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Abstract: The Gaussian-radial-basis function neural network (GRBFNN) has been a popular choice
for interpolation and classification. However, it is computationally intensive when the dimension of
the input vector is high. To address this issue, we propose a new feedforward network-separable
Gaussian neural network (SGNN) by taking advantage of the separable property of Gaussian-radial-
basis functions, which splits input data into multiple columns and sequentially feeds them into
parallel layers formed by uni-variate Gaussian functions. This structure reduces the number of
neurons from O(Nd) of GRBFNN to O(dN), which exponentially improves the computational speed
of SGNN and makes it scale linearly as the input dimension increases. In addition, SGNN can
preserve the dominant subspace of the Hessian matrix of GRBFNN in gradient descent training,
leading to a similar level of accuracy to GRBFNN. It is experimentally demonstrated that SGNN can
achieve an acceleration of 100 times with a similar level of accuracy over GRBFNN on tri-variate
function approximations. The SGNN also has better trainability and is more tuning-friendly than
DNNs with RuLU and Sigmoid functions. For approximating functions with a complex geometry,
SGNN can lead to results that are three orders of magnitude more accurate than those of a RuLU-DNN
with twice the number of layers and the number of neurons per layer.

Keywords: function approximations; Separable Gaussian Neural Networks; Gaussian-radial-basis
functions; separable functions; subspace gradient descent

1. Introduction

Radial-basis functions have many important applications in the fields such as function
interpolation [1], meshless methods [2], clustering classification [3], surrogate models [4],
Autoencoder [5], dynamic system design [6], network event detection [7], and modeling in
energy production processes [8], to name a few. The Gaussian-radial-basis function neural
network (GRBFNN) is a neural network with one hidden layer and produces output in
the form

f̃ (x) =
N

∑
k=1
WkGk(x), (1)

where Gk(x) is a radially symmetric unit represented by the Gaussian function such as

G(x) = exp

(
−

d

∑
i=1

(xi − µi)
2

2σ2
i

)
. (2)

Herein, µk and σk are the center and width of the unit, respectively. The response of G(x)
will be concentrated in the region whose a distance within 3-σi from the center µi in the
i-th dimension. Therefore, one can select a group of sparsely distributed neurons with
optimal centers and widths to capture the spatial characterization of a target function. This
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localized property of radial-basis functions has been extensively used in applications such
as clustering and classification.

Although it has been shown that GRBFNNs outperform multilayer perceptrons (MLPs)
in generalization [9], tolerance to input noise [10], and learning efficiency with a small set
of data [10], the network is not scalable for problems with high-dimensional input. This is
because extensively more neurons are in need of accurate predictions, and the correspond-
ing computations exponentially increase with the increase in dimensions. This paper aims
to tackle this issue and make the network available for high-dimensional problems.

GRBFNN was proposed by Moody and Darken [10] and Broomhhead and Lowe [11]
in the late 1980s for classification and function approximations. It was soon proven that
GRBFNN is a universal approximator [12–14] that can be arbitrarily close to a real-value
function when a sufficient number of neurons is offered. The proof of universal approx-
imability for GRBFNN can be interpreted as a process beginning with partitioning the
domain of a target function into a grid, followed by using localized radial-basis functions to
approximate the target function in each grid cell, then aggregating the localized functions to
globally approximate the target function. It is evident that this approach is not feasible for
high-dimensional problems because it will lead to the exponential growth of neurons as the
number of input dimensions increases. For example, approximating a d-variate function
will require O(Nd) neurons, with the domain of each dimension divided into N segments.

To address this issue, researchers have heavily focused on selecting the optimal number
of neurons as well as their centers and widths of GRBFNN such that the features of the target
nonlinear map are well captured by the network. This has been mainly investigated through
two strategies: (1) using supervised learning with a dynamical adjustment of neurons (e.g.,
numbers, centers, and widths) according to the prescribed criteria and (2) performing
unsupervised-learning-based preprocessing on input to estimate the optimal placement
and configuration of neurons.

For the former, Poggio and Girosi [15] as well as Wettschereck and Dietterich [16]
applied gradient descent to train generalized-radial-basis function networks that have
trainable centers. Regularization techniques [15] were adopted to maintain the parsimo-
nious structure of GRBFNN. Platt [17] developed a two-layer network that dynamically
allocates localized Gaussian neurons to the positions where the output pattern is not well
represented. Chen et al. [18] adopted an orthogonal least square (OLS) method and in-
troduced a procedure that iteratively selects the optimal centers that minimize the error
reduction ratio until the desired accuracy is achieved. Huang et al. [19] proposed a growing
and pruning strategy to dynamically add/remove neurons based on their contributions to
learning accuracy.

The latter has been more popular because it decouples the placement of neurons and
the computation of weights, reducing the complexity of program as well as computational
load. Moody and Darken [10] used the k-means clustering method [3] to determine the
centers that minimize the Euclidean distance between the training set and centers, followed
by the calculation of a uniform width by averaging the distance to the nearest-neighbor of
all units. Carvalho and Brizzotti [20] investigated different clustering methods such as the
iterative optimization (IO) technique, depth-first search (DF), and the combination of IO
and DF for target recognition by RBFNNs. Niros and Tsekouras [21] proposed a hierarchical
fuzzy clustering method to estimate the number of neurons and trainable variables.

The optimization of widths has been of great interest more recently. Yao et al. [22]
numerically observed that the optimal widths of the radial basis function are affected by
the spatial distribution of training data and the nonlinearity of approximated functions.
With this in mind, they developed a method that determines the widths using the Euclidean
distance between centers and second-order derivatives of a function. However, calculating
the width of each neuron is computationally expensive. Instead of assigning each neuron a
distinct width, it makes more sense to assign different widths to the neurons that represent
different clusters for computational efficiency. Therefore, Yao et al. [23] further proposed a
method to optimize widths by dividing a global optimization problem into several subspace
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optimization problems that can be solved concurrently and then coordinated to converge
to a global optimum. Similarly, Zhang et al. [24] introduced a two-stage fuzzy clustering
method to split the input space into multiple overlapping regions that are then used to
construct a local Gaussian-radial-basis function network. Another method that should be
mentioned is the variable projection [25], which is used to reduce the number of parameters
in the optimization problem.

However, the aforementioned methods all suffer from the curse of dimensionality.
As the input dimension grows, the selection of optimal neurons itself can become cumber-
some. To compound the problem, the number of optimal neurons can also rise exponentially
when approximating high-dimensional and geometrically complex functions. Furthermore,
the methods are designed for CPU-based, general-purpose computing machines but are
not appropriate for tapping into the modern GPU-oriented machine-learning tools [26,27]
whose computational efficiency drops significantly when handling branching statements
and dynamical memory allocation. This gap motivates us to reevaluate the structure of
GRBFNN. As stated previously, the localized property of Gaussian functions is beneficial
for identifying the parsimonious structure of GRBFNN with low input dimensions, but it
also leads to the blow-up of the number of neurons in high dimensional situations.

Given that the recent development of deep neural networks has shown promise
in solving such problems, the main goal of this paper is to develop a deep-neural-network
representation of GRBFNN or at least a good approximation of it with significant improvement
of computational efficiency such that the network can be used for solving very high dimensional
problems. We approach this problem by utilizing the separable property of Gaussian radial
basis functions. That is, every Gaussian-radial-basis function can be decomposed into the
product of multiple uni-variate Gaussian functions. Based on this property, we construct a
new neural network, namely separable Gaussian neural network (SGNN), whose number of
layers is equal to the number of input dimensions, with the neurons of each layer formed by
the corresponding uni-variate Gaussian functions. Through dividing the input into multiple
columns by their dimensions and feeding them into the corresponding layers, the output
equivalent to that of a GRBFNN is constructed from multiplications and summations of
uni-variate Gaussian functions in the forward propagation. It should be noted that Poggio
and Girosi [15] have reported the separable property of Gaussian-radial-basis functions
and proposed using it for neurobiology even in 1990.

SGNN offers several advantages.

• The number of neurons of SGNN is O(dN) and increases linearly with the dimension
of the input, while the number of neurons of GRBFNN given by O(Nd) grows expo-
nentially. This reduction in neurons also decreases the number of trainable variables
from O(Nd) to O(dN2), yielding a more compact network than GRBFNN.

• The reduction in trainable variables further decreases the computational load during
the training and testing of neural networks. As shown in Section 3, this has led to
100 times speedup of training time for approximating tri-variate functions.

• SGNN is much easier to tune than other MLPs. Since the number of layers in SGNN
is equal to the number of dimension of the input data, the only tunable network-
structural hyper-parameter is the layer width, i.e., the number of neurons in a layer.
This can significantly alleviate the tuning workload as compared to other MLPs that
must simultaneously tune the width and depth of layers.

• SGNN holds a similar level of accuracy as GRBFNN, making it particularly suitable
for approximating multi-variate functions with complex geometry. In Section 7,
it is shown that SGNN can yield approximations for complex functions that are
three orders of magnitude more accurate than those MLPs yield with ReLU and
Sigmoid functions.

The rest of this paper is organized as follows. In Section 2, we introduce the structure
of SGNN and use it to approximate a multi-variate real-value function. In Section 3,
we compare SGNN and GRBFNN regarding the number of trainable variables and the
computational complexity of forward and backward propagation. In Section 4, we show
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that SGNN can preserve the dominant sub-eigenspace of the Hessian of GRBFNN in the
gradient descent search. This property can help SGNN maintain a similar level of accuracy
as GRBFNN while substantially improving the computational efficiency. In Section 5, we
show that the computational time of SGNN scales linearly with the increase in dimension
and demonstrate its efficacy in function approximations through numerous examples.
In Sections 6 and 7, extensive comparisons between SGNN and GRBFNN and between
SGNN and MLPs are performed. At last, the conclusion is summarized in Section 8.

2. Separable-Gaussian Neural Networks

Definition 1. A d-variate function f (x1, x2, . . . , xd) is separable if it can be expressed as a product
of multiple uni-variate functions; i.e.,

f (x1, x2, . . . , xd) = f1(x1) · f2(x2) · · · fd(xd). (3)

Remark 1. Recall that the Gaussian radial-basis function in Equation (2) is separable and can be
represented in the form

G(x) =
d

∏
k=1

ϕ(k)(xk), (4)

where ϕ(k)(xk) = exp(− 1
2 (xk − µk)

2/σ2
k ), with k = 1, 2, . . . , d.

The product chain in Equation (4) can be constructed through the forward propagation
of a feedforward network with a single neuron per layer where ϕ(k)(xk) is the neuron of
the k-th layer. This way, the multi-variate Gaussian function G(x) is reconstructed at the
output of the network. By adding more neurons to each layer and assigning weights to all
edges, we can eventually construct a network whose output is equivalent to the output of a
GRBFNN. Figure 1 shows an example of an SGNN approximating a tri-variate function.
Next, we use this property to define SGNN.

Figure 1. The general structure of SGNNs. In this paper, the weights of the output layer are in
unity. The distinct feature of the SGNN is that input is divided and fed sequentially to hidden layers.
Therefore, the depth (layers) of SGNNs is identical to the number of input dimensions. Each neuron
in hidden layers is associated with an uni-variate Gaussian function. Each path in feedforward
propagation will lead to a chain of multiplications of uni-variate Gaussian functions, equivalent to a
d-dimensional Gaussian radial-basis function shown in Equation (4). In other words, each SGNN can
be converted to an RGBFNN.
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Definition 2. The separable-Gaussian neural network (SGNN) with d-dimensional input can be
constructed in the form

N (0)
i = xi, 1 ≤ i ≤ d, (5)

N (1)
i = ϕ

(1)
i (x1, µ

(1)
i , σ

(1)
i ), 1 ≤ i ≤ N1, (6)

N (`)
i = ϕ

(`)
i (x`, µ

(`)
i , σ

(`)
i )

Nl

∑
j=1

W(`)
ij N

(`−1)
j , 2 ≤ ` ≤ d, 1 ≤ i ≤ N`, (7)

f̄ (x) = N (x) =
Nd

∑
j=1
N (d)

j , (8)

where Ni (i = 1, 2, . . . , d) represents the number of neurons of the l-th layer, N (l)
i represents the

output of the i-th Gaussian neuron (activation function) of the l-th layer. In addition, µ
(l)
i , σ

(l)
i

represent the i-th center and width of the l-th layer, respectively.

The weights of the output layer are assumed to be unity, although they can be trainable.
Substituting Equations (5)–(7) into Equation (8) yields

f̄ (x) =
Nd

∑
id=1

Nd−1

∑
id−1=1

· · ·
N1

∑
i1=1

[
W(d−1)

idid−1
W(d−2)

id−1id−2
. . . W(1)

i2i1

] d

∏
`=1

ϕ
(`)
i`

(x`), (9)

with
d

∏
`=1

ϕ
(`)
i`

(x`) = ϕ
(d)
id

(xd)ϕ
(d−1)
id−1

(xd−1) . . . ϕ
(1)
i1

(x1), (10)

where W(l)
il+1il

(l = 1, 2, . . . , d) represents the weight of the i(l+1)-th neuron of the (l + 1)-th
layer and the il-th neuron of the l-th layer. The loss function of the SGNN is defined in
the form

J = ‖ f − f̄ ‖2 =

√√√√ d

∑
i=1

[
f (xi)− f̄ (xi)

]2. (11)

The center µ
(l)
i and width σ

(l)
i in the Gaussian function ϕ

(l)
i can also be treated as

trainable. They are not included in this discussion for simplicity.

3. SGNN vs. GRBFNN

Without loss of generality, the analysis below will assume that each hidden layer has
N neurons. To understand how the weights of SGNN relate to those of GRBFNN, we
equate Equations (1) and (9), which yields a nonlinear map

Wj = gj

(
W(d−1)

idid−1
, W(d−2)

id−1id−2
, . . . , W(1)

i2i1

)
, (12)

whose explicit form is
Wj = W(d−1)

idid−1
W(d−2)

id−1id−2
. . . W(1)

i2i1
, (13)

with
j = i1 + (i2 − 1)N + · · ·+ (id − 1)Nd−1. (14)

It is evident that SGNN can be transformed into GRBFNN. However, GRBFNN can be
converted into SGNN if and only if the mapping of Equation (13) is invertible.

In general, SGNN would have much fewer parameters than GRBFNN, which means,
for most possible GRFNN networks, there is no equivalent SGNN network with an identical
set of centers and widths. It is unclear at this time whether SGNNs can form a dense sub-set
of GRBFNNs. The aim of this paper is to show that SGNN can cost substantially less
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computational effort than GRBFNN but provide comparable (occasionally even greater)
accuracy through extensive numerical experiments in modeling ten very different functions.
In this regard, even if SGNNs cannot lead to an arbitrarily close approximation of GRBFFs,
there is still value in using them for high-dimensional problems due to their computational
efficiency. In addition, SGNNs can have superior performances in approximating complex
functions rather than deep neural networks with activation functions such as ReLU and
Sigmoid, as shown in Section 7.

In the following, we demonstrate the computational efficiency of SGNN over GRBFNN
in terms of trainable variables and the number of floating-point operations of forward and
backward propagation.

3.1. Trainable Variables

Let us now treat the center and width of the uni-variate Gaussian function in SGNN
as trainable. The total number Nt of trainable variables of SGNN is given by

Nt =

{
N + 2N x ∈ R1,
(d− 1)N2 + 2dN x ∈ Rd, for d ≥ 2.

(15)

Note that the number of trainable variables of GRBFNN is Nd, identical to its number
of neurons. SGNN and GRBFNN have identical weights when the number of layers
is smaller than or equal to two. In other words, they are mutually convertible and the
mapping of Equation (13) is invertible when d ≤ 2. However, for high-dimensional
problems, as shown in Table 1, SGNN can substantially reduce the number of trainable
variables, making it more tractable than GRBFNN.

Table 1. Neurons and trainable variables of SGNN and GRBFNN.

Neurons No. of Variables

SGNN O(dN) O(dN2)
GRBFNN O(Nd) O(Nd)

3.2. Forward Propagation

Assume the size of the input dataset is m. Using Equations (5) to (8), we can estimate
the number of floating-point operations (FLOPs) of the forward pass in SGNNs. More
specifically, the number of FLOPs to calculate the output of the k-th layer with the input
from the previous layer is

FLOP(k)(N (x)) = m(2N2 + 6N), for 2 ≤ k ≤ d, (16)

where 2N2 is the number of arithmetic operations by the product of weights and Gaussian
functions of the k-th layer, 6N is the number of calculations for Gaussian functions of the
layer, and m is the size of input dataset. In addition, the numbers of FLOPs associated with
the first and output layer are

FLOP(1)(N (x)) = 6mN, (17)

FLOP(d+1)(N (x)) = mN. (18)

Therefore, the total number of FLOPs is

O(FLOPf p) = O

(
d+1

∑
i=1

FLOP(i)

)
= O(mdN2). (19)
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The number of operations increases linearly with the increase in the number of layers
or the dimension of the input vector d. On the other hand, the computational complexity of
FLOP of RBGNN is

O(FLOPf̃ p) = O(mNd), (20)

regardless of the trainability of the centers and width of Gaussian functions.

3.3. Backward Propagation

Accurately estimating the computational complexity of backward propagation is challeng-
ing because techniques such as autodifferentiation [28] and computational graphs [26] have opti-
mized the original mathematical operations for improving the computational performance.
Autodifferentiation evaluates the derivative of numerical functions using dual numbers
with the chain rule broken into a sequence of operations such as addition, multiplication,
and composition. During forward propagation, intermediate values in computational
graphs are recorded for backward propagation.

We analyze the operations of backward propagation with respect to a single neuron of
the l-th layer. The partial derivatives of f̄ (x) with respect toW (l)

j , µ
(l)
j , and σ

(l)
j of the l-th

(1 ≤ l ≤ d) layer in SGNN are

∂ f̄

∂W (l)
j

=

 ∂ f̄

∂N (l+1)
j

T
∂N (l+1)

j

∂W (l)
j

, (21)

∂ f̄

∂µ
(l)
j

=

 ∂ f̄

∂N (l+1)
j

T
∂N (l+1)

j

∂µ
(l)
j

, (22)

∂ f̄

∂σ
(l)
j

=

 ∂ f̄

∂N (l+1)
j

T
∂N (l+1)

j

∂σ
(l)
j

, (23)

with  ∂ f̄

∂N (l+1)
j

 =

[
∂ f̄

∂N (l+2)

]T
∂N (l+2)

∂N (l+1)
j

, (24)

where
N (l+2) = (N (l+2)

1 ,N (l+2)
2 , . . . ,N (l+2)

N )T . (25)

The backward prorogation with respect to the j-th neuron of the l-th (1 ≤ l ≤ n− 1)
layer can be divided into three steps:

1. Compute the gradient of f̄ with respect to the output of the first neuron in the (l + 1)-

th layer, N (l+1)
j , as shown in Equation (24), where

[
∂ f̄

∂N (l+2)

]T
can be accessed from

the back propagation of the (l + 2)-th layer. This leads to 2N FLOP due to the dot
product of two vectors.

2. Calculate the partial derivatives of N (l+1)
j with respect to weights, center, and width.

Since the calculation of derivatives is computationally cheap, the analysis below will
neglect the operations used to evaluate derivatives. This shall not affect the conclusion.

3. Propagate the gradients backward. This produces N + 2 operations.

Therefore, the number of FLOPs of the l-th layer is approximately m(3N2 + 2N),
where m is the volume of the input dataset. The backward propagation of the last layer
leads to N operations. In total, the number of FLOPs by backward propagation is

O(FLOPbp) = O(mdN2). (26)
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On the other hand, the backward propagation FLOP number of GRBFNN is

O(FLOPb̃p) = O(mNd). (27)

4. Subspace Gradient Descent

The aim of this section is to discuss the high performances of SGNNs over GRBFNNs
in terms of computational efficiency and accuracy through the lens of gradient descent.
As illustrated in Section 3, SGNN has exponentially fewer trainable variables than the
associated GRBFNN for high-dimensional input. In other words, GRBFNN may be over-
parameterized. The recent work [29–31] has shown that optimizing a loss function con-
structed by an over-parameterized neural network can lead to Hessian matrices that possess
few dominant eigenvalues with many near-zero ones before and after training. This means
the gradient descent can happen in a small subspace. Inspired by their work, we consider
the infinitesimal variation of the loss function J for GRBFNN a

dJ =
[

∂J
∂θ̃

]T
dθ̃+

1
2

dθ̃
T H̃dθ̃+ h.o.t.(‖dθ̃‖3), (28)

where θ̃ represents a vector of all trainable weights, and

H̃ =
∂2 J

∂θ̃
T

θ̃
, (29)

is the associated Hessian matrix. The centers and widths of Gaussian functions are assumed
to be constant for simplicity. Since the Hessian matrix H̃ is symmetric, we can represent it
in the form

H̃ = PT
(

λd 0
0 λs

)
P, (30)

where λd = diag(λ1, λ2, . . . , λk, . . . , λdN) are the k dominant eigenvalues padded by
(dN − k) non-dominant ones (assuming k < dN), and λs = diag(λdN+1, λdN+2, . . . , λNd)
are the rest non-dominant eigenvalues.

Let θ be the weights of SGNN. The variation of the mapping from θ to θ̃ in
Equation (12) reads

dθ̃ =
∂g
∂θ

dθ, (31)

where ∂g
∂θ : RdN 7→ RNd×dN . It should be noted that ∂g

∂θ is a super sparse matrix.
Substitution of Equation (31) into Equation (28)

dJ =
[

∂J
∂θ̃

]T ∂g
∂θ

dθ+
1
2

dθTHdθ+ h.o.t.(‖dθ̃‖3), (32)

with

H =

[
∂g
∂θ

]T
H̃

∂g
∂θ

=

[
∂g
∂θ

]T
PT
(

λd 0
0 λs

)
P
[

∂g
∂θ

]
.

(33)

Let (
Qd
Qs

)
= P

[
∂g
∂θ

]
, (34)
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where Qd ∈ RdN×dN and Qs ∈ R(Nd−dN)×dN . Substituting Equation (34) into
Equation (33) yields

H = QT
d λdQd + QT

s λsQs ≈ QT
d λdQd. (35)

Therefore, the dominant eigenvalues of the Hessian of GRBFNN are also included
in the corresponding SGNN. This means that the gradient of SGNN can descend in the
mapped dominant non-flat subspace of GRBFNN, which may contribute to the comparable
accuracy and training efficiency of SGNN as opposed to GRBFNN, as discussed in Section 3.

5. Numerical Experiments
5.1. Candidate Functions

We consider ten candidate functions from [32,33] and modified them, as listed in
Table 2. The functions cover a range of distinct features, including sinks, sources, flat and
s-shaped surfaces, and multiple sinks and sources, which can assist in benchmarking the
function approximations of different neural networks.

We generate uniformly distributed sample sets to train neural networks for each run,
with the upper and lower bounds of each dimension ranging from −8 to 8. The initial
centers of Gaussian functions are evenly distributed in each dimension and widths are
the distance of two adjacent centers. During the training process, we employ mini-batch
gradient descent with the optimizer Adam in Tensorflow to update model parameters.
The optimizer uses its default training parameters and stops if no improvement of loss
values is achieved in four consecutive epochs. The dataset is divided into a training set
comprising 80% of the data and a validation set consisting of the remaining 20%. The mini-
batch size, number of neurons, and data points are selected to balance the convergence
speed and accuracy. All tests are performed on a Windows-10 desktop with a 3.6 HZ, 8-core,
Intel i7-9700K CPU and a 64 GB Samsung DDR-3 RAM.

Table 2. Candidate functions and their features.

Functions Features Explicit Expression

Root sum squared Sink f1(x) =
(

∑d
i=1 x2

i

) 1
2

Second-degree polynomial Saddle f2(x) = 1
50 ∑d

j=1 x2
j xj+1

Exponential-square sum Flatter sink f3(x) = 1
5 ∑d

j=1 ex2
j /50

Exponential-sinusoid sum Sink and source f4(x) = 1
5 ∑d

j=1 ex2
j /50 sin(yj)

Polynomial-sinusoid sum Sink and source f5(x) = 1
50 ∑d

j=1 x2
j cos(j ∗ xj)

Inverse-exponential-square sum Source f6(x) = 10/ ∑d
j=1 ex2

j /25

Sigmoidal S-shaped surface f7(x) = 10/(1 + e−
1
5 ∑d

i=1 xj )

Gaussian Flatter source f8(x) = 10e−
1

100 ∑5
j=1 x2

j

Linear Flat f9(x) = ∑d
j=1 xj

Constant Flat f10(x) = 1
Note: In f4, yj = xj+1 with j = 1, 2, . . . , d− 1 and yd = x1.

5.2. Dimension Scalability

In order to understand the dimensional scalability of SGNN, we applied SGNN to
candidate functions with the number of dimensions from two to five, as presented in
Table 3. For comparison, the data points were kept as 16,384 such that sufficient data
were sampled for 5D functions, i.e., d = 5. Each layer has fixed 20 uni-variate Gaussian
neurons, with initial centers evenly distributed in each dimension and widths being the
distance between two adjacent centers. The training time per epoch grows linearly as
the dimension increases, with an increment of 0.02 s/epoch per layer. For the majority
of candidate functions, SGNN can achieve the accuracy level of 10−4. It is sufficient
to approximate the 5D functions by SGNN with five layers and a total of 100 neurons.
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The configuration of SGNN cannot effectively approximate the function f5 in 4D. This can
be easily resolved by adding more neurons into the neural network (see a similar example
in Table 7). In summary, the computational time of SGNN scales linearly with the increase
in dimensions.

Table 3. The computation time of SGNN per epoch scales linearly with the increase in dimensions.
Data are generated by averaging the results of 30 runs. Data Size: 16,384, Mini-batch size: 256.
Neurons per layer: 20.

2D 3D 4D 5D

Seconds/Epoch Loss Seconds/Epoch Loss Seconds/Epoch Loss Seconds/Epoch Loss

f1 0.065 2.31× 10−4 0.081 4.43× 10−4 0.099 1.41× 10−3 0.113 4.43× 10−4

f2 0.063 7.34× 10−5 0.081 8.31× 10−4 0.098 2.50× 10−3 0.114 8.31× 10−4

f3 0.064 4.26× 10−6 0.083 1.50× 10−5 0.106 4.13× 10−5 0.110 1.50× 10−5

f4 0.065 2.80× 10−6 0.084 2.91× 10−5 0.100 9.12× 10−5 0.108 2.91× 10−5

f5 0.063 7.40× 10−5 0.083 7.53× 10−4 0.099 1.00× 10−1 0.107 7.53× 10−4

f6 0.063 1.39× 10−6 0.083 1.27× 10−5 0.101 2.11× 10−5 0.115 1.27× 10−5

f7 0.063 4.44× 10−5 0.083 4.08× 10−4 0.099 1.89× 10−3 0.111 4.08× 10−4

f8 0.063 1.97× 10−5 0.083 4.36× 10−5 0.100 7.76× 10−5 0.113 4.36× 10−5

f9 0.063 2.27× 10−4 0.079 1.76× 10−3 0.099 9.93× 10−3 0.111 1.76× 10−3

f10 0.064 3.51× 10−6 0.082 6.32× 10−6 0.101 9.84× 10−6 0.113 6.32× 10−6

Then, 2D and 5D examples are selected to illustrate the expressiveness of SGNN in
function approximations. The number of neurons, training size, and mini-batch size are
fine-tuned to achieve optimal results.

5.3. Two-Dimensional Examples

First, SGNN is used to approximate the two-dimension function f3(x) = 1/5e(x2
1+x2

2)/50,
which has four sharp peaks and one flat valley in the domain. As illustrated in Figure 2a,
the optimizer converges in 400 steps, with the difference between training and test sets
at the magnitude level of 10−4. Figure 2b–e show that the prediction by SGNN is nearly
identical to the ground truth, except for the domain near boundaries. This can be attributed
to fewer sampling points in the neighborhood of the boundaries. Better alignment can be
achieved by sampling extra boundary points to the input dataset.

SGNN maintains its level of accuracy as candidate functions become more complex.
For example, Figure 3 presents the approximation of f4(x) = 1

5 (e
x2

1/50 sin x2 + ex2
2/50 sin x1).

SGNN can approximate f4 with the same level of accuracy as f3 even with fewer train-
ing epochs, possibly led by the localization property of Gaussian function. The largest
error again appears near boundaries, with a percentage error less than 8%. Inside the
domain, the computed values precisely match the exact ones. As visualized in Figure 3d,e,
the prediction by SGNN can fully capture the features of the function.

This finding is corroborated in Figure 4, which presents the approximation of the
function f5(x) = 1

50 (x2
1 cos x1 + x2

2 cos 2x2) by SGNN. The function, different from f4,
possesses peaks and valleys near boundaries and becomes flat in the vicinity of origin,
as illustrated in Figure 4c–e. Interestingly, the neural network converges faster than the
network for f4. This indicates that the loss function may become more convex and contain
fewer flat regions. One possible reason is that, as the function becomes more complex,
more Gaussian neurons are active and have larger weights, increasing the loss gradients.
The largest error is again observed near boundaries. As shown in Figure 4, SGNN can
capture the features of the target function f5. Due to the gradient configuration of the
color bar, the small offset with respect to the ground truth occurs near the origin, but the
corresponding absolute errors are very small, as shown in Figure 4b.
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Figure 2. Approximating the two-dimensional function f3 by SGNN. (a) Training history; (b) absolute
error; (c) prediction vs. exact value; (d) prediction; and (e) ground truth. Size of the training
dataset: 2048.
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Figure 3. Approximating the two-dimensional f4 by SGNN. (a) Training history; (b) absolute error;
(c) prediction vs. exactness; (d) prediction; and (e) ground truth. Size of training dataset: 2048.
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Figure 4. Approximating the two-dimensional f5 by SGNN. (a) Training history; (b) absolute error;
(c) prediction vs. exactness; (d) 2D projection of prediction; and (e) 2D projection of ground truth.
Size of training dataset: 2048.

5.4. Five-Dimensional Examples

The approximation of five-dimensional functions from f1 to f10 by SGNN is illustrated
through cross-sectional plots in the x1 − x2 plane with three other variables fixed to zero,
as shown in Figures 5 and 6. The left panel is for prediction, and the right panel is for
ground truth. During training, uniformly sampled training sets with the size of 32,768 were
separately generated for all functions in order to maintain consistency. However, fewer
points can be used when the function shape is simple (e.g., sink or source). The validation
set used to produce the prediction plots is generated by uniformly partitioning the subspace
with a step size twice the number of neurons per layer.

The SGNN can accurately capture the features of all candidates regardless of their
geometric complexity. Although the predictions of SGNN show minor disagreements with
the ground truth when the function (e.g., f10) is constant, the differences are less than 3%.
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Figure 5. Prediction vs. exact f1– f5 in five dimensions. The plots are generated by projecting the
surface to a x1 − x2 plane with other coordinates fixed to zero. The (left) panel is for prediction; the
(right) panel is for the exact value. Size of training dataset: 32,768.
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Figure 6. Prediction vs. exact of f6– f10 in five dimensions. The plots are generated by projecting
the surface to the x1 − x2 plane with other coordinates fixed to zero. (Left) panel: prediction; (right)
panel: ground truth. Size of training dataset: 32,768.
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6. Comparison of SGNN and GRBFNN

The performances of SGNN and GRBFNN in approximating two-dimensional and
three-dimensional candidate functions are presented in Tables 4 and 5, respectively. For com-
parison, the centers and width of Gaussian neurons of GRBFNN are set to be trainable
variables as well. We focus on the differences of total epochs, training time per epoch,
and losses for comparison. The results are obtained by averaging the results of 30 runs.

As shown in Table 4, when approximating two-dimensional functions, SGNN can
achieve comparable accuracy as GRBFNN, with differences of less than one-order-of mag-
nitude in most cases. The worst case occurs with approximating f1. However, the absolute
difference is around 1.0× 10−3, and SGNN can still give a reasonably good approximation.
On the other hand, the training time per epoch of SGNN is roughly one-tenth of that
of GRBFNN.

Table 4. Two-dimensional function approximations using SGNN and GRBFNN. Data are generated
by averaging the results of 30 runs. Sample points: 1024; mini-batch size: 64; neurons per layer: 10.

SGNN GRBFNN
Epoch Seconds/Epoch Ave Loss Min Loss Epoch Seconds/Epoch Ave Loss Min Loss

f1 483 0.027 1.86× 10−3 1.32× 10−3 568 0.232 1.98× 10−4 1.25× 10−4

f2 333 0.028 6.51× 10−5 3.65× 10−5 351 0.199 2.17× 10−5 1.35× 10−5

f3 334 0.027 1.32× 10−5 6.44× 10−6 349 0.193 6.21× 10−6 2.30× 10−6

f4 223 0.028 7.12× 10−6 5.53× 10−6 209 0.194 4.62× 10−6 2.68× 10−6

f5 123 0.030 3.72× 10−6 1.82× 10−6 126 0.198 1.99× 10−6 1.15× 10−6

f6 595 0.027 2.41× 10−4 1.50× 10−4 629 0.209 7.41× 10−5 3.20× 10−5

f7 602 0.027 6.17× 10−4 4.93× 10−4 636 0.192 1.77× 10−4 8.24× 10−5

f8 822 0.026 3.62× 10−4 2.70× 10−4 756 0.191 3.48× 10−4 1.56× 10−4

f9 625 0.026 8.56× 10−4 4.38× 10−4 591 0.190 4.84× 10−4 1.45× 10−4

f10 437 0.026 2.97× 10−5 2.26× 10−5 444 0.199 1.09× 10−5 6.15× 10−6

Table 5. Approximations of tri-variate functions using SGNN and GRBFNN. SGNN can achieve
an acceleration 100-fold that of GRBFNN, with even smaller loss values for the functions f3– f5

(highlighted). Data were generated by averaging the results of 30 runs. Sample points: 2048; mini-
batch size: 64; Neurons per layer: 10.

SGNN GRBFNN
Epoch Seconds/Epoch Ave Loss Min Loss Epoch Seconds/Epoch Ave Loss Min Loss

f1 269 0.038 1.42× 10−3 9.33× 10−4 270 4.049 1.65× 10−4 9.60× 10−5

f2 253 0.039 2.47× 10−4 1.02× 10−4 157 4.055 4.75× 10−5 3.51× 10−5

f3 204 0.039 2.36× 10−5 1.78× 10−5 164 4.068 2.37× 10−5 1.80× 10−5

f4 188 0.039 1.82× 10−5 1.24× 10−5 97 4.077 1.96× 10−5 1.61× 10−5

f5 150 0.040 2.72× 10−6 1.44× 10−6 66 4.169 1.56× 10−5 1.20× 10−5

f6 323 0.037 7.20× 10−5 4.29× 10−5 245 4.085 3.75× 10−5 2.73× 10−5

f7 324 0.037 1.16× 10−3 7.07× 10−4 274 4.031 1.65× 10−4 1.02× 10−4

f8 315 0.036 1.95× 10−3 8.48× 10−4 314 3.937 2.03× 10−4 1.41× 10−4

f9 334 0.036 4.29× 10−3 1.89× 10−3 293 4.016 7.60× 10−4 4.96× 10−4

f10 227 0.038 3.28× 10−5 2.45× 10−5 188 4.018 2.63× 10−5 1.72× 10−5

The advantage of SGNN becomes more evident in three-dimensional function approx-
imations. SGNN can gain a one-hundred-time speedup over GRBFNN but still maintain a
similar level of accuracy. Surprisingly, SGNN can also yield more accurate results when
approximating f3 to f6.
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7. Comparison with Deep NNs

In this section, we compare the performance of SGNN with deep ReLU and Sigmoid
NNs, which are two popular choices of activation functions. Through the approxima-
tion of four-dimensional candidate functions, SGNN shows much better trainability and
approximability over deep ReLU and Sigmoid NNs.

Table 6 presents the training time per epoch, total epoch for training, and loss after
training of three deep NNs by averaging the results of 30 runs. All NNs possess four
hidden layers with 20 neurons per layer. The training-set size is fixed to 16,384, with a
mini-batch size of 256. As opposed to SGNN and Sigmoid-NN, which have stable training
times per epoch across all candidate functions, the time of ReLU-NN fluctuates. This might
be led by the difference in calculating the derivatives of a ReLU unit with an input less or
greater than zero. SGNN has a longer training time per epoch because of the computation
of a Gaussian function and derivative of µ and σ. One may argue that this comparison is
unfair because SGNN has extra trainable variables. However, SGNN has fewer trainable
weights (see Table 7) because no weights connect the input and first layer, and the output
layer is not trainable.

Table 6. Performance comparison of SGNN and deep neural networks with ReLU and Sigmoid
activation functions. Data are generated by averaging the results of 30 runs. All NNs have four
hidden layers, with 20 neurons per layer.

SGNN ReLU-NN Sigmoid-NN
Seconds/Epoch Epoch Loss Seconds/Epoch Epoch Loss Seconds/Epoch Epoch Loss

f1 0.099 218 1.41× 10−3 0.054 150 4.86× 10−3 0.063 39 4.78× 10−1

f2 0.098 262 2.50× 10−3 0.054 119 1.07× 10−1 0.054 166 2.90× 10−1

f3 0.106 193 4.13× 10−5 0.312 167 5.22× 10−4 0.054 169 1.30× 10−3

f4 0.100 196 9.12× 10−5 0.234 161 7.32× 10−2 0.056 101 2.38× 10−1

f5 0.097 392 9.65× 10−2 0.173 94 4.97× 10−1 0.066 29 6.38× 10−1

f6 0.101 147 2.11× 10−5 0.293 115 1.18× 10−3 0.053 187 2.94× 10−3

f7 0.099 246 1.89× 10−3 0.241 139 2.07× 10−3 0.054 145 1.58× 10−5

f8 0.100 173 7.76× 10−5 0.344 109 9.95× 10−3 0.054 243 3.17× 10−3

f9 0.099 245 9.93× 10−3 0.439 126 7.66× 10−3 0.054 374 7.79× 10−3

f10 0.101 158 9.84× 10−6 0.135 143 6.86× 10−6 0.054 173 8.20× 10−8

Table 7. Comparison of SGNN and ReLU-based NN in approximation of f5. Results are generated by
averaging the data of 30 runs.

Layers Neuron/Layer Parameters Seconds/Epoch Epoch Loss Min Loss

SGNN 4 20 1360 0.097 392 9.65× 10−2 3.91× 10−2

4 40 5120 0.130 149 7.08× 10−4 5.32× 10−4

ReLU-NN

4 20 1381 0.056 96 0.497 0.477
4 40 5161 0.067 99 0.458 0.409
7 40 10,081 0.082 135 0.336 0.273

10 40 15,001 0.176 112 0.324 0.258
10 50 23,251 0.156 100 0.309 0.253
10 60 33,301 0.250 96 0.288 0.232
10 70 45,151 0.120 97 0.278 0.215
10 80 58,801 0.261 89 0.291 0.205
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Although SGNN has appreciably larger training epochs, this also leads to more accu-
rate predictions. The loss values of SGNN after training are uniformly smaller than those
of ReLU-NN and Sigmoid-NN, except for f10. In fact, for f2, f4, f6, and f7, the accuracy of
SGNN is even two orders of magnitude better than the other two models.

Despite the efficient training speed of Sigmoid-NN, the network is more difficult to
train with random weight initialization for f1 and f5. In fact, the approximation of f5 by
Sigmoid-NN is nowhere close to the group truth after training. When functions become
more complex, SGNN outperforms ReLU-NN and Sigmoid-NN in minimizing loss through
stochastic gradient descent. This could be attributed to the locality of Gaussian functions
that increase the active neurons, reducing the flat subspace whose gradients diminish.
Sigmoid-NN aborts with significantly fewer epoch numbers. This could be led by the small
derivatives of Sigmoid functions when input stays within the saturation region, which
makes it more difficult to train the network.

Next, we further compare the trainability of SGNN with ReLU-DNN. We train the two
networks with different configurations to approximate the function f5, which has a more
complex geometry and is more difficult to approximate. The configuration of the NNs and
the training performance are listed in Table 7.

Because the layer of SGNN is fixed by the number of function variables, its only
tunable network hyper-parameter is the number of neurons per layer. Doubling the
neurons/layer of SGNN from 20 to 40 decreases the loss by two orders of magnitude.
Although the training time per epoch increases by 30%, the number of epochs reduces by
60%. Consequently, the total training time is cut by almost 50%, from 38.2 to 19.4 s.

However, the accuracy of ReLU-DNN slightly increases with the increase in width and
depth of the model. Close to 50% loss reduction is achieved by adding seven more layers
and 50 neurons per layer. However, the error is still three orders of magnitude higher than
the error by a four-layer SGNN with one-tenth of trainable variables, with half the training
time per epoch. According to the universal approximation theorem, although one can keep
expanding the network structure to improve the accuracy, it is against the observation in
the last row. This is because the convergence of gradient descent can be a practical obstacle
when the network becomes over-parametrized. In this situation, the network may impose
a very high requirement on the initial weights to yield optimal solutions.

To visualize the differences in the expressiveness between SGNN and ReLU-NN,
the predictions of one run in Table 7 are selected and plotted through a cross-sectional
cut in the x1 − x2 plane with the other two variables x3 and x4 fixed at zero, as shown in
Figure 7. The network configurations are listed in Table 8. The predictions of SGNN in
Figure 7b match well the ground truth in Figure 7a. Despite the minor differences in colors
near the origin, their maximum magnitude is less than 0.1. The ReLU-NN with the same
structure has a much worse approximation. Although the network gradually captures the
main geometric features of f5 by significantly augmenting its structure to 10 layers and
70 neurons per layer, the difference of magnitude can still be as large as 0.5, as shown in
Figure 7f.

Table 8. Network configurations of subplots of Figure 7.

Subfigure Network Layers Neurons/Layer

(b) SGNN 4 40
(c) ReLU-NN 4 40
(d) ReLU-NN 7 40
(e) ReLU-NN 10 40
(f) ReLU-NN 10 70
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Figure 7. Approximation of the four-dimensional f5 using SGNN and ReLU-NNs. The plots are
generated by projecting the surface to the x1 − x2 plane with other coordinates all zero. (a) Ground
truth; (b) SGNN; (c–f) ReLu-NNs with different network configurations. The layers and neurons per
layer of the NNs are listed in Table 8.

8. Conclusions

In this paper, we reexamined the structure of GRBFNN in order to make it tractable
for problems with high-dimensional input. By using the separable property of Gaussian
radial-basis functions, we proposed a new feedforward network called separable-Gaussian-
neural-network (SGNN). Different from the traditional MLPs, SGNN splits the input data
into multiple columns by dimensions and feeds them into the corresponding layers in
sequence. As opposed to GRBFNN, SGNN significantly reduces the number of neurons,
trainable variables, and the computational load of forward and backward propagation,
leading to the exponential improvement of training efficiency. SGNN can also preserve the
dominant subspace of the Hessian matrix of GRBFNN in gradient descent and, therefore,
offer comparable minimal loss. Extensive numerical experiments have been carried out,
demonstrating that SGNN has superior computational performance over GRBFNN while
maintaining a similar level of accuracy. In addition, SGNN is superior to MLPs with ReLU
and Sigmoid units when approximating complex functions. However, whether SGNNs can
form a dense set of GRBFNN is unclear and is up to further study. Further investigation
could also focus on the universal approximability of SGNN and its applications to physics-
informed neural networks (PINNs) and reinforcement learning.
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