulas, manages to reduce the alternation in them
of the connector K over A in a unit; this alternation is measured in each formula by the
function alt. The section concludes by showing that the alternation of each formula is
precisely the minimum number of applications of dak to it, in order to obtain another
equivalent formula in conjunctive normal form. Practical laboratory experience in the field
of logical deduction indicates that the associativity of the connectives K and A must be taken
into account in order to obtain a canonical form, which, in Polish notation, accumulates
these connectives at the beginning of the formula. The rigorous treatment of this matter is
the aim of Section 4. In writing it, we were inspired by the structure of Section 3; however,
the intrinsic theory is appreciably more complex. It is all based on two “measures” on
formulas that essentially express how far the formula is from that canonical form; the
maximum of these two values is also important. In that section, we justify the expressive
capacity of the aforementioned measures to characterise the membership of the subsets
of formulas defined in Section 2. The counterpart for the associativity of the dak function
is defined, namely the lasc function (see Figure 2). This time, the application of the lasc
function decreases the separation measure of the formula to the canonical form by half; in
that sense, it serves to make big steps. A certain natural value based on the logarithm in
base two gives the minimum number of applications of lasc to the formula to obtain its
desired canonical form. The last section, Section 5, is for the conclusions.

xi →dak xi

Aϕξ →dak α Aψξ →dak β
AKϕψξ →dak Kαβ

Aξϕ→dak α Aξψ→dak β
AξKϕψ→dak Kαβ

ϕ→dak ϕ′ ψ→dak ψ′

Aϕψ→dak Aϕ′ψ′
ϕ→dak ϕ′ ψ→dak ψ′

Kϕψ→dak Kϕ′ψ′

Figure 1. Axiom and rules for the definition of dak.

xi →lasc xi

Aϕψ→lasc α ξ →lasc β
AϕAψξ →lasc Aαβ

Kϕψ→lasc α ξ →lasc β
KϕKψξ →lasc Kαβ

ϕ→lasc ϕ′ ψ→lasc ψ′

Aϕψ→lasc Aϕ′ψ′
ϕ→lasc ϕ′ ψ→lasc ψ′

Kϕψ→lasc Kϕ′ψ′

Figure 2. Axiom and rules for the definition of lasc.

2. Basic Definitions and Preliminary Results

In this section, we list the main definitions of the basic concepts that will be used in
the development of this work, as well as the essential results needed in it.

Here, the concept of sentencial or propositional language is that of J.D. Monk in [10]
(see also [11,12]), but our functors (in the sense of Jan Łukasiewicz in [8]) will be A and
K. Moreover, it is necessary to impose that X, the set of atomic or propositional variables,
be a nonfinite numerable set; its elements are notated by the last lower–case letters of the
latin alphabet: x, y, z, etc., subindicating them if necessary. We will call LKA the above

Algorithms 2023, 16, 459 4 of 18

propopositional language and P(LKA), or simply P(L), the set of its formulas or sentences.
The reader should be thoroughly familiar with the principle of induction for sentences,
the construction sequence for sentences, and the unique readability principle. We will also
assume the knowledge of the principle of finite induction in its different formulations, as it
is exposed, for example, in [6].

The statements of some particular results (lemmas and theorems), in this and sub-
sequent sections, will be given without complete proofs, because some of them are quite
evident, and the rest could be carried out using the principle of finite induction, taking
into account, in a meticulous and orderly manner, all the possible cases that can occur, in a
similar way as it is carried out in the selected proofs included in this paper.

Given a set ∆ of formulas of the language L, consider the smallest set of formulas that,
containing it, is at the same time closed for the functors A (resp. K); it will be represented
by A(∆) (resp. K(∆)). Thus, the elements of K(A(X)) are exactly the set of formulas in
conjunctive normal form. Clauses are exactly the formulas of the smallest set, al(X), containing
X and being closed for the functor A whenever it operates on an element of X to its right.
The set kl(X) (resp. lcnf(X)) is the smallest set containing X (resp. al(X)) and being closed
for the functor K whenever it operates on an element of X (al(X)) to its right.

Remark 1. Note that al(X) ∪ kl(X) ⊆ lcnf(X) and that lcnf(X) ⊆ K(A(X)).

Definition 1. For all α ∈ P(LKA) let comp(α) (complexity), the natural value defined as follows:

comp(α) =

{
0, if α ∈ X,
1 + comp(ϕ) + comp(ψ), if α ≡ Aϕψ or α ≡ Kϕψ.

and compk(α) (complexity in K) defined by

compk(α) =

0, if α ∈ X,
compk(ϕ) + compk(ψ), if α ≡ Aϕψ,
1 + compk(ϕ) + compk(ψ), if α ≡ Kϕψ.

If necessary, consider compa(α) as the dual concept of compk(α).

Consider the semantic consequence |= in the classical sense, as in, for example, Ref. [5].
The formula α and β are equivalent, in symbols α = β, iff by definition α |= β and β |= α.
In the following, we will use the symbol = to indicate equivalence and the symbol ≡
to indicate syntactic equality (verbatim equal). It is well known that if α = A ϕψ and
β = A ϕξ, then A ϕ K ψξ = K αβ.

Remark 2. It is well know as a basic theorem of classical logic that if α = Aϕψ (resp. α = Kϕψ),
then AϕAψξ = Aαξ (resp. KϕKψξ = Kαξ).

3. Distributivity

The aim now is, given a formula ϕ in P(L), to find ϕcn f in K(A(X)) such that both are
equivalent. This will be the basis of the algorithm, and the first thing to do is to determine
how far ϕ is from K(A(X)). As we shall see shortly, the expected measure is given by the
function alt, which indicates the alternation in its formula argument of the symbols K and
A from the inner to the outside formula.

Definition 2. Let α be any formula in P(L). The alternation of α, in symbols alt(α), is defined by

alt(α) =

0, if K /∈ α;
max{alt(ϕ), alt(ψ)}, if α ≡ K ϕψ;
1 + max{alt(ϕ), alt(ψ)}, if α ≡ A ϕψ and K ∈ α.

Algorithms 2023, 16, 459 5 of 18

In Lemma 1, we characterise the meaning of “belong to the set K(A(X))” by means of
the map alt. As we shall see, the formulas for which alt(α) = 0 are exactly those of the set
K(A(X)).

Lemma 1. Let α ∈ P(L). The following statements are equivalent:

1. alt(α) = 0.
2. α ∈ K(A(X)).

Definition 3 (distributivity). Consider the following compound rules on binary relationships
between formulas of P(L):

xi →dak xi (1)

A ϕξ →dak α A ψξ →dak β

A K ϕψξ →dak K αβ
(2)

A ξϕ→dak α A ξψ→dak β

A ξ K ϕψ→dak K αβ
(3)

ϕ→dak ϕ′ ψ→dak ψ′

A ϕψ→dak A ϕ′ψ′
(4)

ϕ→dak ϕ′ ψ→dak ψ′

K ϕψ→dak K ϕ′ψ′
(5)

where (2)–(4) are applied with the precedence indicated by the order in which they are given. This
being so, we define the following application:

dak : P(L) −→ P(L)

by
dak(ϕ) ≡ ψ, provided that ϕ→dak ψ

Remark 3. dak is an application, because a clear and univocal precedence has been established
in the rules on which its definition is based. For example, note that by Rule (2), dak(A K xyz) =
K dak(A xz)dak(A yz); dak is a recursive process with stop in propositional variables due to Rule
(1). Moreover, it is clear from Remark 2 that for all ζ ∈ P(L), dak(ζ) = ζ (semantical equality).

By Lemma 2, α ∈ A(X) is a sufficient condition for dak(α) ≡ α, but it is not a necessary
condition. Lemma 3, which is a consequence of Lemma 2, gives the necessary and sufficient
condition, although this will be fully concluded in Corollary 1. The proof of Lemma 2
is straighforward.

Lemma 2. Let α be a formula in P(L). If α ∈ A(X), then dak(α) ≡ α.

Lemma 3. Let α ∈ P(L). If α ∈ K(A(X)) then dak(α) ≡ α.

Proof. Let us assume that α ∈ K(A(X)) and comp(α) = n. Reasoning by induction on
comp(α) we will show that dak(α) ≡ α. As an induction hypothesis, suppose that the
implication is true for any formula β ∈ K(A(X)) such that comp(β) < n. If α ∈ K(A(X)),
then two situations are possible:

1. α ∈ A(X); in this case dak(α) ≡ α is what Lemma 2 states.

Algorithms 2023, 16, 459 6 of 18

2. There exist formulas ϕ and ψ in K(A(X)) of complexities lower than those of α such
that α ≡ Kϕψ. For the calculation of dak(α), it is only possible to start with Rule (5):

dak(α) ≡ dak(Kϕψ)

≡ K dak(ϕ)dak(ψ) by Rule (5)

≡ Kϕψ induc. hyp.

≡ α

As for Theorem 1, in essence its meaning is that in applying dak to a given formula not
in K(A(X)), say α, according to the “measure” alt, the result is closer to K(A(X)) than α.

Theorem 1. For all α ∈ P(L),

alt(dak(α)) =

{
0, if α ∈ K(A(X));
alt(α)− 1, otherwise.

(6)

Proof. The proof is by induction on the complexity of the formula α. Let α be a formula in
P(L) such that comp(α) = n. Suppose, as an induction hypothesis, that (6) holds for any
formula β such that comp(β) < n. Several cases are possible:

1. α ≡ x ∈ X; in this case, dak(α) ≡ x ∈ X and since X ⊆ K(A(X)), we deduce
according to Lemma 1 that alt(α) = 0, which proves the result in this case.

2. α ≡ AKϕψξ; therefore, α 6∈ K(A(X)) and

alt(α) = 1 + max{alt(Kϕψ), alt(ξ)}
= 1 + max{alt(ϕ), alt(ψ), alt(ξ)} (7)

On the other hand, dak(α) ≡ K dak(Aϕξ)dak(Aψξ) so that

alt(dak(α)) = max{alt(dak(Aϕξ)), alt(dak(Aψξ))} (8)

For short, we will call β to Aϕξ and γ to Aψξ. Let us bear in mind the following:

(a) K ∈ β; then alt(β) = 1 + max{alt(ϕ), alt(ξ)} and β 6∈ K(A(X)). Since
comp(β) < comp(α), the induction hypothesis allows us to establish that:

alt(dak(β)) = alt(β)− 1

= 1 + max{alt(ϕ), alt(ξ)} − 1 (9)

= max{alt(ϕ), alt(ξ)} (10)

(b) K 6∈ β; then ϕ, ξ, β ∈ A(X). According to Lemma 2, then dak(β) ≡ β and,
according to Lemma 1,

alt(dak(β)) = alt(β) = 0 (11)

alt(ϕ) = 0 (12)

alt(ξ) = 0 (13)

We will now analyse equality (8) on a case-by-case basis:

(a) K ∈ β and K ∈ γ; then

alt(dak(α)) = max{alt(dak(β)), alt(dak(γ))} by (8)

= max{alt(ϕ), alt(ψ), alt(ξ)} by (10)

= alt(α)− 1

Algorithms 2023, 16, 459 7 of 18

(b) K 6∈ β and K ∈ γ; then

alt(dak(α)) = max{alt(dak(β)), alt(dak(γ))} by (8)

= max{0, alt(dak(γ))} by (11)

= alt(dak(γ))

= max{alt(ψ), alt(ξ)} by (10)

= alt(ψ) by (13)

= max{0, alt(ψ), 0}
= max{alt(ϕ), alt(ψ), alt(ξ)} by (11) and (13)

= alt(α)− 1 by (7)

(c) K ∈ β and K 6∈ γ; this situation is treated as the case in paragraph 2b.
(d) K 6∈ β and K 6∈ γ; in this case β, γ ∈ A(X) and α ∈ K(A(X)). By what Lemma 3

states, dak(α) ≡ α and, as Lemma 1 states, alt(α) = 0; so alt(dak(α)) = 0.

3. α ≡ AξKϕψ; this situation is treated as the case in paragraph 2.
4. α ≡ Aϕψ; neither ϕ nor ψ begin with K but K ∈ α; without loss of generality, suppose

that alt(ψ) ≤ alt(ϕ), whence K ∈ ϕ and ϕ begins with A, i.e., ϕ 6∈ K(A(X)). Then
alt(α) = 1 + alt(ϕ) and

alt(dak(α)) = alt(A dak(ϕ)dak(ψ)) by Rule (4)

= 1 + max{alt(dak(ϕ)), alt(dak(ψ))}
= 1 + alt(dak(ϕ))

= 1 + alt(ϕ)− 1 hyp. induc. and conditions of ϕ

= alt(ϕ)

= alt(α)− 1

5. α ≡ Kϕψ; without loss of generality, suppose that alt(ψ) ≤ alt(ϕ). If alt(ϕ) = 0, then
alt(ψ) = 0, ϕ, ψ, α ∈ K(A(X)) and so alt(α) = 0 (see Lemma 1). If alt(ϕ) 6= 0, i.e.,
ϕ 6∈ K(A(X)), then α 6∈ K(A(X)). Thus,

alt(dak(α)) = alt(K dak(ϕ)dak(ψ)) by Rule (5)

= max{alt(dak(ϕ)), alt(dak(ψ))} def. of alt

= alt(dak(ϕ))

= alt(ϕ)− 1 induc. hyp. and conditions of ϕ

= max{alt(ϕ), alt(ψ)} − 1

= alt(α)− 1 def. of alt

As a consequence of Theorem 1, it follows that the sufficient condition of Lemma 3 is
also a necessary condition.

Corollary 1. Let α be any formula in P(L). The following statements are equivalent:

1. dak(α) ≡ α.
2. α ∈ K(A(X)).
3. alt(α) = 0.

Given any formula α in P(L), we now know that it is possible to obtain from it
another in conjunctive normal form by iterated application of the dak function. Moreover,
the minimum number or iterations required is exactly alt(α). By Remark 3, we know that
this other formula in conjunctive normal form is logically equivalent to α, the input formula.

Algorithms 2023, 16, 459 8 of 18

Corollary 2. For all α ∈ P(L), the natural number alt(α) is the smallest natural number m
satisfying dakm(α) ∈ K(A(X)).

Proof. The proof is by induction on n according to the predicate Q(n) of the literal content:

If α ∈ P(L) and n = alt(α), then n is the smallest natural m satisfying dakm(α) ∈ K(A(X)).

The reasoning is as follows:

• n = 0; if α ∈ P(L) and 0 = alt(α), then by Corollary 1, we know that α ∈ K(A(X)),
i.e., dak0(α) ∈ K(A(X)), since dak0 is the identity map. Since 0 is the smallest natural
number, the set of natural numbers smaller than it is empty, from which we conclude
the assertion.

• Suppose that 0 < n, that Q(n− 1) is true, and that α ∈ P(L) is fixed but arbitrary
under the condition that n = alt(α). As we know from Theorem 1 and Corollary 1, it
holds that

alt(dak(α)) = alt(α)− 1 = n− 1 (14)

By (14) and the induction hypothesis, we have, in particular, that

dakn(α) = dakn−1(dak(α)) ∈ K(A(X))

On the other hand, let m be a natural number, such that m < n. Three cases can occur:

∗ m = n− 1; then:

alt(dakn−1(α)) = alt(α)− n + 1

= n− n + 1

= 1

so (see Corollary 1) dakn−1(α) 6∈ K(A(X)).
∗ 0 < m < n − 1; by Theorem 1, we know that alt(dak(α)) = n − 1, and since

m− 1 < m < n− 1, by the induction hypothesis, we have

dakm(α) = dakm−1(dak(α)) 6∈ K(A(X))

∗ m = 0; dak0(α) = α, and since alt(α) = n > 0, we deduce that dak0(α) 6∈
K(A(X)).

By the principle of finite induction, we deduce that Q(n) is true for any natural number
n. Since the function alt can be applied to any formula, the result is true.

4. Associativity

By iterating dak from any formula, we obtain, as we have seen, a formula equivalent to
it that is in conjunctive normal form. However, for certain formulas in conjunctive normal
form, there are several others also in conjunctive normal form that are equivalent to it, but
such that they are all distinct from each other. In this section, we intend to provide an algo-
rithm to select among all those formulas, one of which we will consider in canonical form.
For practical reasons, we will consider the set lcnf(X), the set of formulas in conjunctive
left normal form, as the one that gathers exactly all the formulas in canonical form.

Definition 4. Let ar : P(L) −→ Z be defined as follows:

ar(α) =

−1, if α ∈ X;
max{ar(ϕ), ar(ψ)}, if α = K ϕψ;
max{ar(ϕ), 1 + ar(ψ)}, if α = A ϕψ.

Algorithms 2023, 16, 459 9 of 18

and let kr : P(L) −→ Z be defined as follows:

kr(α) =

−1, if α ∈ X;
max{kr(ϕ), 1 + kr(ψ)}, if α = K ϕψ;
max{kr(ϕ), kr(ψ)}, if α = A ϕψ.

Also let akr : P(L) −→ Z be defined as follows:

akr(α) = max{ar(α), kr(α)}

Remark 4. The maps ar and kr have the properties given in Lemma 4. This Lemma characterises
the elements of K(X), A(X), and X. The particular assignation in both functions of the value −1
to the elements of X is just in order to adjust the final computations accordingly.

Lemma 4. For all α ∈ P(L):

1. α ∈ K(X) if, and only if, ar(α) = −1.
2. α ∈ A(X) if, and only if, kr(α) = −1.
3. α ∈ X if, and only if, kr(α) = −1 = ar(α).
4. K(X) ∩A(X) = X.

Proof. Let us prove statement 1. First we will reason by induction according to the com-
plexity of α and according to the predicate Q(n) of the literal content:

“for all α ∈ P(L), if α ∈ K(X) and comp(α) = n, then ar(α) = −1”

Suppose, as an induction hypothesis, that n is a natural number and that for any
natural number k such that k < n, Q(k) holds. We have the following cases:

• n = 0; then let —as the only case of interest— α ≡ x ∈ X. By Definition 4, ar(α) = −1,
so Q(0) is true.

• n > 0; if α ∈ K(X) and n > 0, there must exist ϕ, ψ ∈ K(X) such that α ≡ Kϕψ. Then

ar(α) = max{ar(ϕ), ar(ψ)} Definition 4

= max{−1,−1} induc. hyp.

= −1

so Q(n) is true in this case.

By the second principle of finite induction, for any natural number n is true Q(n) and
hence the implication. Reciprocally, let us now consider the predicate Q(n):

“for all α ∈ P(L), if comp(α) = n and ar(α) = −1, then α ∈ K(X)”

Suppose, as an induction hypothesis, that n is a natural number and that for any
natural number k, such that k < n, Q(k) holds. We have the following cases:

• n = 0; then let —as the only case of interest— α ≡ x ∈ X. Since X ⊆ K(X) it follows
that Q(0) is true.

• n > 0; let α ∈ P(L) such that comp(α) = n and ar(α) = −1. In principle, the following
are possible:

– there exist ϕ, ψ ∈ P(L), such that α ≡ Kϕψ; then

−1 = ar(α)

= max{ar(ϕ), ar(ψ)}
⇒ ar(ϕ) = −1 = ar(ψ)

⇒ ϕ, ψ ∈ K(X) induc. hyp.

⇒ α ∈ K(X)

Algorithms 2023, 16, 459 10 of 18

– there exist ϕ, ψ ∈ P(L), such that α ≡ Aϕψ; then

−1 = ar(α)

= max{ar(ϕ), 1 + ar(ψ)}
≥ 0

⇒ therefore this case is not possible

so that Q(n) is true.

By the second principle of finite induction, for any natural number n, Q(n) holds and
hence the implication. Statement 2 can be proved with the same scheme as above. Suppose
now that kr(α) = −1 = ar(α). Since ar(α) = −1, we have that α ∈ K(X) and if there exist
ϕ, ψ ∈ P(L), such that α ≡ Kϕψ, then one would have

−1 = kr(α) hypothesis

= max{kr(ϕ), 1 + kr(ψ)} Definition 4

≥ 0

which is absurd, so α ∈ X. The reciprocal statement is obviously true and it follows that
K(X) ∩A(X) = X.

The proof of Lemma 5 is straightforward from Lemma 4.

Lemma 5. For all α ∈ P(L):

1. If α ∈ K(X) \ X then 0 ≤ kr(α).
2. If α ∈ A(X) \ X then 0 ≤ ar(α).
3. ar(α) = −1 and kr(α) = −1 if, and only if, α ∈ X.

Remark 5. The respective reciprocal statements of the first two sentences of Lemma 5 are not
true. Indeed, kr(AKxyx) = 0 (resp. ar(KAxyx) = 0), and yet AKxyx /∈ K(X) \ X (resp.
KAxyx /∈ A(X) \ X).

Lemma 6 characterises the elements of kl(X) \X and al(X) \X. Its proof can be carried
out by induction by making a careful distinction of cases.

Lemma 6. For all α ∈ P(L),

1. ar(α) = −1 and kr(α) = 0 if, and only if, α ∈ kl(X) \ X.
2. ar(α) = 0 and kr(α) = −1 if, and only if, α ∈ al(X) \ X.

Lemma 7. For all α ∈ K(A(X)), the following statements are equivalent:

1. ar(α) = 0 and kr(α) = 0.
2. α ∈ lcnf(X) \ (al(X) ∪ kl(X)).

Remark 6. The formula α ≡ AKxyx satisfies ar(α) = 0 = kr(α), but α 6∈ lcnf(X); hence the
need for the restriction in the statement of Lemma 7.

By means of akr, the above technical lemmas make it possible to characterise in
Theorem 2 the set lcnf(X) of formulas in left conjunctive normal form. Note how≤ appears
in the statement, again highlighting the subtle role played by −1 in the definition of akr.

Theorem 2. For all α ∈ K(A(X)), the following statements are equivalent:

1. akr(α) ≤ 0.
2. α ∈ lcnf(X).

Algorithms 2023, 16, 459 11 of 18

Proof. Let us first show that statement 1 is a sufficient condition for 2. to be fulfilled.
The following cases are possible:

1. ar(α) = −1 = kr(α); as stated in Lemma 5, α ∈ X.
2. ar(α) = −1 and kr(α) = 0; as stated in Lemma 6, α ∈ kl(X) \ X.
3. ar(α) = 0 and kr(α) = −1; as stated in Lemma 6, α ∈ al(X) \ X.
4. ar(α) = 0 and kr(α) = 0; as stated in Lemma 7, α ∈ lcnf(X) \ (al(X) ∪ kl(X)).

and hence, α ∈ lcnf(X). However, 1 is a necessary condition for 2, which follows as a
consequence of the aforementioned lemmas.

Now everything is ready to carry out the accumulation of the functors A and K on the
left side of the formula without changing its logical meaning. This task will be carried out
by the function lasc, defined in Definition 5, by means of convenient iterations. The lasc
function is the classical one, but formulated here univocally in a novel recursive way
via rules.

Definition 5 (left associativity). Consider the following rules:

xi →lasc xi (15)

Aϕψ→lasc α ξ →lasc β

AϕAψξ →lasc Aαβ
(16)

Kϕψ→lasc α ξ →lasc β

KϕKψξ →lasc Kαβ
(17)

ϕ→lasc ϕ′ ψ→lasc ψ′

Aϕψ→lasc Aϕ′ψ′
(18)

ϕ→lasc ϕ′ ψ→lasc ψ′

Kϕψ→lasc Kϕ′ψ′
(19)

where (16)–(19) shall be applied with the priority from highest to lowest according to the order given.
Les us now define the map lasc : P(L) −→ P(L) by lasc(ϕ) ≡ ψ if, and only if, ϕ→lasc ψ.

It is clear that for any formula ϕ, lasc(ϕ) is equivalent to ϕ (see Remark 2); therefore,
lasc does not alter the logical meaning of the formulas by acting on them, although it does
eventually alter their syntax. What is stated in Lemma 8 is obviously true.

Lemma 8. For all α ∈ P(L),

1. If α ∈ A(X) then lasc(α) ∈ A(x).
2. If α ∈ K(X) then lasc(α) ∈ K(x).

Lemma 9. For all α ∈ A(X),

ar(lasc(α)) =
⌊

ar(α)
2

⌋
.

Proof. The proof is by induction on the complexity of α.

Remark 7. It is also evident that for all α ∈ A(X)

kr(lasc(α)) =
⌊

kr(α)
2

⌋
=

⌊
−1
2

⌋
= −1.

As we can see, the reductive role of lasc on akr(α) is very powerful when applying lasc
to the formula α; as we can see, it is such that divides the “complexity of the situation” by 2,
which inevitably invokes the logarithm in base 2. The information provided by Theorem 3
is crucial in this section, so we will give a detailed demonstration of it.

Algorithms 2023, 16, 459 12 of 18

Theorem 3. For all α ∈ K(A(X)):

1. ar(lasc(α)) =
⌊

ar(α)
2

⌋
2. kr(lasc(α)) =

⌊
kr(α)

2

⌋
3. akr(lasc(α)) =

⌊
akr(α)

2

⌋
Proof. To prove 1, we will reason by induction about the complexity of α using the predicate
Q(n) of the literal content:

“for all α, if α ∈ K(A(X)) and compk(α) = n, then ar(lasc(α)) =
⌊

ar(α)
2

⌋
”

Suppose, as an induction hypothesis, that n is a natural number and that for any
natural number k such that k < n Q(k) holds. We have the following cases:

• n = 0; must be α ∈ A(X), the formula for which is ar(lasc(α)) =
⌊

ar(α)
2

⌋
, as set out in

Lemma 9.
• n > 0; let —as the only case of interest— α ≡ Kϕρ for certain ϕ, ρ ∈ K(A(X)). Let us

distinguish the following cases:

– ρ ∈ A(X); then:

ar(lasc(α)) = ar(lasc(Kϕρ)) = ar(K lasc(ϕ) lasc(ρ))

= max{ar(lasc(ϕ)), ar(lasc(ρ))}

= max
{⌊

ar(ϕ)

2

⌋
,
⌊

ar(ρ)
2

⌋}
induc. hyp. and Lemma 9

=

⌊
max{ar(ϕ), ar(ρ)}

2

⌋
=

⌊
ar(α)

2

⌋
– ρ 6∈ A(X); then α ≡ KϕKψξ for certain ψ, ξ ∈ K(A(X)). In this case,

ar(lasc(α)) = ar(lasc(KϕKψξ)) = ar(K lasc(Kϕψ) lasc(ξ))

= max{ar(lasc(Kϕψ)), ar(lasc(ξ))}

= max
{⌊

ar(Kϕψ)

2

⌋
,
⌊

ar(ξ)
2

⌋}
induc. hyp

= max
{⌊

max{ar(ϕ), ar(ψ)}
2

⌋
,
⌊

ar(ξ)
2

⌋}
= max

{⌊
ar(ϕ)

2

⌋
,
⌊

ar(ψ)
2

⌋
,
⌊

ar(ξ)
2

⌋}
=

⌊
max{ar(ϕ), ar(ψ), ar(ξ)}

2

⌋
=

⌊
max{ar(ϕ), max{ar(ψ), ar(ξ)}}

2

⌋
=

⌊
max{ar(ϕ), ar(Kψξ)}

2

⌋
=

⌊
ar(KϕKψξ)

2

⌋
=

⌊
ar(α)

2

⌋
By the second principle of finite induction, for every natural number n, Q(n) holds, hence

the validity of statement 1. To prove 2, let us reason by induction about the complexity of α
according to the predicate Q(n) of the literal content:

Algorithms 2023, 16, 459 13 of 18

“for all α, if α ∈ K(A(X)) and compk(α) = n, then kr(lasc(α)) =
⌊

kr(α)
2

⌋
”

Suppose, as an induction hypothesis, that n is a natural number and that for any
natural number k such that k < n, Q(k) holds. We have the following cases:

• n = 0; must be α ∈ A(X), the formula for which is kr(lasc(α)) =
⌊

kr(α)
2

⌋
, as set out in

Remark 7.
• n > 0; let —as the only case of interest— α ≡ Kϕρ for certain ϕ, ρ ∈ K(A(X)). Let us

distinguish the following cases:

– ρ ∈ A(X); then

kr(lasc(α)) = kr(lasc(Kϕρ))

= kr(K lasc(ϕ) lasc(ρ))

= max{kr(lasc(ϕ)), 1 + kr(lasc(ρ))}

= max
{⌊

kr(ϕ)

2

⌋
, 0
}

induc. hyp. and Lemma 4

=

⌊
max{kr(ϕ), 0}

2

⌋
=

⌊
max{kr(ϕ), 1 + kr(ρ)}

2

⌋
=

⌊
kr(Kϕρ)

2

⌋
=

⌊
kr(α)

2

⌋
– ρ 6∈ A(X); then α ≡ KϕKψξ for certain ψ, ξ ∈ K(A(X)). In this case,

kr(lasc(α)) = kr(lasc(KϕKψξ)) = kr(K lasc(Kϕψ) lasc(ξ))

= max{kr(lasc(Kϕψ)), 1 + kr(lasc(ξ))}

= max
{⌊

kr(Kϕψ)

2

⌋
, 1 +

⌊
kr(ξ)

2

⌋}
induc. hyp.

= max
{⌊

max{kr(ϕ), 1 + kr(ψ)}
2

⌋
,
⌊

2 + kr(ξ)
2

⌋}
=

⌊
max{max{kr(ϕ), 1 + kr(ψ)}, 2 + kr(ξ)}

2

⌋
=

⌊
max{kr(ϕ), max{1 + kr(ψ), 2 + kr(ξ)}}

2

⌋
=

⌊
max{kr(ϕ), 1 + max{kr(ψ), 1 + kr(ξ)}}

2

⌋
=

⌊
max{kr(ϕ), 1 + kr(Kψξ)}

2

⌋
=

⌊
kr(KϕKψξ)

2

⌋
=

⌊
kr(α)

2

⌋
By the second principle of finite induction, for every natural number n, Q(n) holds, hence

the validity of statement 2. Statement 3 is immediate from statements 1 and 2, given that

max
{⌊

ar(α)
2

⌋
,
⌊

kr(α)
2

⌋}
=

⌊
max{ar(α), kr(α)}

2

⌋
=

⌊
akr(α)

2

⌋

Algorithms 2023, 16, 459 14 of 18

Lemma 10. Let α ∈ A(X). The following statements are equivalent:

1. α ∈ al(X)
2. lasc(α) ≡ α
3. ar(α) ≤ 0

Proof. To show that statement 1 implies statement 2, we will reason by induction about
the complexity of α according to the predicate Q(n) of the literal content:

“for all α, if α ∈ al(X) and comp(α) = n then lasc(α) ≡ α”

Suppose, as an induction hypothesis, that n is a natural number and that for any
natural number k such that k < n, Q(k) holds. We distinguish the following cases:

• n = 0; must be α ≡ x ∈ X and then lasc(α) ≡ lasc(x) ≡ x ≡ α.
• n > 0; let —as the only case of interest— α ≡ Aϕx, where ϕ ∈ al(X) and x ∈ X. Then

lasc(α) ≡ lasc(Aϕx)

≡ A lasc(ϕ) lasc(x)

≡ Aϕx induc. hyp. and Definition 5

≡ α

hence, Q(n) holds.

By the second principle of finite induction, for every natural number n Q(n) holds, hence
the validity of statement 2. Let us now suppose that statement 2 is true, i.e., that α ∈ A(X)
and that lasc(α) ≡ α; then, one has

ar(α) = ar(lasc(α))

=

⌊
ar(α)

2

⌋
(Lemma 9)

from which we deduce that ar(α) ∈ {−1, 0}, i.e., that statement 3 holds. Finally, suppose
that α ∈ A(X) and that ar(α) ≤ 0. The following cases are possible (note that, according to
statement 2 of Lemma 4, necessarily kr(α) = −1):

1. ar(α) = −1 and kr(α) = −1; then α ∈ X ⊆ al(X) (see Lemma 5).
2. ar(α) = 0 and kr(α) = −1; then α ∈ al(X) \ X (see Lemma 6).

This proves that under the assumption of statement 3. the fact α ∈ al(X) is satisfied,
as we sought to prove.

In Theorem 4, the effects of alt and lasc are finally combined to characterise the
formulas in lcnf(X).

Theorem 4. For all α ∈ P(L), the following statements are equivalent:

1. α ∈ lcnf(X) .
2. dak(α) ≡ α and lasc(α) ≡ α .
3. alt(α) = 0 and akr(α) ≤ 0.

Proof. Let α be any formula in P(L). Assume what statement 1 states, i.e., that α ∈ lcnf(X).
We will reason by induction about the complexity of α according to the predicate Q(n) of
the literal content:

“for all α, if α ∈ lcnf(X) and comp(α) = n, then dak(α) = α and lasc(α) = α”

Algorithms 2023, 16, 459 15 of 18

Suppose, as an induction hypothesis, that n is a natural number and that for any
natural number k such that k < n, Q(k) holds. We distinguish the following cases:

• n = 0; must be α ≡ x ∈ X and then dak(α) ≡ dak(x) ≡ x ≡ α and similarly,
lasc(α) ≡ α. It follows that Q(0) is true.

• n > 0; let—as the only case of interest— α ≡ Kϕψ, where ϕ ∈ lcnf(X) and ψ ∈ al(X).
Then

dak(α) ≡ dak(Kϕψ)

≡ K dak(ϕ)dak(ψ)

≡ Kϕ dak(ψ) induc. hyp.

≡ Kϕψ Remark 1 and induc. hyp.

≡ α

lasc(α) ≡ lasc(Kϕψ)

≡ K lasc(ϕ) lasc(ψ)

≡ Kϕ lasc(ψ) induc. hyp.

≡ Kϕψ Lemma 10

≡ α

so we know that Q(n) is true.

By the second principle of finite induction, for every natural number n is true Q(n),
hence the validity of assertion 2. If we now assume that 2 is true, that alt(α) = 0 and that
α ∈ K(A(X)) is ensured by the Corollary 1. In particular, as a consequence of Theorem 3,
we have

ar(α) = ar(lasc(α)) =
⌊

ar(α)
2

⌋
kr(α) = kr(lasc(α)) =

⌊
kr(α)

2

⌋
and therefore, ar(α) ≤ 0 and kr(α) ≤ 0; thus, we have proved 3. Let us finally assume 3 to
be true and show that α ∈ lcnf(X). Since alt(α) = 0 and again using Corollary 1, we know
that α ∈ K(A(X)). According to Theorem 2, since akr(α) ≤ 0, α ∈ lcnf(X) must necessarily
hold and this is what statement 1 establishes.

Definition 6. For all α ∈ K(A(X)), hre(α) is the natural number defined by the equality:

hre(α) =

{
0, if akr(α) ≤ 0,
blog2(akr(α))c+ 1, otherwise.

Remark 8. Understanding the evaluation of the expressions from a “lazy” point of view, the
following equality should be accepted:

hre(α) = (1− χ{−1,0}(akr(α)))(blog2(akr(α))c+ 1)

where, of course, χ{−1,0} is the characteristic function on the set {−1, 0}. Let it also be noted that
in the case where for the formula α one has 0 < akr(α), then hre(α) is the number of digits in the
(single) binary expression of akr(α) when it is greater than 0, and 0 otherwise.

Finally, the next corollary, Corollary 3, informs us that for any formula α in K(A(X)),
laschre(α)(α) is a formula in left conjunctive normal form (equivalent to α, of course) and
that per iteration of lasc, the number hre(α) of iterations is the smallest number of those
that achieve it. It is based on how many times the function

⌊ x
2
⌋

must be iterated to obtain
zero, in order to express x in binary form. This gives us an estimate of the complexity of

Algorithms 2023, 16, 459 16 of 18

our algorithm: it is logarithmic, which is fantastic news. The corresponding result, with its
complete proof, is given just below. The demonstration of the corollary is simple if we rely
on this observation, and it can be carried out by inductive reasoning based on a careful
distinction of cases.

Corollary 3. For all α ∈ K(A(X)), hre(α) is the smallest of the natural numbers m satisfying
lascm(α) ∈ lcnf(X).

5. Conclusions

Algorithm 1 summarises the content of the article. The structure of the work suggests
using for loops instead of while loops, and we have done so. The following comments
are appropriate:

• As we commented before, according to Definition 3, Definition 5, and Remark 2, the
result of the two for loops in Algorithm 1 is a formula equivalent to the one that
each of the loops took as a starting point. Thus, in each application of the algorithm,
the result obtained retains the semantic meaning of the form it took as initial data.

• Each for loop in Algorithm 1 acts if and only if a change in the formula is necessary,
i.e., if m > 0. In this case, the pre-calculated length of each of the two loops (respectively,
alt, according to Defintion 2, and akr, acording to Definition 4) is exactly the minimum
necessary to obtain the intended purpose of the loop. This extreme is guaranteed by
Corollary 2 and Corollary 3. In short, under this approach, the length of the two for
loops is optimal.

• The algorithm achieves what it sets out to do, as stated in Corollary 2 and Corollary 3.
• In each of the for loops of Algorithm 1, the comparison between the result formula

of each round and that of the previous one, which was carried out in the classical
formulation of the algorithm (reproduced in summary and pseudocode in Section 1)
in order to decide whether the work has been completed, has disappeared. In its
place, a single operation has appeared for each loop, before its start, consisting of
the traversal and reading of a single formula, namely the loop data formula. In the
general case, a priori this is an improvement over the classical formulation of the
CNF algorithm, which in pseudocode we summarily reproduced in Section 1. Very
unfavorable examples can be consulted in the readme.md of our GitHub repository
https://github.com/ringstellung/CNF (accessed on 23 September 2023), and you can
see how it is confronted by our Haskell implementation.

• Definition 3 and Definition 5 are an unpublished presentation of the well-known core
of the CNF algorithm. We believe we have included, with great concreteness, the
concept of “recursive substitution” inspired by the usual style of lambda calculus.
We believe we have found the appropriate language to be able to express in a very
precise way, eliminating all ambiguity, a process usually described with certain formal
licenses.

We have no doubt that other improvements in the efficiency of the CNF algorithm are
possible, although we have only dealt with one here. In the future, we will investigate how
to combine all of them. For this, we will build on some of those already introduced in the
Haskell code of our GitHub repository.

The content of this article will be used in the future to act in the field of the classical
SAT problem, e.g., to optimally prepare the application of the Davis–Putnam algorithm.
We intend to compare this improved algorithm with that of deduction by sequents.

https://github.com/ringstellung/CNF

Algorithms 2023, 16, 459 17 of 18

Algorithm 1 CNF simplified algorithm for formulas in P(L)

Require: α ∈ P(L)
Ensure: β ∈ lcnf(X)

procedure CNFsa(α)
m← alt(α)
for 1 ≤ n ≤ m do

α← dak(α)
end for
m← hre(α)
for 1 ≤ n ≤ m do

α← lasc(α)
end for
return α

end procedure

In order to show the feasibility and effectiveness of the theoretical advances pre-
sented in this article, we have elaborated a functional implementation for the Haskell
language. In it, we also give a preview of the implementation of the Davis–Putnam algo-
rithm. The code can be consulted at https://github.com/ringstellung/CNF (accessed on
23 September 2023). This justifies the fundamental objective of the work, which is set out in
its title.

Author Contributions: The authors of this article contributed equally to formal analysis, investiga-
tion, methodology, project administration, writing—original draft and writing—review & editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: In order to facilitate the article’s comprehension and leveraging of
the presented results and to allow the immediate utilization of the algorithmic improvements by
researchers on the topic, we have made the code of the corresponding Haskell implemented pro-
grams public through a GitHub repository: https://github.com/ringstellung/CNF (accessed on 23
September 2023).

Acknowledgments: The authors would like to thank the staff of the Algorithms’ journal, in particular
its editing assistants, for all the encouragement and support during the process of preparing and
submitting the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNF conjunctive normal form
DNF disjunctive normal form
PNF prenex normal form
POS product of sums
SOP sum of products
SAT Boolean satisfiability
iff if and only if
def. definition
induc hyp. induction hypothesis
resp. respectively
p. page
pp. pages

https://github.com/ringstellung/CNF
https://github.com/ringstellung/CNF

Algorithms 2023, 16, 459 18 of 18

References
1. Tseitin, G.S. On the Complexity of Derivation in Propositional Calculus. In Automation of Reasoning. 2 Classical Papers on

Computational Logic 1967–1970; Bolç, L., Bundy, A., Siekmann, J., Sloman, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1983;
pp. 466–483.

2. Hill , F.J.; Peterson, G.R. Introduction to Switching Theory and Logical Design; John Wiley & Sons: Hoboken, NJ, USA, 1981.
3. Whitesitt, J.E. Boolean Algebra and Its Applications; Addison-Wesley Publishing Company: Boston, MA, USA, 1962.
4. Gorbátov, V.A. Fundamentos de la Matemática Discreta; Mir: Moscow, Russia, 1988.
5. Büning, H.K.; Lettmann, T. Propositional Logic: Deduction and Algorithms; Cambridge University Press: Cambridge, UK, 1999.
6. Gill, A. Applied Algebra for the Computer Sciences; Prentice-Hall: Hoboken, NJ, USA, 1976.
7. Jackson, P.; Sheridan, D. Clause form Conversions for Boolean Circuits. In SAT 2004, LNCS 3542; Hoos, H.H., Mitchell, D.G., Eds.;

Springer: Berlin/Heidelberg, Germany, 2005; pp. 183–198.
8. Łukasiewicz, J. Elements of Mathematical Logic; Pergamon Press: Oxford, UK, 1966.
9. Lipovača, M. Learn You a Haskell for Great Good; No Starch Press: San Francisco, CA, USA, 2011.
10. Monk, J.D. Mathematical Logic; Springer: Berlin/Heidelberg, Germany, 1976.
11. Bourbaki, N. Théorie des Ensembles; Eléments de Mathématique; Hermann: Paris, France, 1977.
12. Kunen, K. The Foundations of Mathematics; Mathematical Logic and Foundations; College Publications: Norcross, GA, USA, 2009;

Volume 19.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Basic Definitions and Preliminary Results
	Distributivity
	Associativity
	Conclusions
	References

