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Abstract: Text classification is widely studied in natural language processing (NLP). Deep learning
models, including large pre-trained models like BERT and DistilBERT, have achieved impressive
results in text classification tasks. However, these models’ robustness against adversarial attacks
remains an area of concern. To address this concern, we propose three data augmentation methods
to improve the robustness of such pre-trained models. We evaluated our methods on four text
classification datasets by fine-tuning DistilBERT on the augmented datasets and exposing the resulting
models to adversarial attacks to evaluate their robustness. In addition to enhancing the robustness,
our proposed methods can improve the accuracy and F1-score on three datasets. We also conducted
comparison experiments with two existing data augmentation methods. We found that one of our
proposed methods demonstrates a similar improvement in terms of performance, but all demonstrate
a superior robustness improvement.

Keywords: artificial intelligence; natural language processing; text classification; data augmentation;
robustness improvement

1. Introduction

Text classification is widely studied in the field of natural language processing (NLP),
encompassing tasks such as spam detection [1], topic classification [2], and sentiment clas-
sification [3]. Deep learning models, including large pre-trained models like BERT [4], have
achieved impressive results in text classification tasks. Furthermore, distilled pre-trained
models like DistilBERT [5] allow for deploying these large models on edge devices. While
these smaller models maintain a strong performance, their robustness against adversarial
attacks remains an area of concern [6–8] as such attacks have been shown to deceive these
pre-trained models potentially. In this work, we define robustness as the ability of a model
to resist adversarial attacks.

Previous studies [6,8,9] have primarily focused on using adversarial examples to
enhance the robustness of deep learning models. While these methods can be effective,
they require the presence of a victim model to generate adversarial examples. In contrast,
data augmentation techniques for text classification, which do not require a victim model,
have been proposed in several studies [10–17]. These methods are generally designed
to improve the model’s performance rather than robustness and often involve replacing
words with similar words. While these methods are effective in improving performance,
they need to be improved in their ability to generate text with diverse semantics and lexical
variety, which can result in a lack of robustness.

Motivated by the potential for data augmentation to improve the robustness, we pro-
pose three methods going beyond replacing words with similar words. Our Cognate-based,
Antonym-based, and Antipode-based methods are designed to enhance the robustness
of pre-trained models. Cognate-based methods utilize synonyms and words with similar
sentiments to increase the lexical diversity, while Antonym-based methods incorporate
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antonyms to provide a semantic variation. Antipode-based methods, on the other hand,
combine antonyms and words with opposite sentiments to create both semantic and lex-
ical diversity, leading to an increased robustness. Overall, these approaches enhance
the robustness of the generated text by incorporating a greater range of semantic and
lexical variation.

Pure Antonym-based data augmentation methods have been previously used for
sentiment analysis, but the two other data augmentation methods we propose are entirely
novel. These methods combine synonyms and similar sentiment words (Cognate-based) or
antonyms and sentiment words (Antipode-based).

This study defines robustness as accuracy under attack and the attack success rate.
Accuracy under attack is the accuracy of a target model under an adversarial attack,
measured as the number of samples that resist the attack out of the total number of samples.
The attack success rate is the proportion of adversarial attacks that successfully change the
prediction of a target model from correct to incorrect. These data augmentation processes
and victim models are independent.

Our proposed methods can potentially be utilized not only for the mentioned text
classification tasks but also for tasks such as topic segmentation [18] and authorship
attribution [19] that place a high value on robustness due to their semantic lexical diversity
and potential for counterfeiting.

We evaluated our proposed data augmentation methods on the AG-News [20],
TREC [21,22], SUBJ [23], and SMS-Spam [24] datasets. We fine-tuned DistilBERT [5] on
the augmented datasets and then exposed the resulting models to adversarial attacks to
evaluate their robustness. In addition to enhancing the robustness, our proposed methods
improved the accuracy and F1-score on three datasets. We also conducted comparison ex-
periments with two existing data augmentation methods: EDA [10] and CheckList [7]. We
found that one of our proposed methods performs a similar improvement in terms of the
performance, but all demonstrate a superior robustness improvement. Our contributions
can be summarized as follows:

1. To the best of our knowledge, we are the first to apply data augmentation techniques
to improve the robustness.

2. We propose two novel data augmentation methods for text classification: Cognate-
based methods, which combine synonyms and similar sentiment words, and Antipode-
based methods, which combine antonyms and sentiment words.

3. We conducted experiments on the AG-News [20], TREC [21,22], SUBJ [23], and SMS-
Spam [24] datasets and demonstrated the effectiveness of our methods.

4. We also conducted comparison experiments with two existing data augmentation
methods and found that one of our proposed methods performs similarly but demon-
strates a superior robustness.

2. Related Work

This section reviews the current research on text adversarial example generation and
text data augmentation for natural language processing (NLP) models. The focus of the
investigation on adversarial examples is the enhancement of the model’s robustness, while
the use of data augmentation is geared towards improving the accuracy.

2.1. Text Adversarial Examples Generation

Various research has been devoted to generating adversarial text examples in recent
years due to the continued vulnerability of deep learning models to adversarial attacks.
Some of the notable approaches include TextFooler [6], which employs a combination of
word importance ranking and synonym-based word transformation, and CLARE [8], which
uses a pre-trained masked language model and executes three perturbation actions (replace,
insert, and merge) to generate contextualized adversarial examples. Another approach,
PWWS [9], utilizes synonym substitution to generate adversarial examples, automatically
determining the most effective replacement.
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While these approaches have demonstrated success in improving the robustness of
victim models, it is essential to note that the adversarial example generation process and
victim model are not independent.

2.2. Text Data Augmentation

There has been a proliferation of research on data augmentation methods for deep
learning models in recent years, intending to improve performance metrics such as the
accuracy and F1-score. Examples of such methods include EDA [10], which employs
a combination of random synonym replacement, random word deletion, random word
position swap, and random synonym insertion, and AEDA [11], which randomly inserts
punctuation marks into the original text. Other approaches include Data Boost [12], which
utilizes a large-scale pre-trained language model with reinforcement learning optimization,
and LAMBDA [13], which also uses a large-scale pre-trained model as a generator, fine-
tuning it and training an additional classifier using identical datasets. The augmented data
are then filtered using the classifier to obtain a high-quality dataset. UDA [14] applies
data augmentation methods from supervised learning to semi-supervised learning, and
Contextual Augmentation [15] employs a label-conditional language model to predict
paradigmatic relation-based word replacement. In [16], dependency trees break sentences
into smaller pieces and change the order of words for data augmentation in low-resource
languages. [17] develops methods to find suitable text modification operations for data
augmentation automatically.

These methods are generally designed to improve the model’s performance rather than
robustness and often involve replacing words with similar words. While these methods
effectively improve the performance, they are limited in their ability to generate text with
diverse semantics and lexical variety, which can result in a lack of robustness.

3. Materials and Methods

This section provides a detailed description of the datasets utilized in our study and
describes our proposed methods.

3.1. Datasets

In order to evaluate the effectiveness of our proposed data augmentation methods, we
conducted experiments on a variety of datasets, including AG-News [20], TREC [21,22],
SUBJ [23], and SMS-Spam [24]. To ensure the robustness of our results, we randomly
sampled and shuffled the data from these datasets, as described in Table 1, which lists the
tasks and sizes of each dataset.

Table 1. Datasets Description.

Tasks # of Classes Training Size Evaluation Size Test Size

AG-News Topic Classification Four 5000 500 500
TREC Question Classification Six 4500 500 500

SUBJ Movie Description
Classification Two 5000 500 500

SMS-Spam Spam Detection Two 4500 500 500

3.2. Methods

Our proposed data augmentation methods aim to replace a randomly selected subset
of words in a given text with substitutes from predetermined lists of words. We follow two
constraints while selecting words in the given text for word replacement; we do not select
words that have already been replaced or stop words in the text.

Our Cognate-based, Antonym-based, and Antipode-based approaches aim to gen-
erate these lists. Specifically, we randomly select a percentage (n%) of words from the
text and replace them with words from the generated lists while adhering to certain con-
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straints, particularly regarding part-of-speech (POS). We describe these three proposed
data augmentation methods in further detail below:

• Cognate-based methods generate a list of substitutes by compiling synonyms and
words with the similar sentiment using WordNet [25] and SenticNet [26]. In Sentic-
Net [26], sentiment-related words are rated based on sensitivity, attitude, temper, and
introspection scores, representing twenty-four basic emotions (these twenty-four basic
emotions are ecstasy, joy, contentment, melancholy, sadness, grief, bliss, calmness,
serenity, annoyance, anger, rage, delight, pleasantness, acceptance, dislike, disgust,
loathing, enthusiasm, eagerness, responsiveness, anxiety, fear, and terror). For in-
stance, a high introspection score indicates intense ecstasy, while a low introspection
score indicates intense grief. Similar sentimental words must have the identical four
scores as the target word to be included in the substitute list.

• Antonym-based methods generate a list of substitutes by compiling antonyms using
WordNet [25].

• Antipode-based methods generate a list of substitutes by compiling antonyms and
words with the opposite sentiment using WordNet [25] and SenticNet [26]. To be
included in the substitute list, opposite sentimental words must have the opposite
four scores of the target word.

We apply three different constraints on the substitute lists used for word replacement,
resulting in three variations of our Cognate-based, Antonym-based, and Antipode-based
methods, respectively:

• Cognate1 (resp. Antonym1, Antipode1): all words in the substitute list generated by
the Cognate-based (resp. Antonym-based, Antipode-based) method can be used for
word replacement.

• Cognate2 (resp. Antonym2, Antipode2): only words in the substitute list generated by
the Cognate-based (resp. Antonym-based, Antipode-based) method with the same
part-of-speech (POS) as the selected word in the given text can be used for word
replacement, except that verbs can be replaced with nouns and vice versa.

• Cognate3 (resp. Antonym3, Antipode3): only words in the substitute list generated by
the Cognate-based (resp. Antonym-based, Antipode-based) method with the same
POS as the selected word in the given text can be used for word replacement.

The following samples from AG-News [20] are presented below, with words high-
lighted in bold indicating those that have been replaced in generated samples:

• Original: “Bangladesh paralysed by strikes Opposition activists have brought many
towns and cities in Bangladesh to a halt, the day after 18 people died in explosions at
a political rally.”

• Cognate-based: “Bangladesh paralysed by strikes Opposition activists have brought
many townsfolk and cities in Bangladesh to a halt, the day after 18 people edema in
explosions at a political rally.”

• Antonym-based: “Bangladesh paralysed by strikes Opposition activists have brought
few towns and cities in Bangladesh to a halt, the day after 18 people died in explosions
at a nonpolitical rally.”

• Antipode-based: “Bangladesh paralysed by strikes Opposition activists have brought
many towns and cities in Bangladesh to a halt, the night after 18 people died in
explosions at a political demobilize.”

4. Evaluation Experiments

This section outlines the experimental procedures employed for evaluation and
presents the results.

4.1. Implementation

Our evaluation experiments have three main stages: data augmentation, model gen-
eration, and text attack. Specifically, we first apply data augmentation methods to the
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datasets three times each, generating augmented datasets. These augmented datasets are
then used to fine-tune DistilBERT [5] using identical learning parameters and random
seed. Next, we employ TextFooler [6] and PWWS [9] to assess the robustness of the fine-
tuned models and average the results obtained from each data augmentation method. In
addition, we also compared with EDA [10] and the transformation method from Check-
List [7], which combines name replacement, location replacement, number alteration, and
contraction/extension. These experiments are implemented using Textattack [27] and
Transformers [28].

4.1.1. Data Augmentation

To augment the training dataset, we employed the data augmentation methods de-
scribed in Section 3 and the EDA [10] and CheckList [7] methods for comparative purposes.
All data augmentation methods were implemented according to the following protocol: we
randomly select 10% of the words in the text for replacement and generate one augmented
sample for each original data sample.

4.1.2. Model Generation

To generate the models, we fine-tuned DistilBERT [5] using both the original dataset
and the augmented datasets produced by each data augmentation method. In order to
isolate the effect of data augmentation and make the model generation process more
efficient, we fixed the learning parameters and random seed for all models. We employed
padding and truncation strategies to maintain a fixed input length for each dataset. The
input length for AG-News [20] is fixed at 200, TREC [21,22] at 50, and both SUBJ [23] and
SMS-Spam [24] at 100. We evaluated the performance of the generated models in terms of
the accuracy and F1-score during the model generation process.

4.1.3. Text Attack

To assess the robustness of the generated models, we utilize TextFooler [6] and
PWWS [9] (excluding the named entity adversarial swap) as attackers, which modify
the test dataset input in an attempt to cause the victim model to produce incorrect predic-
tions. To eliminate the impact of randomness on the attacks, we fix the random seed. While
the input length for AG-News [20], TREC [21,22], SUBJ [23], and SMS-Spam [24] is fixed,
during the model generation process, in order to maintain generalizability during actual
deployment, the victim models in the text attack process use the default input length setup
of Transformers [28] (i.e., no padding or truncation strategies). We evaluate the robustness
in terms of the accuracy under attack and the attack success rate, which is defined as the
number of samples originally predicted correctly that were forced to predict incorrectly
under attack, divided by the number of samples originally predicted correctly without
attack, as shown in Equation (1):

RAS = NPI/NOPC, (1)

where RAS is the attack success rate, NPI is the number of samples forced to predict
incorrectly under attack, and NOPC is the number of samples originally predicted correctly
without attack.

4.2. Experiment Results

The performance results, including the accuracy and F1-score, are presented in
Section 4.2.1, while the robustness results, including the accuracy under attack and at-
tack success rate, are presented in Section 4.2.2. These results are presented as the difference
between the results of the data augmentation methods and the original model. Detailed
performance and robustness results can be found in Tables A1–A4 in the Appendix A.
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4.2.1. Performance Results

The results of the AG-News dataset [20] in Figure 1 indicate that all data augmentation
methods improve the accuracy and F1-score compared to the original model. Among these
methods, Antipode3 produces the most significant improvement, with an increase of 1.87%
in the accuracy and 1.91% in the F1-score.
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Figure 1. AG-News Performance Improvement Results.

The results of the TREC dataset [21,22] depicted in Figure 2 reveal that, compared to
the original model, all data augmentation methods decrease both the accuracy and F1-score.
The exception to this trend is Antonym2, which results in a slight increase in the accuracy
(0.07%) but a decrease in the F1-score.
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Figure 2. TREC Performance Improvement Results.

As illustrated in Figure 3, the results of the SUBJ dataset [23] demonstrate that, with
some exceptions, most data augmentation methods improve the accuracy and F1-score
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compared to the original model. EDA [10] produces the most significant improvement of
these methods, with an increase of 0.60% in both the accuracy and F1-score. Antonym1
also shows comparable results, with an increase of 0.40% in the accuracy and 0.39% in
the F1-score.
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Figure 3. SUBJ Performance Improvement Results.

The results of the SMS-Spam dataset [24] depicted in Figure 4 indicate that all data
augmentation methods improve the accuracy and F1-score compared to the original model.
Among these methods, CheckList [7] produces the most significant improvement, with an
increase of 0.53% in the accuracy and 1.22% in the F1-score. Antipode2 also demonstrates
comparable results, with an increase of 0.47% in the accuracy and 1.05% in the F1-score.
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The most effective methods for improving the performance vary across datasets. While
our proposed methods may only consistently outperform others on some datasets, the
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Antipode-based methods demonstrate a high level of versatility and efficacy, suggesting
their utility in various contexts.

4.2.2. Robustness Results

The results presented in this section demonstrate the effectiveness of our proposed
data augmentation methods in improving the robustness of the models under attack by
TextFooler [6] and PWWS [9]. Figures 5 and 6 show the improvement in the accuracy
under attack and the decrease in the attack success rate, respectively, for the AG-News
dataset [20]. Cognate3, Antonym2, and Antipode2 exhibit notable increases in the accuracy
under attack and decreases in the attack success rate under both attacks. In particular,
Antipode2 demonstrates a significant increase in the accuracy under attack (2.80% and 8.60%
in Figure 5) and a decrease in the attack success rate (−3.00% and −9.34% in Figure 6) in
both attacks.
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Figures 7 and 8 show the improvement in the accuracy under attack and the decrease
in the attack success rate for the TREC dataset [21,22]. Cognate2, Antonym1, Antonym2,
Antipode1, and CheckList [7] all exhibit increases in the accuracy under attack and decreases
in the attack success rate under both attacks. Specifically, Antonym1 and Antonym2 show
solid results, with increases in the accuracy under attack (1.07% and 3.80%; 1.67% and
1.27% in Figure 7) and decreases in the attack success rate (−1.19% and −4.08%; −1.70%
and −1.27% in Figure 8) in both attacks.
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Figure 8. TREC Attack Success Rate Decrease.

Figures 9 and 10 show the improvement in the accuracy under attack and the decrease
in the attack success rate, respectively, for the SUBJ dataset [23]. Antonym2 and Antipode1
demonstrate notable increases in the accuracy under attack (1.13% and 2.33%; 1.00% and
2.53% in Figure 9) and decreases in the attack success rate (−1.20% and −2.48%; −1.02%
and −2.61% in Figure 10) under both attacks.
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Figures 11 and 12 show the improvement in the accuracy under attack and the decrease
in the attack success rate for the SMS-Spam dataset [24]. All data augmentation methods
exhibit increases in the accuracy under attack and decrease in the attack success rate under
both attacks. Cognate1 and Antipode2 show solid results, with Antipode2 demonstrating an
impressive increase in the accuracy under attack (16.93% and 11.47% in Figure 11) and a
decrease in the attack success rate (−16.68% and −11.15% in Figure 12) in both attacks.
The SMS-Spam dataset’s limited semantics and lexical diversity [24] may contribute to the
observed results.
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Figure 12. SMS-Spam Attack Success Rate Decrease.

Our proposed data augmentation methods, particularly the Antonym-based and
Antipode-based variations, demonstrate superior performance in terms of the robustness
improvement compared to the current methods EDA [10] and CheckList [7].

5. Additional Analysis

The Antipode3 models in Figure 1 exhibit the highest average performance improve-
ment, with the Antonym2 models being the only exception that did not experience a
decrease in the average accuracy. To further analyze these unusual results, we employed a
confusion matrix to compare the original and three Antipode3 models for AG-News, the
original model, three Antonym2 models, and the two lowest-performing models for TREC.
This analysis allows us to examine the influence of our data augmentation methods on the
model’s performance. The accuracy and F1 scores of these models on AG-News and TREC
can be found in Tables 2 and 3. Run n means the nth evaluation.
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Table 2. Target Models on AG-News.

Models Accuracy F1-Score

Original Model 90.00% 89.80%

Antipode3 Run1 92.40% 92.27%

Antipode3 Run2 91.80% 91.62%

Antipode3 Run3 91.40% 91.23%

Table 3. Target Models on TREC.

Models Accuracy F1-Score

Original Model 97.00% 95.53%

Antonym2 Run1 97.40% 94.73%

Antonym2 Run2 96.80% 94.26%

Antonym2 Run3 97.00% 94.42%

Antonym3 Run1 95.60% 92.46%

Antipode3 Run3 95.80% 93.29%

5.1. AG-News

Figures 13 and 14 show the confusion matrices for the original model and Antipode3
Run1 (which has the best performance). The confusion matrices for the other models can
be found in Figures A1 and A2.
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When comparing the original model with the three Antipode3 models (Run1), the best
model is the most effective, and the direction of improvement is consistent across all of
them: they all demonstrate an increased accuracy in recognizing the World class, and there
is less confusion between the Business and Sci/Tech classes. This improvement may be
due to the expansion of vocabulary through data proliferation by Antipode3, which has
reduced the attention given to words that are unrelated to the label.

5.2. TREC

Figures 15–17 show the confusion matrices for the original model, Antonym2 Run1
(which has the best performance), and Antonym3 Run1 (which has the worst performance).
The confusion matrices for the other models can be found in Figures A3–A5.

Upon comparing Antipode1, Antipode2, and Antipode3, it was found that Antipode1
has the most diverse lexical variations, but Antipode2 is the most effective overall. This
finding emphasizes that while an increased lexical diversity can be beneficial, it can also
introduce noise into the data, potentially decreasing the model’s performance and robust-
ness. In some instances, our methods resulted in a reduction in the performance and
robustness. Our additional analysis also indicates that the generated data may hinder
normal learning, leading to a decreased performance. Therefore, it is essential to weigh
the benefits of lexical diversity against the potential negative impacts of noise in future
research. To further examine this trade-off and minimize adverse effects while preserving
the benefits of increased lexical diversity, we plan to implement more constraints and
conduct additional experiments. While our focus is not necessarily on developing the
optimal model, we believe that incorporating our data augmentation methods with optimal
parameters and task-specific pre-trained models has the potential to generate more accurate
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and robust models. While our methods may not be directly applied to specific tasks, such
as sentiment analysis, they can be modified through label- and word-swap constraints to
be more suitable for these tasks.
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Our Antipode3 method demonstrates its superiority in the AG-News section, but
it does not happen in this TREC section. Upon comparing the original model with the
Antonym2 models, we see that the direction of improvement and decrease are consistent,
with Antonym2 improving the overall accuracy but significantly increasing the confusion
in recognizing ABBR as DESC. Both categories are used for identification, with the latter
containing the former, which may explain the low original accuracy. When comparing
the original model with worse models, we observe a similar decline in performance but
without any improvement or even a further decrease. Our proposed methods may impede
the learning of words related to the label but prevent the learning of unrelated words
simultaneously. Our best model has more benefits than drawbacks, and other models are
vice versa.

6. Discussion

We evaluated the effectiveness of our proposed data augmentation methods in terms
of the performance and robustness. The results showed that Antipode-based methods are
beneficial for improving the performance, with both Antonym-based and Antipode-based
methods exhibiting an enhanced robustness. The Antipode-based method, in particular,
demonstrated a superior performance and robustness enhancement compared to prior data
augmentation methods that utilize similar lexical words to increase diversity.

To determine the significance of diverse semantics and lexical variations, we compared
the results of our proposed Cognate-based, Antonym-based, and Antipode-based methods.
The Cognate-based methods have a greater lexical diversity, while the Antonym-based
methods have diverse semantics and the Antipode-based methods have diverse semantics
and lexical variations. Our Antonym-based and Antipode-based methods demonstrated
that diverse semantics are essential for improving the robustness. On the other hand,
diverse semantics and lexical variations are crucial for a performance improvement. Our
findings suggest that the use of antonyms and opposite sentiment words to create semanti-
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cally and lexically diverse data may be helpful in text classification tasks in terms of both a
performance and robustness improvement, especially when the original data are limited in
its semantic and lexical variety (according to the results of SMS-Spam [24]). These results
encourage a further exploration into data augmentation beyond similarity.

We will also explore the use of our methods in other natural language processing tasks
requiring robustness, such as topic segmentation and authorship attribution, to see if they
can be applied similarly to improve the performance and robustness.

7. Conclusions

In this study, we introduced three novel data augmentation methods for improving
the robustness of text classification models. We conducted evaluation experiments on
four text classification datasets and found that, in addition to an increased robustness, our
augmented datasets improve the prediction models’ performance. We also compared our
methods to two existing data augmentation methods. We found that one of our proposed
methods performs similarly in terms of a performance enhancement while demonstrating
superior results in terms of a robustness enhancement. Our empirical results demonstrated
the effectiveness of our proposed data augmentation methods.
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Appendix A

Table A1. AG-News Performance and Robustness Results.

Accuracy under Attack Attack Success Rate
Models Accuracy F1-Score TextFooler PWWS TextFooler PWWS

Original
Model 90.00% 89.80% 17.00% 28.60% 81.11% 68.22%

Cognate1 90.67% 90.38% 16.53% 34.00% 81.76% 62.49%
Cognate2 90.33% 90.03% 17.33% 37.00% 80.81% 59.05%
Cognate3 90.27% 90.02% 18.27% 36.33% 79.76% 59.74%

Antonym1 90.40% 90.14% 15.40% 34.73% 82.96% 61.56%
Antonym2 90.73% 90.44% 19.33% 35.47% 78.68% 60.91%
Antonym3 90.73% 90.53% 17.33% 35.00% 80.90% 61.43%

Antipode1 90.07% 89.81% 12.27% 26.40% 86.38% 70.69%
Antipode2 90.47% 90.21% 19.80% 37.20% 78.11% 58.88%
Antipode3 91.87% 91.71% 14.87% 33.33% 83.81% 63.71%

EDA [10] 90.80% 90.61% 14.80% 33.60% 83.68% 62.98%
CheckList [7] 90.73% 90.51% 14.20% 29.80% 84.36% 67.15%

https://github.com/tang7777777/MDPI_codes
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Table A2. TREC Performance and Robustness Results.

Accuracy under Attack Attack Success Rate
Models Accuracy F1-Score TextFooler PWWS TextFooler PWWS

Original
Model 97.00% 95.53% 30.20% 50.60% 68.87% 47.84%

Cognate1 97.00% 94.25% 28.87% 58.87% 70.24% 39.31%
Cognate2 96.80% 94.60% 31.07% 57.07% 67.90% 41.05%
Cognate3 96.67% 94.51% 29.47% 57.53% 69.52% 40.49%

Antonym1 96.73% 94.84% 31.27% 54.40% 67.68% 43.76%
Antonym2 97.07% 94.47% 31.87% 51.87% 67.17% 46.57%
Antonym3 96.07% 93.52% 29.67% 52.20% 69.12% 45.66%

Antipode1 96.40% 93.84% 31.00% 51.40% 67.84% 46.68%
Antipode2 96.80% 93.93% 29.47% 51.87% 69.56% 46.42%
Antipode3 96.27% 93.85% 30.33% 52.73% 68.49% 45.22%

EDA [10] 96.67% 94.49% 29.20% 52.27% 69.79% 45.92%
CheckList [7] 96.33% 93.79% 31.67% 50.80% 67.13% 47.26%

Table A3. SUBJ Performance and Robustness Results.

Accuracy under Attack Attack Success Rate
Models Accuracy F1-Score TextFooler PWWS TextFooler PWWS

Original
Model 95.80% 95.80% 23.20% 34.40% 75.78% 64.09%

Cognate1 95.93% 95.93% 20.60% 33.80% 78.52% 64.77%
Cognate2 95.93% 95.93% 20.60% 34.13% 78.53% 64.43%
Cognate3 95.87% 95.86% 21.47% 34.27% 77.61% 64.26%

Antonym1 96.20% 96.19% 19.73% 34.73% 79.48% 63.89%
Antonym2 95.67% 95.66% 24.33% 36.73% 74.58% 61.61%
Antonym3 95.67% 95.66% 20.67% 33.33% 78.39% 65.15%

Antipode1 95.87% 95.86% 24.20% 36.93% 74.76% 61.48%
Antipode2 95.87% 95.87% 21.07% 34.60% 78.03% 63.91%
Antipode3 95.40% 95.40% 21.67% 35.27% 77.29% 63.03%

EDA [10] 96.40% 96.40% 22.33% 34.27% 76.84% 64.46%
CheckList [7] 95.33% 95.33% 20.33% 32.40% 78.66% 66.00%

Table A4. SMS-Spam Performance and Robustness Results.

Accuracy under Attack Attack Success Rate
Models Accuracy F1-Score TextFooler PWWS TextFooler PWWS

Original
Model 99.00% 97.68% 72.40% 79.40% 26.87% 19.80%

Cognate1 99.33% 98.41% 87.80% 90.27% 11.61% 9.13%
Cognate2 99.40% 98.58% 83.33% 86.93% 16.16% 12.54%
Cognate3 99.33% 98.42% 83.73% 87.87% 15.71% 11.54%

Antonym1 99.20% 98.13% 83.67% 86.13% 15.66% 13.17%
Antonym2 99.27% 98.28% 83.47% 86.73% 15.92% 12.62%
Antonym3 99.27% 98.27% 85.60% 89.20% 13.77% 10.14%

Antipode1 99.33% 98.43% 85.80% 88.07% 13.62% 11.34%
Antipode2 99.47% 98.73% 89.33% 90.87% 10.19% 8.65%
Antipode3 99.13% 97.98% 77.93% 83.40% 21.38% 15.87%

EDA [10] 99.27% 98.28% 81.20% 86.40% 18.21% 12.96%
CheckList [7] 99.53% 98.90% 84.93% 87.67% 14.67% 11.92%
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