
Citation: Elkhovskaya, L.O.; Kshenin,

A.D.; Balakhontceva, M.A.; Ionov,

M.V.; Kovalchuk, S.V. Extending

Process Discovery with Model

Complexity Optimization and Cyclic

States Identification: Application to

Healthcare Processes. Algorithms

2023, 16, 57. https://doi.org/

10.3390/a16010057

Academic Editor: Alessia Sarica

Received: 12 November 2022

Revised: 24 December 2022

Accepted: 13 January 2023

Published: 15 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Extending Process Discovery with Model Complexity
Optimization and Cyclic States Identification: Application to
Healthcare Processes
Liubov O. Elkhovskaya 1, Alexander D. Kshenin 1, Marina A. Balakhontceva 1, Mikhail V. Ionov 2

and Sergey V. Kovalchuk 1,*

1 Faculty of Digital Transformations, ITMO University, Saint Petersburg 197101, Russia
2 Research Laboratory for Arterial Hypertension Pathogenesis and Treatment, Almazov National Medical

Research Center, Saint Petersburg 197341, Russia
* Correspondence: kovalchuk@itmo.ru; Tel.: +7-812-337-64-92

Abstract: Within process mining, discovery techniques make it possible to construct business process
models automatically from event logs. However, results often do not achieve a balance between
model complexity and fitting accuracy, establishing a need for manual model adjusting. This paper
presents an approach to process mining that provides semi-automatic support to model optimization
based on the combined assessment of model complexity and fitness. To balance complexity and
fitness, a model simplification approach is proposed, which abstracts the raw model at the desired
granularity. Additionally, we introduce a concept of meta-states, a cycle collapsing in the model,
which can potentially simplify the model and interpret it. We aim to demonstrate the capabilities of
our technological solution using three datasets from different applications in the healthcare domain.
These are remote monitoring processes for patients with arterial hypertension and workflows of
healthcare workers during the COVID-19 pandemic. A case study also investigates the use of various
complexity measures and different ways of solution application, providing insights on better practices
in improving interpretability and complexity/fitness balance in process models.

Keywords: process mining; process discovery; quality metrics; event aggregation; interpretation;
healthcare

1. Introduction

Process mining (PM) is a relatively new discipline that adopts a data-driven approach
and a classical model-based process analysis. It is becoming popular because there is a
demand for better insight into what happens within an organization. PM is a promising ap-
proach to reveal and analyse real processes existing in all companies today. There are three
types of PM: process discovery, conformance checking, and process enhancement [1]. With
discovery algorithms, one can automatically obtain a (business) process model from rou-
tinely recorded data, an event log. This type of PM is the research topic of most interest [2].
The results of process discovery techniques can be further used in conformance checking
and enhancement. An a priori process model (retrieved from a log or elaborated “by hand”)
is evaluated by its compliance with the data by conformance checking techniques, and
its enhancement can be proposed after an analysis of process performance measures. In
this study, we address a problem within process discovery. One of the main issues is
constructing a model which would both be simple and reflect actual process behaviour.
This often results in the trade-off between quality measures of a model [3]. Ideally, a process
model should be understandable and interpretable for both analysts and common users and
capture the principal way of process execution (if there is no mandate to find all possible
realizations). The problem is most acute when dealing with complex and heterogeneous
processes, making it possible to discover a so-called spaghetti-like process model [1].

Algorithms 2023, 16, 57. https://doi.org/10.3390/a16010057 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16010057
https://doi.org/10.3390/a16010057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-3664-5383
https://orcid.org/0000-0001-8828-4615
https://doi.org/10.3390/a16010057
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16010057?type=check_update&version=2

Algorithms 2023, 16, 57 2 of 29

Processes in the healthcare sector are highly variable and distributed because they are
ad hoc and healthcare information systems are usually not process-aware [4]. That is why
healthcare is the most researched application domain of process discovery techniques [2,5,6].
Moreover, healthcare organizations need to improve their processes to achieve high-quality
care standards in a cost-effective way; therefore, they may benefit from PM solutions. The
PM community, in turn, needs to generate a ‘unique value proposition’, providing action-
able tools which are aware of domain-specific peculiarities and aimed at solving real-world
problems [7]. For example, process model structuring often requires domain knowledge.
So, an automatic interpretation and structure analysis of the model are necessary. While
there are endeavours and some success in defining and standardizing interpretability
in other modelling fields, complex processes with non-trivial domain interpretation are
still challenging.

Taking into account the complex nature of real-world processes (where healthcare
processes are considered as an example), we see multi-aspect problems in the optimization
of process model structure and parameters. First, a certain balance between case coverage
and interpretability of a process needs to be achieved, considering event logs which are
often imperfect. Second, domain-specific (interpretable) states often span multiple events
in event logs, causing implicit structures (loops, sub-processes) to be presented in a process
model. Third, human interpretation as a frequent target of PM needs to reveal such
structures and present them explicitly. In this paper, we propose an approach for model
interpretability based on a meta-states concept and present a technology which extends a
PM algorithm with semi-automatic support to model optimization for higher complexity
control. We demonstrate our solution applicability within the healthcare domain, where
processes are best suited for model comprehension enhancement and from which the idea
of the concept originates. While we provide a case study example, we believe the approach
is adaptable to other domains, and is broadly considered as an extension of the process
discovery technique.

2. Related Works
2.1. What Are Complexity and Interpretability in PM?

In different system modeling domains, research and development are mainly aimed
at a high accuracy of model fit, i.e., capturing dependencies in data, while interpretation
receives little attention. It is believed that interpretation can increase model trust, which
is particularly acute for black-box models, even though it may affect predictive accuracy.
This sparked a new line in machine learning [8] and artificial intelligence [9], in which
models can already learn complicated data patterns and make precise forecasts. However,
there is no strict definition of interpretability. When it comes to the domain of PM, the
interpretability of the process model is usually considered as human interpretation and
understanding [10] or as semantic mapping of process models [11]. In both cases, the
interpretation refers to domain knowledge containing implicitly in the operators’ expertise
or explicitly in semantic knowledge bases (furtherly mentioned as “domain interpretation”).

When it comes to system insight, one can also reason about its complexity. Like
interpretability, complexity is context-sensitive and can hardly be defined universally. There
are many definitions and meanings of complex systems and complexity measures. The
latter can be divided into two major classes: computational and system-related complexity
measures [12]. Interpretability and complexity are closely related: a more straightforward
description produced by the system tends to be better construed. On the other hand, higher
complexity leads to lower interpretability. Such contradiction is observed in multiple
research studying various measures in PM [10,13,14].

The comprehensive nature of a human or of a business process model can be in-
fluenced by many factors, ranging from personal characteristics to elements of Gestalt
theory [15]. Such factors include process modelling notation and its features (visual expres-
siveness, semantic transparency, etc.), model size (number of elements, diameter), mod-
ularity and structuredness (use of constructions with split/join usually improves model

Algorithms 2023, 16, 57 3 of 29

understanding), decomposition (ways to hide unimportant information from the user,
thereby improving the quality of the model), etc. Within PM studies, Mendling et al. [10]
investigated aspects that may influence process model comprehension. The authors used
questionnaires with several process models that were filled by students at three universities.
The students were taking or had completed classes on PM and had different levels of subject
knowledge. The study revealed that in addition to personal factors, model size is correlated
to its comprehension. A similar result was obtained in another empirical study [16]: the
larger the distance of a process structure tree, the more challenging the process behavior to
perceive it. Statistical analysis also indicated that cognitive difficulty can be ranked when
understanding different relationships between model elements. In [17], process model
complexity was defined as the degree to which a process is difficult to analyze, understand,
or explain. Model structure, therefore, can serve as strong evidence of its complexity. In PM,
the complexity term is often associated with logical blocks, such as AND-, XOR-, OR-splits,
and loops presented in the model. These split constructs can be evaluated and quantified
using different measures, e.g., control-flow complexity [17], entropy-based uncertainty [18],
and others [19]. Their sum is the overall architectural complexity or uncertainty. Other
measures of complexity can be derived if one considers process models from the perspec-
tive of neighboring disciplines [20]. In this study, we look at a process model as a graph
structure and exploit several network complexity measures to find an understandable and
interpretable model.

2.2. Towards Process Model Optimization

To addressing the problem of an optimal process model, we intend to construct a
model that is simultaneously simple for understanding and accurately captures process
behaviours. Ideally, finding a balance between these quality components should be as
automated as possible, and the simplicity of the model can be achieved through its elements’
abstraction/aggregation. Table 1 contains studies which reflect these issues to a different
extent. Most of the papers are from the last 6 years, and several earlier works are presented
as baselines. The proposed solutions are classified on the type of approach used and
evaluated on the degree of its applicability to the aspect in question.

Table 1. Studies addressing process model optimization.

Approach Studies Optimization Methods

Log pre-processing
Suriadi et al. [21], Leonardi et al. [22],
Chiudinelli et al. [23], Tax et al. [24],
Alharbi et al. [25], Broucke et al. [26]

±

Outlier (events, traces) detection and
removal, region-based methods for

repeated tasks, topic modelling,
sequence labelling

Behaviour filtering

Günther et al. [27], Batista et al. [28],
Weerdt et al. [29], Broucke et al. [26],

Leemans et al. [30,31],
Augusto et al. [32], Sun et al. [33],

De Smedt et al. [34]

�
(manual)

Activity, precedence relation, cycles,
and split/join filtering; conflict
resolution; attribute accounting

Aggregation
Suriadi et al. [21], Günther et al. [27],
Leemans et al. [31], Prodel et al. [35],

Fahland et al. [36]
±

Hierarchical event structure
(e.g., ICD-10 codes, software code
architecture), correlation metrics,

model construction folding

Clustering

Delias et al. [37], Weerdt et al. [38],
García-Bañuelos et al. [39],

Becker et al. [40], Funkner et al. [41],
Najjar et al. [42]

± Trace and event clustering

Optimization problem

Prodel et al. [35,43], Camargo et al. [44],
De Oliveira et al. [45],

Effendi et al. [46], Buijs et al. [47],
Vázquez-Barreiros et al. [48]

�
Linear programming, Pareto
optimality, particle swarm

optimization, etc.

Algorithms 2023, 16, 57 4 of 29

Log pre-processing is a good starting point for enhancing both process visualization
and model precision. This category of model enhancing techniques is applied before the
discovery directly retrieving log information. Suriadi et al. [21] demonstrate a systematic
approach to event log preparation based on imperfection records patterns. Common
quality issues compose such patterns. They are form-based event capture, unanchored
event, inadvertent time travel, etc. The authors describe each pattern and show real-life
cases, proposing possible solutions and potential limitations. For example, distorted labels,
the most frequently observed pattern, negatively impact the readability and validity of
process mining results, according to the questionnaire results. Activities that have the same
semantics but do not match due to incorrect data entry or ununified recording systems
should be treated as one. This could be done by letters capitalization agreement, similarity
string search, or manual interventions (e.g., using a knowledge base [21] or rule base
ontology [22]). More intelligent techniques, such as topic modelling [23] or conditional
random fields [24], can facilitate moving from low-level to high-level events, aiding the
comprehensibility of discovered process models. In [25], the authors propose an interval-
based selection method to filter outliers, which are repeated events within the specified time
period. Event outliers are defined based on the distribution of time intervals of consecutive
events of the same activity. The time perspective regard has potential for the log pre-
processing step; the proposed method has improved model precision without reducing
its fitness. The opposite option, namely, mining repeated activities based on contextual
information is proposed in [26]. The reason for mining duplicate tasks is enhancing model
understandability and clarity, e.g., by its unbranching. These approaches only facilitate the
discovery of a better-quality model but do not guarantee its optimization.

The second type of approach is to simplify process models during or after their dis-
covery by behaviour filtering. These approaches are mostly implemented with manual
methods. It is common to allow the user to inspect some threshold-fixed model first and
then adjust its parameters manually. The Fuzzy [27] and Skip [28] miners are prime exam-
ples of the discovery algorithms adopting this strategy. This technique is commonly used
in discovery algorithms whose output is a directly follows model to reduce its complexity
through abstraction and aggregation [30]. Fodina [26] and BPMN Miner [29] also incorpo-
rate dependency information; for example, Heuristics Miner [49] filters infrequent activities
and arcs and deals with split/join constructions and binary conflicts. Additionally, the
authors [29] utilize both originator and control-flow perspectives in the discovery of group
activities in swim lanes, which can be collapsed for more abstraction. Self-loops and short
loops can cause problems while analysing concurrency relations between tasks. This can
affect not only the correctness of the discovery, but also model complexity. Approaches
which deal with such structures are proposed in [32,33]. The proposed algorithms are also
able to produce simple models while balancing fitness and precision. In [34], the authors
addressed the issue of mixed-paradigm process mining, which aims to discover a precise
and comprehensible process model at the same time. They introduced Fusion Miner and
proposed a new metric called activity entropy. Activity entropy captures activities con-
nected with most other activities, i.e., identifies weak dependencies. This way, considering
behavior types that an event log contains, one can change an input parameter of the miner
to achieve the balance between procedural and declarative constructs in a model. The
approaches described above address both optimization and abstraction issues of process
discovery, but with manual methods. They usually require many parameter configurations
with several trials to adjust a model to the desired level of granularity.

Since the number of model elements influences its comprehensibility, reducing the
variety of events is necessary. For example, collateral events, which are multiple events
referring to one process step, may noise the data, and they need to be aggregated [21].
The time perspective should be regarded to merge activities occurring together within a
specified time period. The same applies to events captured by the form and affected by the
same timestamps, such as a set of patient blood tests. The relation of two subsequent events
can be measured by correlation metrics. Correlation may be determined with respect to

Algorithms 2023, 16, 57 5 of 29

the timeframe within which events occur one after another, originator or activity names
similarity, and data perspectives. The approach proposed in [27] groups highly correlated
and less-significant nodes into clusters, therefore abstracting them into one logical or
high-level activity. A discovery technique proposed in [31] captures data hierarchies,
which are present in software systems. Within these systems, logged execution calls or
code architecture itself can be utilized in the designed hierarchy. The hierarchy can be
reflected in the model at different levels of depth, i.e., having its parts hidden or unfolded
interactively by the user, therefore simplifying or complicating the discovered model. The
technique with different heuristics is evaluated on the examples of software event logs;
it has overall positive impact on the model quality. The hierarchy can also be seen in
healthcare events represented as ICD-10 codes [35]. Aggregation as a post-processing step
is demonstrated in [36]. Here, the authors merge similar behaviour after an alternative
using folding equivalence. This typically generalizes the behaviour of the net and reduces
its complexity. So, aggregation techniques are good options to abstract a process model
and possibly simplify it at the price of losing some information.

Unsupervised learning has found uses in different tasks and fields including PM. It is
common for trace clustering to be applied in a discovery step. In this regard, the event log is
divided into sub-logs to produce more accurate process models for each cluster. However,
the clustering techniques need a robust similarity metric [37]. They also should incorporate
PM quality measures since data mining criteria only assume the improvement of discovery
results. Thus, the authors in [38] propose a semi-supervised method with a selection
step for a greedy accuracy optimization for each cluster. Despite the high computational
complexity, the novel approach performed better than MRA-based clustering in terms of
accuracy. A “slice-mine-dice” technique is proposed in [39] to cluster traces reaching the
specified complexity threshold. The results showed improvement in the number of clusters
and process model cumulative size in comparison to three existing trace clustering methods.
Contextual information is utilized in [40] in a modified k-medoids clustering algorithm.
Standard process is assumed to be more frequent and stable in a time perspective. So,
occurrence frequencies and overall cycle times are included to support grouping of similar
process variants. Using the first k most frequent processes as medoids has improved the
clustering quality in several heterogeneous cases. However, identifying the proper value
for k is still an open issue. In [41], the coefficient of variation is used to determine the
number of clusters of clinical pathways represented as state (department in a hospital)
sequences. The clusters with an insufficient number of sequences were discarded before
the discovery, where identification of typical pathways is based on an alignment algorithm
from bioinformatics. Clustering can be performed not only for traces but for events, too. A
two-level clustering approach is proposed in [42] to categorize complex events first and to
group obtained processes after, as well as to distill clinical pathways in real cases. Such
approaches aid the abstraction of undesired details and, therefore, simplify models, but
mostly in an uncontrolled manner.

The automated control of finding a simple and/or precise process model can be
explicitly defined as an optimization problem. For example, Camargo et al. [44] optimized
the accuracy of a business process simulation model discovered by the Split Miner. They
searched for optimal hyper-parameters of the miner to maximize the accuracy measured
using a timed string-edit distance between the original and the one simulated by the model
event logs. However, there is always the trade-off between several quality dimensions [3],
where the most common one is between model complexity and its fitness/precision. Within
integer linear programming, the authors in [35] define the process model optimization
problem mathematically, where a linear constraint is a complexity threshold (a maximum
number of nodes and arcs) and a replayability score aimed to be maximized. They solve
the optimization task with a tabu search algorithm utilizing element frequencies to quickly
identify promising moves. The approach outperforms commercial tool results in terms
of replayability for small and middle complexity (from 1 to 50 nodes). A similar problem
is formulated in [45] but including time-related information in the replayability score of

Algorithms 2023, 16, 57 6 of 29

discovered grid process models. The tabu search with optimized edges is shown to be
more efficient than other methods for a small event diversity. In [46], rule discovery hybrid
particle swarm optimization is proposed to find near-optimal process models. Here, the
simulated annealing is applied on each particle position when it is updated. Additionally,
the authors apply rule discovery to obtain the top particles which meet the criteria and,
therefore, formulate an optimization problem. The proposed method has the best results in
terms of average fitness and number of iterations in comparison with a classical particle
swarm optimization method and a hybrid one. It also has the potential to obtain the
higher comprehensibility performance due to a rule discovery task. A multi-objective
optimization via Pareto optimality is addressed in [47]. The reason for a Pareto front is that
the quality dimensions are mutually non-dominating, and the user can choose the desired
trade-off visually (for three dimensions and less). In [48], the authors propose a modified
genetic algorithm for process discovery, called ProDiGen. It deploys a hierarchical fitness
function to evaluate individuals in a population. The fitness function incorporates both
completeness, precision, and simplicity of a mined model. ProDiGen correctly mined the
original models in most cases; the obtained models are simple, complete, and precise. It has
a better performance than other PM algorithms and has computational times comparable to
Genetic miner’s [50] for balanced and unbalanced logs with different workflow patterns and
levels of noise. We believe, therefore, that objectives clearly formulated as an optimization
task are the best option to automate and control the discovery step.

3. Conceptual Approach
3.1. Basic Idea

The proposed approach is based on the extension of PM techniques with several
procedures, which are illustrated in Figure 1 and discussed in further detail in this section.
Process discovery is followed by complexity and fitness estimation procedures (“1” in
Figure 1). The complexity level is estimated using structural and representative characteris-
tics of the identified process model. The value of fitness is estimated through a comparison
of event log coverage with a particular process model.

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 29

Figure 1. General approach for PM procedures extension.

The estimated values are used to perform optimization within a parametric space for

a process identification algorithm. In general, the optimization problem is a multi-objec-

tive problem where objectives contradict each other in most cases, and higher complexity

corresponds to better fitness.

To introduce higher-level interpretable states, we propose the procedures for meta-

state identification. The meta-states identification (“2” in Figure 1) has various sources of

knowledge available for use during the identification problem. The primary source is a

structural analysis of process maps (“3” in Figure 1) with the identification of cyclic states,

which are often collapsible to a single meta-state. Second, we can exploit the data available

in event logs (event attributes, case parameters, etc.) to identify states of the process. Usu-

ally, the data can be analyzed using data mining techniques. Finally, domain knowledge

can be applied as well to introduce information on states specific to a particular process

or system where the process evolves.

The meta-states identification could be used extensively for analysis and interpreta-

tion of a process model. However, within the presented work, we are focused on the ex-

plicit introduction of meta-states into the process model to bring more expressive power

with lower model complexity.

3.2. Process Discovery Algorithm

In this subsection, we introduce an extended algorithm for process model discovery.

First, it is necessary to provide basic definitions and an overview of the task. Every pro-

cess-aware information system that records run-time behavior has an event log. An event

log is a file that contains information about process execution. Each record is an event with

associated data: a timestamp of its start and completion, an activity and resource that ex-

ecutes this activity, and a process case id (instance) the record belongs to. They are the

minimal items for compiling a log. However, if activities are considered to be atomic, i.e.,

have no duration, the last item is only needed for defining the order of activities and can

be skipped if we know a priori that data are stored according to a timeline. We group an

ordered set of events only containing activity names into cases that represent single pro-

cess runs. This “flat” event log is used as an input for process mining in our discovery

algorithm.

Figure 1. General approach for PM procedures extension.

The estimated values are used to perform optimization within a parametric space for
a process identification algorithm. In general, the optimization problem is a multi-objective

Algorithms 2023, 16, 57 7 of 29

problem where objectives contradict each other in most cases, and higher complexity
corresponds to better fitness.

To introduce higher-level interpretable states, we propose the procedures for meta-
state identification. The meta-states identification (“2” in Figure 1) has various sources
of knowledge available for use during the identification problem. The primary source
is a structural analysis of process maps (“3” in Figure 1) with the identification of cyclic
states, which are often collapsible to a single meta-state. Second, we can exploit the data
available in event logs (event attributes, case parameters, etc.) to identify states of the
process. Usually, the data can be analyzed using data mining techniques. Finally, domain
knowledge can be applied as well to introduce information on states specific to a particular
process or system where the process evolves.

The meta-states identification could be used extensively for analysis and interpretation
of a process model. However, within the presented work, we are focused on the explicit
introduction of meta-states into the process model to bring more expressive power with
lower model complexity.

3.2. Process Discovery Algorithm

In this subsection, we introduce an extended algorithm for process model discovery.
First, it is necessary to provide basic definitions and an overview of the task. Every process-
aware information system that records run-time behavior has an event log. An event
log is a file that contains information about process execution. Each record is an event
with associated data: a timestamp of its start and completion, an activity and resource
that executes this activity, and a process case id (instance) the record belongs to. They
are the minimal items for compiling a log. However, if activities are considered to be
atomic, i.e., have no duration, the last item is only needed for defining the order of activities
and can be skipped if we know a priori that data are stored according to a timeline. We
group an ordered set of events only containing activity names into cases that represent
single process runs. This “flat” event log is used as an input for process mining in our
discovery algorithm.

While an event log is an input, the algorithm’s output is a (business) process model, or a
process map. In our case, a process model represents a formal graphical description of the
actual process flow, i.e., the precedence of events, where nodes are activities, and edges
are ordered relationships between them. In Figure 2, we provide a scheme of the solution
for obtaining such a result, where dashed arrows are optional discovery steps, and main
parameters are listed in callouts.

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 29

While an event log is an input, the algorithm’s output is a (business) process model, or

a process map. In our case, a process model represents a formal graphical description of the

actual process flow, i.e., the precedence of events, where nodes are activities, and edges

are ordered relationships between them. In Figure 2, we provide a scheme of the solution

for obtaining such a result, where dashed arrows are optional discovery steps, and main

parameters are listed in callouts.

Figure 2. Scheme of the algorithm workflow.

The next section presents the precise details of the proposed algorithm implementa-

tion. Steps 1–3 are the basics of the algorithm’s workflow and described in the following

Section 4.1. Within step four, we define an optimization problem in Section 4.2 and pro-

pose an approach to model abstraction by folding significant cycles in Section 4.3.

4. Implementation of the Extended Algorithm

4.1. Model Discovery

The proposed algorithm for discovering process models includes the basics of the

Fuzzy Miner [27], which, in turn, originates from one of the first discovery techniques by

Markov. The main idea is to use the Markov theory of discrete random processes to find

the most probable transitions between events. The fundamental metric is significance,

which can be determined for event classes (i.e., activities) and binary precedence relations

over them (i.e., transitions). Significance is the absolute or case frequency of activities or

transitions that occur in the event flow. It measures the relative importance of the behav-

ior; events or precedence relations that are observed more frequently are deemed more

significant. We use case frequency in conflict resolution, when two events may follow each

other in any order in the event log, and process simplification, i.e., activity and transition

filtering, and absolute frequency for statistics visualization.

The algorithm constructs a directly follows graph (DFG) such as a finite state autom-

aton, but with activities represented in nodes rather than in edges, i.e., Fuzzy map. Alt-

hough this representation has known limitations [51,52], it is more intuitive and under-

standable and can be easily transformed into other notations such as BPMN [32] or Petri

Net [53]. Within the used visual notation, the green node (“start”) indicates the beginning

of the process and shows the total number of cases presented in the log, and the red node

(“end”) is related to a terminal state. The graph’s internal nodes and edges show the ab-

solute frequencies of events and transitions, respectively: the more value, the darker or

thicker the element.

However, fuzzy logic does not guarantee a reachable graph (see example in Figure

3), which is desired to see the complete behaviors of process traces. So, we modify model

Figure 2. Scheme of the algorithm workflow.

Algorithms 2023, 16, 57 8 of 29

The next section presents the precise details of the proposed algorithm implementa-
tion. Steps 1–3 are the basics of the algorithm’s workflow and described in the following
Section 4.1. Within step four, we define an optimization problem in Section 4.2 and propose
an approach to model abstraction by folding significant cycles in Section 4.3.

4. Implementation of the Extended Algorithm
4.1. Model Discovery

The proposed algorithm for discovering process models includes the basics of the
Fuzzy Miner [27], which, in turn, originates from one of the first discovery techniques
by Markov. The main idea is to use the Markov theory of discrete random processes to
find the most probable transitions between events. The fundamental metric is significance,
which can be determined for event classes (i.e., activities) and binary precedence relations
over them (i.e., transitions). Significance is the absolute or case frequency of activities
or transitions that occur in the event flow. It measures the relative importance of the
behavior; events or precedence relations that are observed more frequently are deemed
more significant. We use case frequency in conflict resolution, when two events may
follow each other in any order in the event log, and process simplification, i.e., activity and
transition filtering, and absolute frequency for statistics visualization.

The algorithm constructs a directly follows graph (DFG) such as a finite state automa-
ton, but with activities represented in nodes rather than in edges, i.e., Fuzzy map. Although
this representation has known limitations [51,52], it is more intuitive and understandable
and can be easily transformed into other notations such as BPMN [32] or Petri Net [53].
Within the used visual notation, the green node (“start”) indicates the beginning of the
process and shows the total number of cases presented in the log, and the red node (“end”)
is related to a terminal state. The graph’s internal nodes and edges show the absolute
frequencies of events and transitions, respectively: the more value, the darker or thicker
the element.

However, fuzzy logic does not guarantee a reachable graph (see example in Figure 3),
which is desired to see the complete behaviors of process traces. So, we modify model
construction by performing the depth-first search (DFS) to check whether each node of the
DFG is a descendant of the initial state (“start”) and a predecessor of the terminal state
(“end”). If the model does not match these conditions, we add edges with respect to their
significance to the model until we obtain a reachable graph. This way, we overcome the
possibility of discovering an unsound model (without the option to complete the process).
Despite other DFG limitations [52], it permits cycles, which are crucial in our concept
of meta-states, and is suitable for unstructured and complex processes, which exist in
healthcare, due to constructing models with different levels of details.

We show an example of a process model obtained by the proposed algorithm, adjusted
manually, and resulting in 100% and 5% of activity and transition rates, respectively, in
Figure 4. It means that only activities and transitions with significance more than or equal
to 0.0 and 0.95, respectively, are included in the model. In other words, we aim to see only
the main paths with all event variations. We attribute rates to the model as ra/rt, where ra
is an activity rate, and rt is a transition rate. The process model was discovered from the
event data of a remote monitoring program for patients suffering from hypertension. More
details about this and other datasets and process models for these event logs are given in
Section 6.

Algorithms 2023, 16, 57 9 of 29

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 29

construction by performing the depth-first search (DFS) to check whether each node of

the DFG is a descendant of the initial state (“start”) and a predecessor of the terminal state

(“end”). If the model does not match these conditions, we add edges with respect to their

significance to the model until we obtain a reachable graph. This way, we overcome the

possibility of discovering an unsound model (without the option to complete the process).

Despite other DFG limitations [52], it permits cycles, which are crucial in our concept of

meta-states, and is suitable for unstructured and complex processes, which exist in

healthcare, due to constructing models with different levels of details.

Figure 3. Example of disconnected model obtained by Disco (https://fluxicon.com/disco/, accessed

on 12 November 2022).

We show an example of a process model obtained by the proposed algorithm, ad-

justed manually, and resulting in 100% and 5% of activity and transition rates, respec-

tively, in Figure 4. It means that only activities and transitions with significance more than

or equal to 0.0 and 0.95, respectively, are included in the model. In other words, we aim

to see only the main paths with all event variations. We attribute rates to the model as

𝑟𝑎/𝑟𝑡, where 𝑟𝑎 is an activity rate, and 𝑟𝑡 is a transition rate. The process model was dis-

covered from the event data of a remote monitoring program for patients suffering from

hypertension. More details about this and other datasets and process models for these

event logs are given in Section 6.

Figure 3. Example of disconnected model obtained by Disco (https://fluxicon.com/disco/, accessed
on 12 November 2022).

Algorithms 2023, 16, x FOR PEER REVIEW 10 of 29

Figure 4. Model of the remote monitoring process performed for patients with hypertension.

4.2. Model Optimization

In initial uses of an algorithm, one can change process model detail by tuning activity

and transition rates and move from the simplest model to complex and complete one.

However, it is preferable to obtain a model automatically when it comes to the tool’s adap-

tiveness and massive processing. Therefore, we attempted to apply machine learning for-

malization in PM and defined the problem of discovering an optimal process model au-

tomatically.

Let 𝑝 be the algorithm for discovering a process model from an event log. The set of

traces 𝐿 = ⋃ 𝜎𝑖
𝑁
𝑖=1 is an event log, where 𝜎𝑖 = 〈𝑒1, 𝑒2, … , 𝑒𝑘𝑖

〉 is the 𝑖-th process execution

instance (trace) of the length 𝑘𝑖, and 𝜎𝑖(𝑗) = 𝑒𝑗 is an event from the set of events 𝑋, which

the log can contain, and the log size, therefore, is 𝑙 = ∑ 𝑘𝑖
𝑁
𝑖=1 . An event can be defined as

a set of attributes (activity type, resource type, time stamp, etc.), but here and further we

imply an atomic event log, i.e., each event is an activity. We also assume that activities

within a trace are ordered by the time registering in a system. Let 𝑝(𝐿, 𝜃̅) = 𝑀 =
〈𝑉, 𝐸, 𝑣𝑠𝑡𝑎𝑟𝑡 , 𝑣𝑒𝑛𝑑 , 𝑠𝑖𝑔〉 be a process model, which is a DFG, discovered by the algorithm 𝑝

with parameters 𝜃̅ = (𝜃1, 𝜃2), activity and transition rates, respectively, from the event log

𝐿, where:

• 𝑉 ⊆ 𝑋 is a set of nodes, |𝑉| = 𝑛;

Figure 4. Model of the remote monitoring process performed for patients with hypertension.

https://fluxicon.com/disco/

Algorithms 2023, 16, 57 10 of 29

4.2. Model Optimization

In initial uses of an algorithm, one can change process model detail by tuning ac-
tivity and transition rates and move from the simplest model to complex and complete
one. However, it is preferable to obtain a model automatically when it comes to the
tool’s adaptiveness and massive processing. Therefore, we attempted to apply machine
learning formalization in PM and defined the problem of discovering an optimal process
model automatically.

Let p be the algorithm for discovering a process model from an event log. The set of
traces L = ∪N

i=1σi is an event log, where σi =
〈
e1, e2, . . . , eki

〉
is the i-th process execution

instance (trace) of the length ki, and σi(j) = ej is an event from the set of events X, which the

log can contain, and the log size, therefore, is l =
N
∑

i=1
ki. An event can be defined as a set of

attributes (activity type, resource type, time stamp, etc.), but here and further we imply an
atomic event log, i.e., each event is an activity. We also assume that activities within a trace
are ordered by the time registering in a system. Let p

(
L, θ
)
= M = 〈V, E, vstart, vend, sig〉

be a process model, which is a DFG, discovered by the algorithm p with parameters
θ = (θ1, θ2), activity and transition rates, respectively, from the event log L, where:

• V ⊆ X is a set of nodes, |V| = n;
• E ⊆ V ×V is a set of edges, |E| = m;
• vstart is a “start” (initial) node;
• vend is an “end” (terminal) node;
• sig : X ∪ (X× X)→ (0 , 1] is an activity and transition significance defined as case

frequency, a fraction of traces that contain an activity or transition:

sig(x) =
∑k

j=1 1σj(x)

k
(1)

for an element x, where 1σ(x) is an indicator function that equals 1 if an element x is
contained in a trace σ and equals 0 otherwise. For an activity, it is defined as follows:

1σ(x) =
{

1, ∃i = 1, n : x = σ(i),
0, otherwise;

(2)

and in case of transition:

1σ(x) =
{

1, ∃i = 1, n− 1 : x = 〈σ(i), σ(i + 1)〉,
0, otherwise;

(3)

Let P =
{

p
(

L, θ
)∣∣θ ∈ Θ

}
be the process model space, where Θ is a domain of the

algorithm parameters. Here, we consider θ = 〈ra, rt〉. Thus, Θ = [0; 100]× [0; 100]. One
needs to find an algorithm p ∈ P (more precisely its parameters) that maximizes Q on L:

Q(p, L) = (1− λ) · F + λ · (1− CJ)→ max
θ

, (4)

where

F =
1
|L| ∑

σ∈L

(
1
|σ|∑

|σ|
i=1 zi,n − αδ(σ, s∗)− β

φ(M, σ, s∗)
n

)+

(5)

zi,n is a binary variable equal to 1, if event i is represented by node n, φ is the number of
forced transitions, δ is the event skipping indicator, and s∗ is the subtrace of all events
represented by the process model M [35],

CJ =
J
(

p
(

L, θ
))

J
(

p
(

L, θ100
)) (6)

Algorithms 2023, 16, 57 11 of 29

J
(

p
(

L, θ
))

=
m
n

(7)

and E0 : p
(

L, θ0
)
= 〈V0, E0, vstart, vend, sig〉, θ0 = (0, 0); θ100 = (100, 100).

In the optimization problem (4), an objective function includes fitness (5) and com-
plexity (6) terms where λ is the regularization parameter to weight them. Thus, one can
discover a process model optimized in one of these senses or both.

The representativeness of a process model regarding a log is measured by the
replayability [35,45], also called fitness or fidelity. This metric works fine with flexible
logs with highly diverse and complex behaviors of the traces. It also overcomes DFG issues
with alignments. Replayability is directly related to model complexity (6) and (7): a model
with higher complexity allows for more traces and therefore higher replayability, making
these measures contradictory objectives. A remarkable feature of replayability (5) is that it
is scaled to be a number in [0, 1]. So, it can be combined with the scaled complexity term (6)
in one objective function (4). Here and after, we assume α = 0.5N−1 and β = N−1, where
N is defined as the number of unique activities in the log.

A complexity function could be performed as one of the network complexity
measures [54–56]. In this study, we compare different measures, one of which is the
Shannon entropy. Entropy can be measured across various network invariants [55]. For
the current study, we chose a flattened adjacency matrix as a random variable X with two
possible outcomes (0 or 1) to measure the Shannon entropy H(X):

J : H(X) = −∑n
i=1 p(xi) loga p(xi) (8)

Alternatively, we have introduced several structural complexity measures as follows:

J : Kn =
m

n(n− 1)
(9)

J : R =
1
2
·
(m

M
+

n
N

)
(10)

where N and M are the numbers of unique activities and transitions in the log, and n
and m are the numbers of the activities and (unique) transitions presented in the model,
respectively. The above measures, therefore, explain how many elements were displayed
in the model among theoretical or possible ones. They can also specify model complexity.
However, it may penalize model a lot and shorten process behavior. So, we currently chose
a simple graph measure, an average degree. In a directed graph, it is just the number of
edges divided by the number of nodes:

J : AD =
m
n

(11)

This measure is well suited to our aims: we want to reduce the number of transitions
and conserve only the significant ones, while lengthening paths through the model by
keeping more activities. This way, one may achieve a more transparent, less confusing,
and consistent process model. In Section 5, we present an experiment on complexity
optimization with different measures and show examples of process models automatically
discovered with this approach.

4.3. Discovering Meta-States

In this subsection, we introduce an approach for process model abstraction and
simplification. Simplification of the process models can be done not only by node and
edge filtering, but also by event aggregation. In [27], the authors proposed such model
abstraction by iteratively aggregating highly correlated (in the context sense) but less
significant nodes. However, in some fields, e.g., healthcare, it makes sense to propose a
different method of abstraction. It is very likely that cycles present in the model, and this
can signify distinct process parts from the perspective of for whom the process is performed.

Algorithms 2023, 16, 57 12 of 29

In healthcare, the cycles may represent routine procedures or repeated medical events for
patients, i.e., an objective being in some stage of process execution or a “meta-state”. We
clarify how meta-states are identified in an event log via pseudocode below (Algorithm 1).
We assume a simple cycle to be a meta-state if the probability of its occurrence in the log
exceeds a specified threshold, i.e., a cycle significance, as in the case of activities and their
corresponding relations filtration (see Algorithm 2). One can obtain new knowledge about
process execution by distinguishing the most significant cyclic behavior and exceptions.

Algorithm 1 Searching cycles and counting their frequencies in an event log.

procedure CyclesSearch(Log)
Input: “Flat” event log Log composed of process cases
Output: Set of (simple) cycles cycles found in event log Log, Absolute abs[c] and

case cse[c] frequencies of each cycle c ∈ cycles

cycles ← []
k ← 0
for all cases t ∈ Log do

for all unique activities n ∈ t do
case_cycles ← []
i ← 0
j ← 0
while i < length of t do

if t[i] = n then
case_cycles[j] ← i // Positions of activity n in case t
j ← j + 1

end if
i ← i + 1

end while

i ← 0
while i + 1 < length of case_cycles do

c ← t[from case_cycles[i] to case_cycles[i+1]− 1] // Part of case t that
starts and

ends with activity n
if length of c = number of unique activities a ∈ c then

if c /∈ Cycles then
cycles[k] ← c
abs[c] ← 0
cse[c] ← 0
k← k + 1

end if
abs[c] ← abs[c] + 1
cse[c] ← cse[c] + 1 // if c was not found earlier within a case t

end if
end while

end for
end for
end procedure

Algorithms 2023, 16, 57 13 of 29

Algorithm 2 Identification of significant cycles (meta-states) in an event log.

procedure FindStates(Cycles, CycleFrequencies, NumberOfCases, MetaStateSignificance)
Input: Set of (simple) cycles Cycles found in a process model by DFS;

Case cse[c] ∈ CycleFrequencies frequency of each cycle c ∈ Cycles;
Number of cases NumberOfCases in an event log;
Required significance of cycle MetaStateSignificance to be defined as meta-state

Output: Set of meta-states (significant cycles) MetaStates

for all cycles c ∈ Cycles do
if length of c > 1 then

if cse[c]/NumberOfCases ≥ MetaStateSignificance then
MetaStates ← ADD(c)

end if
end if

end for
end procedure

We propose two types of aggregation. In the first type, nodes included in meta-states
are allowed to be present distinctly in a process model. We call this aggregation “outer”
aggregation. In contrast, “inner” aggregation redirects all relationships of single events to
corresponding meta-states. Here, we obtain different ways of redirecting relations: to all
meta-states that contain such an event or to the most frequent one.

According to notations proposed in the previous subsection, we give a formal description
of model aggregation. Let M = 〈V, E, vstart, vend, sig〉 and M′ = 〈V′, E′, vstart, vend, sig′〉 be
a process model before and after significant cycles folding, respectively, and let us introduce
the following notations:

• Ṽ =
{

ṽ = 〈ṽ1, ṽ2 . . . ṽk〉|
〈
ṽj, ṽj+1

〉
∈ E ∀j = 1, k− 1, ∀k ≤ n, 〈ṽk, ṽ1〉 ∈ E

}
—meta-

states, i.e., significant cycles found in the process model M, and ṽ(i) = ṽi,
• V+ =

{
v ∈ V

∣∣∣∃i v = ṽi, ṽ ∈ Ṽ
}

is a set of meta-state vertices,

• V− = V\V+ is a set of vertices not appearing in meta-states,

• Ẽ ⊆ E∪
(

V × Ṽ
)
∪
(

Ṽ ×V
)

is a set of edges obtained for the event log with collapsed
cycles.

Then, V′ ⊆ V ∪ Ṽ, E′ ⊆ Ẽ for outer aggregation, and V′ ⊆ V− ∪ Ṽ, E′ ⊆
(

V− × Ṽ
)
∪(

Ṽ ×V−
)
⊆ Ẽ after inner joining with updating significance for redirected edges

as follows:

sig′(〈u, v〉) =
∑k

j=1 ∨q:q=v(i)

(
r∗(q, v) ∧ 1σj(〈u, q〉)

)
k

∀u ∈ V−, v ∈ Ṽ (12)

sig′(〈u, v〉) =
∑k

j=1 ∨q:q=u(i)

(
r∗(q, u) ∧ 1σj(〈q, v〉)

)
k

∀u ∈ Ṽ, v ∈ V− (13)

where r∗ is defined for the filtering aggregation function that is defined in two forms:

rall(v, ṽ) =
{

1, ∃i : v = ṽ(i),
0, otherwise,

∀v ∈ V+, ṽ ∈ Ṽ (14)

r f req(v, ṽ) =


1, argmax

v′ ∈ Ṽ
∃i : v = v′(i)

sig(v′) = ṽ,

0, otherwise,

∀v ∈ V+, ṽ ∈ Ṽ (15)

Algorithms 2023, 16, 57 14 of 29

Formulas (12) and (13) depict how we “hide” transitions between events, one of which
meta-states absorb, i.e., recalculate their frequencies according to r∗ (14) and (15). After
meta-states discovery, the event log is rebuilt, as in the example illustrated in Figure 5. The
activities included in meta-states are not considered when we mine a process from the event
log in the case of inner joining. Their precedence relations are redirected to corresponding
meta-states determined by r∗. We show an example of how the proposed technique can
transform a model in Figure 6: (a) the initial process model has two simple cycles (BC
and BCD); (b) if we assume they appeared in the event log in more than half of the cases,
they are significant and may appear in the model as nodes along with the activities which
compose these cycles in the case of outer aggregation; (c) performing inner joining with rall
hides activity C, which is an element of the significant cycles, and incorporates frequencies
of transitions associated with C (A→ C) with frequencies of transitions to or from all
meta-states containing C (A→ BC, A→ BCD); and (d) inner joining with r f req is similar
to the previous case but recounts frequencies of only the most significant meta-states
(e.g., BCD). It is worth noting that after the introduction of meta-states, the frequencies are
re-calculated for states and meta-states. This may cause the appearance of events unseen in
process models without meta-states.

Algorithms 2023, 16, x FOR PEER REVIEW 14 of 29

According to notations proposed in the previous subsection, we give a formal de-

scription of model aggregation. Let 𝑀 = 〈𝑉, 𝐸, 𝑣𝑠𝑡𝑎𝑟𝑡 , 𝑣𝑒𝑛𝑑 , 𝑠𝑖𝑔〉 and 𝑀′ =
〈𝑉′, 𝐸′, 𝑣𝑠𝑡𝑎𝑟𝑡 , 𝑣𝑒𝑛𝑑 , 𝑠𝑖𝑔′〉 be a process model before and after significant cycles folding, re-

spectively, and let us introduce the following notations:

• 𝑉̃ = {𝑣̃ = 〈𝑣̃1, 𝑣̃2 … 𝑣̃𝑘〉|〈𝑣̃𝑗, 𝑣̃𝑗+1〉 ∈ 𝐸 ∀𝑗 = 1, 𝑘 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , ∀𝑘 ≤ 𝑛, 〈𝑣̃𝑘, 𝑣̃1〉 ∈ 𝐸} —meta-states,

i.e., significant cycles found in the process model 𝑀, and 𝑣̃(𝑖) = 𝑣̃𝑖 ,

• 𝑉+ = {𝑣 ∈ 𝑉|∃𝑖 𝑣 = 𝑣̃𝑖, 𝑣̃ ∈ 𝑉̃} is a set of meta-state vertices,

• 𝑉− = 𝑉\𝑉+ is a set of vertices not appearing in meta-states,

• 𝐸̃ ⊆ 𝐸 ∪ (𝑉 × 𝑉̃) ∪ (𝑉̃ × 𝑉) is a set of edges obtained for the event log with collapsed

cycles.

Then, 𝑉′ ⊆ 𝑉⋃𝑉̃ , 𝐸′ ⊆ 𝐸̃ for outer aggregation, and 𝑉′ ⊆ 𝑉−⋃𝑉̃ , 𝐸′ ⊆ (𝑉− × 𝑉̃) ∪

(𝑉̃ × 𝑉−) ⊆ 𝐸̃ after inner joining with updating significance for redirected edges as fol-

lows:

𝑠𝑖𝑔′(〈𝑢, 𝑣〉) =
∑ ⋁ (𝑟∗(𝑞,𝑣)∧1𝜎𝑗

(〈𝑢,𝑞〉))𝑞:𝑞=𝑣(𝑖)
𝑘
𝑗=1

𝑘
 ∀𝑢 ∈ 𝑉−, 𝑣 ∈ 𝑉̃

(12)

𝑠𝑖𝑔′(〈𝑢, 𝑣〉) =
∑ ⋁ (𝑟∗(𝑞,𝑢)∧1𝜎𝑗

(〈𝑞,𝑣〉))𝑞:𝑞=𝑢(𝑖)
𝑘
𝑗=1

𝑘
 ∀𝑢 ∈ 𝑉̃, 𝑣 ∈ 𝑉−

(13)

where 𝑟∗ is defined for the filtering aggregation function that is defined in two forms:

𝑟𝑎𝑙𝑙(𝑣, 𝑣̃) = {
1, ∃𝑖: 𝑣 = 𝑣̃(𝑖),
0, otherwise,

∀𝑣 ∈ 𝑉+, 𝑣̃ ∈ 𝑉̃ (14)

𝑟𝑓𝑟𝑒𝑞(𝑣, 𝑣̃) = {

1, argmax
𝑣′∈𝑉

∃𝑖:𝑣 =𝑣′(𝑖)

𝑠𝑖𝑔(𝑣′) = 𝑣̃,

0, otherwise,

∀𝑣 ∈ 𝑉+, 𝑣̃ ∈ 𝑉̃ (15)

Formulas (12) and (13) depict how we “hide” transitions between events, one of

which meta-states absorb, i.e., recalculate their frequencies according to 𝑟∗ (14) and (15).

After meta-states discovery, the event log is rebuilt, as in the example illustrated in Figure

5. The activities included in meta-states are not considered when we mine a process from

the event log in the case of inner joining. Their precedence relations are redirected to cor-

responding meta-states determined by 𝑟∗. We show an example of how the proposed tech-

nique can transform a model in Figure 6: (a) the initial process model has two simple cy-

cles (BC and BCD); (b) if we assume they appeared in the event log in more than half of

the cases, they are significant and may appear in the model as nodes along with the activ-

ities which compose these cycles in the case of outer aggregation; (c) performing inner

joining with 𝑟𝑎𝑙𝑙 hides activity C, which is an element of the significant cycles, and incor-

porates frequencies of transitions associated with C (A→C) with frequencies of transitions

to or from all meta-states containing C (A→BC, A→BCD); and (d) inner joining with 𝑟𝑓𝑟𝑒𝑞

is similar to the previous case but recounts frequencies of only the most significant meta-

states (e.g., BCD). It is worth noting that after the introduction of meta-states, the frequen-

cies are re-calculated for states and meta-states. This may cause the appearance of events

unseen in process models without meta-states.

Figure 5. Cycles collapsing in an event log. Activities colored with blue are present in meta-states

but do not compose them in the log: they will not be included in the model in case of inner aggre-

gation.

Figure 5. Cycles collapsing in an event log. Activities colored with blue are present in meta-states but
do not compose them in the log: they will not be included in the model in case of inner aggregation.

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 29

Figure 6. Possible rebuilding of a process map with cycles: (a) initial map; (b) outer joining; (c) inner

joining with 𝑟𝑎𝑙𝑙; (d) inner joining with 𝑟𝑓𝑟𝑒𝑞 .

4.4. Software Implementation

To implement the proposed algorithms, we developed a Python library ProFIT (Pro-

cess Flow Investigation Tool) for process mining with a higher degree of automation in

complexity control. The library is considered as an extendable software solution which

can be applied in various contexts and problem domains. We implemented “Observer”

OOP pattern in the main class ProcessMap, where “observers” are TransitionMatrix, Graph,

and Renderer that are updated when data or parameters were changed. These three classes

store formal information about process structure, i.e., appropriate order of event relations

and transition probabilities, sets of nodes and edges in a graph, sets of elements, and their

arrangement in 2D space. With knowledge discovered from an event log by a single

method of TransitionMatrix, we perform process mining in Graph, where the main algo-

rithm and approaches are employed. Renderer object transforms an obtained model from

graph notation into DOT language and then visualizes it through the Graphviz

(https://pypi.org/project/graphviz/, accessed on 12 November 2022) module for Python.

An architecture of the code represented in the UML class diagram is shown in Figure 7.

Figure 7. UML class diagram for the main classes of ProFIT library.

To start working with a module, it is enough to pass a path to a directory with a log

file as input in the set_log method. The module will produce an optimal model with de-

fault parameters. One can also tune model details “by hand” via the set_rates method that

changes the activity and transition rates as well as change parameters via the set_params

method, e.g., enable aggregation or optimization. Exploring data stored in the “observers”

is possible by calling corresponding get-methods and visualizing a process map by calling

Figure 6. Possible rebuilding of a process map with cycles: (a) initial map; (b) outer joining; (c) inner
joining with rall ; (d) inner joining with r f req.

4.4. Software Implementation

To implement the proposed algorithms, we developed a Python library ProFIT (Pro-
cess Flow Investigation Tool) for process mining with a higher degree of automation in
complexity control. The library is considered as an extendable software solution which
can be applied in various contexts and problem domains. We implemented “Observer”
OOP pattern in the main class ProcessMap, where “observers” are TransitionMatrix, Graph,
and Renderer that are updated when data or parameters were changed. These three classes
store formal information about process structure, i.e., appropriate order of event rela-
tions and transition probabilities, sets of nodes and edges in a graph, sets of elements,
and their arrangement in 2D space. With knowledge discovered from an event log by a
single method of TransitionMatrix, we perform process mining in Graph, where the main
algorithm and approaches are employed. Renderer object transforms an obtained model
from graph notation into DOT language and then visualizes it through the Graphviz

Algorithms 2023, 16, 57 15 of 29

(https://pypi.org/project/graphviz/, accessed on 12 November 2022) module for Python.
An architecture of the code represented in the UML class diagram is shown in Figure 7.

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 29

Figure 6. Possible rebuilding of a process map with cycles: (a) initial map; (b) outer joining; (c) inner

joining with 𝑟𝑎𝑙𝑙; (d) inner joining with 𝑟𝑓𝑟𝑒𝑞 .

4.4. Software Implementation

To implement the proposed algorithms, we developed a Python library ProFIT (Pro-

cess Flow Investigation Tool) for process mining with a higher degree of automation in

complexity control. The library is considered as an extendable software solution which

can be applied in various contexts and problem domains. We implemented “Observer”

OOP pattern in the main class ProcessMap, where “observers” are TransitionMatrix, Graph,

and Renderer that are updated when data or parameters were changed. These three classes

store formal information about process structure, i.e., appropriate order of event relations

and transition probabilities, sets of nodes and edges in a graph, sets of elements, and their

arrangement in 2D space. With knowledge discovered from an event log by a single

method of TransitionMatrix, we perform process mining in Graph, where the main algo-

rithm and approaches are employed. Renderer object transforms an obtained model from

graph notation into DOT language and then visualizes it through the Graphviz

(https://pypi.org/project/graphviz/, accessed on 12 November 2022) module for Python.

An architecture of the code represented in the UML class diagram is shown in Figure 7.

Figure 7. UML class diagram for the main classes of ProFIT library.

To start working with a module, it is enough to pass a path to a directory with a log

file as input in the set_log method. The module will produce an optimal model with de-

fault parameters. One can also tune model details “by hand” via the set_rates method that

changes the activity and transition rates as well as change parameters via the set_params

method, e.g., enable aggregation or optimization. Exploring data stored in the “observers”

is possible by calling corresponding get-methods and visualizing a process map by calling

Figure 7. UML class diagram for the main classes of ProFIT library.

To start working with a module, it is enough to pass a path to a directory with a
log file as input in the set_log method. The module will produce an optimal model with
default parameters. One can also tune model details “by hand” via the set_rates method that
changes the activity and transition rates as well as change parameters via the set_params
method, e.g., enable aggregation or optimization. Exploring data stored in the “observers”
is possible by calling corresponding get-methods and visualizing a process map by calling
the render method. You can find more details and code examples in the project repository at
Github (https://github.com/itmo-escience/ProFIT, accessed on 12 November 2022).

5. Experimental Study
5.1. Datasets

We consider two cases of process model discovery in the current study, on which
the proposed solution was applied and validated. The first process to discover is remote
monitoring of patients suffering from arterial hypertension provided by PMT Online (https:
//pmtonline.ru/ (in Russian), accessed on 12 November 2022) (a company specializing in
the development of medical information systems and telemedicine systems). The second
process is the daily activities of medical personnel in the Almazov center (http://www.
almazovcentre.ru/?lang=en, accessed on 12 November 2022) in Saint Petersburg, one of the
leading cardiological centers in Russia. These cases in healthcare seem to be much better
for exploring complexity because healthcare processes are highly diverse and uncertain on
multiple levels of implementation. We present a summary of all datasets in Table 2 and
give a detailed description below.

First, we applied the proposed discovery technique to the monitoring event log
consisting of 35,611 events, 272 cases corresponding to different patients, and 18 types of
activities performed by operators, physicians, and nurses during monitoring of patients
with arterial hypertension all over Russia within a telemedical system developed by PMT
Online. We combined activity labels with corresponding resources to reveal additional
role interactions. If the same activities performed by different workers are aggregated, it
is similar to clustering events, which are highly correlated in context sense. The remote
monitoring program for patients with hypertension is as follows: the patients measure
their blood pressure at home on a regular basis, and each record made by a toolkit is
transferred to a server, where data are then processed. There are several clinical events for

https://pypi.org/project/graphviz/
https://github.com/itmo-escience/ProFIT
https://pmtonline.ru/
https://pmtonline.ru/
http://www.almazovcentre.ru/?lang=en
http://www.almazovcentre.ru/?lang=en

Algorithms 2023, 16, 57 16 of 29

medical staff that measurements may trigger. The main ones are “Red zone” and “Yellow
zone” that signify exceeding critical (emergency instance) and target (urgent instance)
levels of blood pressure, respectively. These events have to be processed by operators and
doctors, which may take some actions according to a scenario, e.g., contacting a patient by
appointment or instantly. Usually, the “Red zone” events occur for patients that do not have
an appropriate treatment plan yet. When the health state is normalized with medications,
the “Yellow zone” appears as opposed to a “Red zone”, or it is possible for the patient to be
transferred to a therapy control program to maintain blood pressure levels. There are also
non-clinical events such as “New med. program” when a patient is registered for remote
care, “Meas. missing” when data are not received by the server, etc. Ideally, when target
levels are achieved, and the kit is returned to the monitoring provider (as well as events),
the program comes to an end with the “Monitoring completed” event.

Table 2. Datasets summary.

Monitoring
Process

Nurse
Workflow

Physician
Workflow

Num. of cases 272 165 43

Event classes Clinical
Non-clinical

Lab tests and Follow-up
Triage duties

Appointments
COVID-19 treatment

Num. of unique events 18 19 29

Total num. of events 35,611 1042 1077

Case length

Max 674 33 61

Min 3 1 1

Mean 131 6 25

Record duration 355 days 454 days 377 days

A more challenging case study is discovering regular daily activities (workflow) of
doctors and nurses from a not-process-aware hospital information system. Our colleagues
from the Almazov National Medical Research Centre provided us with an anonymized
database with patient electronic health records covering COVID-19 treatment cases in
their facility from March 2020 to June 2021. The dataset is a collection of fragmented
medical records from patient histories including patient id, event id, event description, and
associated record section name, timestamp, specialist name and type, department, record
status, and supplementary information as a semi-structured text. We created an event
log from the raw data source following event log imperfection patterns [21]. They were
form-based event capture, distorted label, collateral events, homonymous label, etc. From
the obtained event log, we picked one doctor and one nurse instance of process realizations.
Therefore, we obtained two event logs where process case was defined by patient id.

5.2. Complexity Optimization

We aimed to investigate several measures of complexity and to make a comparison
across the event logs and types of cycles folding. In this study, we considered four measures,
such as average degree, entropy, and two additional ones that we empirically derived in
Section 4.2.

Measures (9) and (10) are structural. They indicate the relative size of the model,
i.e., the ratio of the number of elements in the model and the number of possible or
theoretical ones. The first is the number of edges presented in the model divided by the
number of edges of a corresponding complete directed graph. This way, we can judge
how close the graph structure is to having all pairs of relations, which complicates its
understanding. A complete graph does not imply loops, so, in this formula, we do not
account for them in the number of edges even though they present in the model. The last

Algorithms 2023, 16, 57 17 of 29

measure, (10), is the equally weighted sum of the activities and transitions ratios. “Start”
and “end” events are not included in the set of nodes for this measure because they do not
present in the log activities and are just auxiliary. Accordingly, in- and upcoming relations
for the initial and terminal nodes are not included in the set of edges.

We plotted landscapes for each of the complexity measures considered. The measures
visualize the complexity value and its relationships with activity and transition rates that
are basic options in our algorithm to regulate the process model completeness. Process
models in the area near the rate limits are mostly useless due to either very high complexity
(with very high ra and rt) or the reduction of almost all significant activities in the model
(with very low ra and rt). We also revealed that there are no meta-states for the event
log of nurse workflow. So, only the results for two event logs of the monitoring program
and physician workflow are discussed further. A summary of cycles found in the models
is given in Table 3. It should be pointed out that “start” and “end” events and relations
associated with them are accounted for in the number of model elements. We also want to
highlight that the maximum and the minimum numbers of cycles and meta-states are not
always for the boundary levels, and the mean values are rounded down.

Table 3. Cycles and meta-states found in the model.

Monitoring Process Nurse Workflow Physician Workflow

Num. of elements
(activities/transitions)

Upper boundary
(100/100) 20/176 21/69 31/139

Lower boundary (0/0) 4/4 4/3 3/2

Total num. of cycles

Max 498 3 107

Min 1 0 0

Mean 102 0 18

Num. of significant cycles

Max 10 0 1

Min 1 0 0

Mean 7 0 1

We also provide and investigate fitness and complexity landscapes across the con-
sidered measures and event logs. At first sight, they may seem monotonic. However,
intricate patterns in behaviors of real processes involve irregularities in the landscapes that
are amplified with the presence of meta-states in the model. Nevertheless, we can still
address the optimization problem within such conditions. The results of process model
optimization are shown in Figure 8, where a red marker is plotted to indicate optimal rates.
One can see that all complexity measures can facilitate decreasing the transition rate (as
the optimal value is very close to zero when it concerns the transition rate), which directly
affects the ability to comprehend a model effortlessly. Meanwhile, H and Kn allowed the
maximum activity rate to be optimal in all cases. This is not appropriate if there are too
many activities and highly varying process behaviors.

The complexity landscape of R has a stepped form (Figure 9) due to a filtration
principle: the more rate values, the more model elements. When we performed “outer”
aggregation, the model complexity increased because extra nodes were added as meta-
states. Other types of aggregation hide all stand-alone events which compose significant
cycles. That is why we observe lower complexity, especially where the maximum number
of significant cycles is obtained. This applies in all proposed measures generally. Other
complexity landscapes (Figures 10–12) are rather not steppe-like, and the measures depend
mostly on the transition rate. AD and Kn are directly related to the number of edges and
inversely related to the number of nodes, which makes it possible to lengthen paths, leaving
them simple to track. This is what we aimed to achieve: to not “cut off” the model and
make it simpler to understand. As mentioned above, the average degree of a directed graph

Algorithms 2023, 16, 57 18 of 29

is just the ratio of the number of edges and the number of nodes. It seems that AD and
Kn should have similar landscapes but with the first not being normalized and the second
being penalized a lot for more activities in the model. However, there are some similarities
in the forms of Kn and entropy landscapes, which is an interesting observation. Indeed,
the number of occurrences of Outcome 1 in the adjacency matrix is equal to the number
of edges in the graph, and its probability is the number of edges divided by the number
of nodes squared, almost as for Kn. However, there may be processes with all possible
relationships of events. In this case, a complete process model will have an entropy of zero
and a complete graph ratio of one.

Algorithms 2023, 16, x FOR PEER REVIEW 18 of 29

Num. of significant cy-

cles

Min 1 0 0

Mean 7 0 1

We also provide and investigate fitness and complexity landscapes across the con-

sidered measures and event logs. At first sight, they may seem monotonic. However, in-

tricate patterns in behaviors of real processes involve irregularities in the landscapes that

are amplified with the presence of meta-states in the model. Nevertheless, we can still

address the optimization problem within such conditions. The results of process model

optimization are shown in Figure 8, where a red marker is plotted to indicate optimal

rates. One can see that all complexity measures can facilitate decreasing the transition rate

(as the optimal value is very close to zero when it concerns the transition rate), which

directly affects the ability to comprehend a model effortlessly. Meanwhile, 𝐻 and 𝐾𝑛 al-

lowed the maximum activity rate to be optimal in all cases. This is not appropriate if there

are too many activities and highly varying process behaviors.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. Contour plots of target function (4) for monitoring (a–d), physician (e–h), and nurse (i–l)

event logs with complexity defined as 𝐴𝐷 (a,e,i), 𝐻 (b,f,j), 𝐾𝑛 (c,g,k), and 𝑅 (d,h,l); 𝜆 = 0.6.

The complexity landscape of 𝑅 has a stepped form (Figure 9) due to a filtration prin-

ciple: the more rate values, the more model elements. When we performed “outer” aggre-

gation, the model complexity increased because extra nodes were added as meta-states.

Other types of aggregation hide all stand-alone events which compose significant cycles.

That is why we observe lower complexity, especially where the maximum number of sig-

nificant cycles is obtained. This applies in all proposed measures generally. Other com-

plexity landscapes (Figures 10–12) are rather not steppe-like, and the measures depend

mostly on the transition rate. 𝐴𝐷 and 𝐾𝑛 are directly related to the number of edges and

Figure 8. Contour plots of target function (4) for monitoring (a–d), physician (e–h), and nurse (i–l)
event logs with complexity defined as AD (a,e,i), H (b,f,j), Kn (c,g,k), and R (d,h,l); λ = 0.6.

In the remainder of this section, we give the results of process models optimization
with CR in Table 4 and a summary across all proposed complexity measures in Table 5. We
consider 50/50 models as a baseline of comparison with optimal ones. These models are
neither good nor bad, so we aim to see whether performing optimization and aggregation
may give odds for better results. We do not categorize process models as right or wrong,
but rather compare them on appropriateness for describing and comprehending the process.
In our understanding, excessively large process models, as well ones that are too small, are
not appropriate. We have mentioned the model size influences the ability to understand
it easily enough. Large process models cause cognitive difficulties for both analysts and
common users, yet a model with short paths of process execution may not reflect complete
process behaviors. In this regard, we succeed in discovering meaningful and intuitive
process models (Table 4). The optimization results using other complexity measures are

Algorithms 2023, 16, 57 19 of 29

shown in Table 5, and some examples of the corresponding process models mined are in
the appendix.

Algorithms 2023, 16, x FOR PEER REVIEW 19 of 29

inversely related to the number of nodes, which makes it possible to lengthen paths, leav-

ing them simple to track. This is what we aimed to achieve: to not “cut off” the model and

make it simpler to understand. As mentioned above, the average degree of a directed

graph is just the ratio of the number of edges and the number of nodes. It seems that 𝐴𝐷

and 𝐾𝑛 should have similar landscapes but with the first not being normalized and the

second being penalized a lot for more activities in the model. However, there are some

similarities in the forms of 𝐾𝑛 and entropy landscapes, which is an interesting observa-

tion. Indeed, the number of occurrences of Outcome 1 in the adjacency matrix is equal to

the number of edges in the graph, and its probability is the number of edges divided by

the number of nodes squared, almost as for 𝐾𝑛. However, there may be processes with all

possible relationships of events. In this case, a complete process model will have an en-

tropy of zero and a complete graph ratio of one.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Complexity landscapes of 𝑅 for models of the monitoring program (a–d) and physician

workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with 𝑟𝑎𝑙𝑙 (c,g), or inner

joining with 𝑟𝑓𝑟𝑒𝑞 (d,h).

(a) (b) (c) (d)

Figure 9. Complexity landscapes of R for models of the monitoring program (a–d) and physician
workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with rall (c,g), or inner
joining with r f req (d,h).

Algorithms 2023, 16, x FOR PEER REVIEW 20 of 30

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Complexity landscapes of ܦܣ for models of the monitoring program (a–d) and physician
workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with ݎ௔௟௟ (c,g), or inner
joining with ݎ௙௥௘௤ (d,h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Complexity landscapes of ܭ௡ for models of the monitoring program (a–d) and physician
workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with ݎ௔௟௟ (c,g), or inner
joining with ݎ௙௥௘௤ (d,h).

Figure 10. Complexity landscapes of AD for models of the monitoring program (a–d) and physician
workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with rall (c,g), or inner
joining with r f req (d,h).

Algorithms 2023, 16, 57 20 of 29

Algorithms 2023, 16, x FOR PEER REVIEW 20 of 29

(e) (f) (g) (h)

Figure 10. Complexity landscapes of 𝐴𝐷 for models of the monitoring program (a–d) and physician

workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with 𝑟𝑎𝑙𝑙 (c,g), or inner

joining with 𝑟𝑓𝑟𝑒𝑞 (d,h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Complexity landscapes of 𝐾𝑛 for models of the monitoring program (a–d) and physician

workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with 𝑟𝑎𝑙𝑙 (c,g), or inner

joining with 𝑟𝑓𝑟𝑒𝑞 (d,h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Complexity landscapes of 𝐻 for models of the monitoring program (a–d) and physician

workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with 𝑟𝑎𝑙𝑙 (c,g), or inner

joining with 𝑟𝑓𝑟𝑒𝑞 (d,h).

Figure 11. Complexity landscapes of Kn for models of the monitoring program (a–d) and physician
workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with rall (c,g), or inner
joining with r f req (d,h).

Algorithms 2023, 16, x FOR PEER REVIEW 20 of 29

(e) (f) (g) (h)

Figure 10. Complexity landscapes of 𝐴𝐷 for models of the monitoring program (a–d) and physician

workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with 𝑟𝑎𝑙𝑙 (c,g), or inner

joining with 𝑟𝑓𝑟𝑒𝑞 (d,h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Complexity landscapes of 𝐾𝑛 for models of the monitoring program (a–d) and physician

workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with 𝑟𝑎𝑙𝑙 (c,g), or inner

joining with 𝑟𝑓𝑟𝑒𝑞 (d,h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Complexity landscapes of 𝐻 for models of the monitoring program (a–d) and physician

workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with 𝑟𝑎𝑙𝑙 (c,g), or inner

joining with 𝑟𝑓𝑟𝑒𝑞 (d,h).

Figure 12. Complexity landscapes of H for models of the monitoring program (a–d) and physician
workflow (e–h) with no aggregation (a,e), outer joining (b,f), inner joining with rall (c,g), or inner
joining with r f req (d,h).

Algorithms 2023, 16, 57 21 of 29

Table 4. Process models optimization.

Monitoring Process Nurse Workflow Physician Workflow

N
o

op
ti

m
iz

at
io

n

Algorithms 2023, 16, x FOR PEER REVIEW 21 of 29

In the remainder of this section, we give the results of process models optimization

with 𝐶𝑅 in Table 4 and a summary across all proposed complexity measures in Table 5.

We consider 50/50 models as a baseline of comparison with optimal ones. These models

are neither good nor bad, so we aim to see whether performing optimization and aggre-

gation may give odds for better results. We do not categorize process models as right or

wrong, but rather compare them on appropriateness for describing and comprehending

the process. In our understanding, excessively large process models, as well ones that are

too small, are not appropriate. We have mentioned the model size influences the ability

to understand it easily enough. Large process models cause cognitive difficulties for both

analysts and common users, yet a model with short paths of process execution may not

reflect complete process behaviors. In this regard, we succeed in discovering meaningful

and intuitive process models (Table 4). The optimization results using other complexity

measures are shown in Table 5, and some examples of the corresponding process models

mined are in the appendix.

We recall that the aggregation step follows the optimization in the algorithm’s work-

flow (Figure 2), i.e., models with meta-states are obtained within fixed optimal parameters

(𝑟𝑎 and 𝑟𝑡) found before. We additionally defined how fitness is calculated for the aggre-

gated models: if (𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝑉−, 𝑣 ∈ 𝑉̃, then we add (𝑢, 𝑣𝑖), ∀𝑣𝑖 in 𝑣, and all transi-

tions composing 𝑣 to the list of edges “presenting” in the model. Other cases ((𝑣, 𝑢) and

(𝑣, 𝑣′), 𝑣′ ∈ 𝑉̃) are treated similarly. This was carried out to demonstrate the quantified

results for all models that may be discovered across different complexity measures, ag-

gregation types, and event data. This way, one can obtain better insight into the compre-

hension difficulty and precision of the discovered models via numerical comparison in

addition to a visual assessment.

Table 4. Process models optimization.

 Monitoring Process Nurse Workflow Physician Workflow

N
o

 o
p

ti
m

iz
at

io
n

Algorithms 2023, 16, x FOR PEER REVIEW 21 of 29

In the remainder of this section, we give the results of process models optimization

with 𝐶𝑅 in Table 4 and a summary across all proposed complexity measures in Table 5.

We consider 50/50 models as a baseline of comparison with optimal ones. These models

are neither good nor bad, so we aim to see whether performing optimization and aggre-

gation may give odds for better results. We do not categorize process models as right or

wrong, but rather compare them on appropriateness for describing and comprehending

the process. In our understanding, excessively large process models, as well ones that are

too small, are not appropriate. We have mentioned the model size influences the ability

to understand it easily enough. Large process models cause cognitive difficulties for both

analysts and common users, yet a model with short paths of process execution may not

reflect complete process behaviors. In this regard, we succeed in discovering meaningful

and intuitive process models (Table 4). The optimization results using other complexity

measures are shown in Table 5, and some examples of the corresponding process models

mined are in the appendix.

We recall that the aggregation step follows the optimization in the algorithm’s work-

flow (Figure 2), i.e., models with meta-states are obtained within fixed optimal parameters

(𝑟𝑎 and 𝑟𝑡) found before. We additionally defined how fitness is calculated for the aggre-

gated models: if (𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝑉−, 𝑣 ∈ 𝑉̃, then we add (𝑢, 𝑣𝑖), ∀𝑣𝑖 in 𝑣, and all transi-

tions composing 𝑣 to the list of edges “presenting” in the model. Other cases ((𝑣, 𝑢) and

(𝑣, 𝑣′), 𝑣′ ∈ 𝑉̃) are treated similarly. This was carried out to demonstrate the quantified

results for all models that may be discovered across different complexity measures, ag-

gregation types, and event data. This way, one can obtain better insight into the compre-

hension difficulty and precision of the discovered models via numerical comparison in

addition to a visual assessment.

Table 4. Process models optimization.

 Monitoring Process Nurse Workflow Physician Workflow

N
o

 o
p

ti
m

iz
at

io
n

Algorithms 2023, 16, x FOR PEER REVIEW 21 of 29

In the remainder of this section, we give the results of process models optimization

with 𝐶𝑅 in Table 4 and a summary across all proposed complexity measures in Table 5.

We consider 50/50 models as a baseline of comparison with optimal ones. These models

are neither good nor bad, so we aim to see whether performing optimization and aggre-

gation may give odds for better results. We do not categorize process models as right or

wrong, but rather compare them on appropriateness for describing and comprehending

the process. In our understanding, excessively large process models, as well ones that are

too small, are not appropriate. We have mentioned the model size influences the ability

to understand it easily enough. Large process models cause cognitive difficulties for both

analysts and common users, yet a model with short paths of process execution may not

reflect complete process behaviors. In this regard, we succeed in discovering meaningful

and intuitive process models (Table 4). The optimization results using other complexity

measures are shown in Table 5, and some examples of the corresponding process models

mined are in the appendix.

We recall that the aggregation step follows the optimization in the algorithm’s work-

flow (Figure 2), i.e., models with meta-states are obtained within fixed optimal parameters

(𝑟𝑎 and 𝑟𝑡) found before. We additionally defined how fitness is calculated for the aggre-

gated models: if (𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝑉−, 𝑣 ∈ 𝑉̃, then we add (𝑢, 𝑣𝑖), ∀𝑣𝑖 in 𝑣, and all transi-

tions composing 𝑣 to the list of edges “presenting” in the model. Other cases ((𝑣, 𝑢) and

(𝑣, 𝑣′), 𝑣′ ∈ 𝑉̃) are treated similarly. This was carried out to demonstrate the quantified

results for all models that may be discovered across different complexity measures, ag-

gregation types, and event data. This way, one can obtain better insight into the compre-

hension difficulty and precision of the discovered models via numerical comparison in

addition to a visual assessment.

Table 4. Process models optimization.

Monitoring Process Nurse Workflow

N
o

 o
p

ti
m

iz
at

io
n

O
pt

im
iz

at
io

n,
no

ag
gr

eg
at

io
n

Algorithms 2023, 16, x FOR PEER REVIEW 22 of 29

O
p

ti
m

iz
at

io
n

, n
o

 a
g

g
re

g
at

io
n

O

p
ti

m
iz

at
i

b
es

t
ag

g
re

g
at

io
n

Algorithms 2023, 16, x FOR PEER REVIEW 22 of 29

O
p

ti
m

iz
at

io
n

, n
o

 a
g

g
re

g
at

io
n

O

p
ti

m
iz

at
i

b
es

t
ag

g
re

g
at

io
n

Algorithms 2023, 16, x FOR PEER REVIEW 22 of 29

O
p

ti
m

iz
at

io
n

, n
o

 a
g

g
re

g
at

io
n

O

p
ti

m
iz

at
i

b
es

t
ag

g
re

g
at

io
n

Algorithms 2023, 16, 57 22 of 29

Table 4. Cont.

Monitoring Process Nurse Workflow Physician Workflow

O
pt

im
iz

at
io

n,
be

st
ag

gr
eg

at
io

n

Algorithms 2023, 16, x FOR PEER REVIEW 22 of 29

O
p

ti
m

iz
at

io
n

, n
o

 a
g

g
re

g
at

io
n

O

p
ti

m
iz

at
i

b
es

t
ag

g
re

g
at

io
n

Algorithms 2023, 16, x FOR PEER REVIEW 22 of 29

O
p

ti
m

iz
at

io
n

, n
o

 a
g

g
re

g
at

io
n

O

p
ti

m
iz

at
i

b
es

t
ag

g
re

g
at

io
n

Algorithms 2023, 16, x FOR PEER REVIEW 22 of 29

O
p

ti
m

iz
at

io
n

, n
o

 a
g

g
re

g
at

io
n

O

p
ti

m
iz

at
i

b
es

t
ag

g
re

g
at

io
n

We recall that the aggregation step follows the optimization in the algorithm’s work-
flow (Figure 2), i.e., models with meta-states are obtained within fixed optimal parameters
(ra and rt) found before. We additionally defined how fitness is calculated for the aggre-
gated models: if (u, v) ∈ E, u ∈ V−, v ∈ Ṽ, then we add (u, vi), ∀vi in v, and all transitions
composing v to the list of edges “presenting” in the model. Other cases ((v, u) and (v, v′),
v′ ∈ Ṽ) are treated similarly. This was carried out to demonstrate the quantified results
for all models that may be discovered across different complexity measures, aggregation
types, and event data. This way, one can obtain better insight into the comprehension
difficulty and precision of the discovered models via numerical comparison in addition to a
visual assessment.

Table 5. Optimized process models summary.

Monitoring Process Nurse Workflow Physician Workflow

Agg. NA O I,rall I,rfreq NA O I,rall I,rfreq NA O I,rall I,rfreq

50
/5

0

ra 50 50 50 50 50 50 50 50 50 50 50 50

rt 50 50 50 50 50 50 50 50 50 50 50 50

F 0.91 0.91 0 0 0.64 0.64 0.64 0.64 0.93 0.93 0.40 0.40

AD 2.73 3.13 5.09 1.60 1.00 1.00 1.00 1.00 1.85 1.90 1.80 1.80

H 0.80 0.74 1.00 0.90 0.54 0.54 0.54 0.54 0.44 0.45 0.53 0.53

Kn 0.25 0.20 0.48 0.35 0.14 0.14 0.14 0.14 0.09 0.10 0.12 0.12

R 0.34 0.50 0.40 0.10 0.21 0.21 0.21 0.21 0.45 0.45 0.32 0.32

Algorithms 2023, 16, 57 23 of 29

Table 5. Cont.

Monitoring Process Nurse Workflow Physician Workflow

Agg. NA O I,rall I,rfreq NA O I,rall I,rfreq NA O I,rall I,rfreq

O
pt

im
iz

ed

A
D

ra 85 85 85 85 80 80 80 80 90 90 90 90

rt 0 0 0 0 0 0 0 0 0 0 0 0

F 0.96 0.97 0.02 0.02 0.85 0.85 0.85 0.85 0.97 0.97 0.54 0.54

J 1.40 1.53 1.29 1.29 1.17 1.17 1.17 1.17 1.43 1.42 1.50 1.50

H

ra 100 100 100 100 100 100 100 100 100 100 100 100

rt 0 0 0 0 0 0 0 0 0 0 0 0

F 0.96 0.97 0.07 0.07 0.99 0.99 0.99 0.99 0.98 0.98 0.54 0.54

J 0.38 0.34 0.44 0.44 0.40 0.40 0.40 0.40 0.29 0.28 0.30 0.30

K
n

ra 100 100 100 100 100 100 100 100 100 100 100 100

rt 0 0 0 0 0 0 0 0 5 5 5 5

F 0.96 0.97 0.07 0.07 0.99 0.99 0.99 0.99 0.98 0.98 0.55 0.55

J 0.08 0.07 0.10 0.10 0.08 0.08 0.08 0.08 0.05 0.05 0.06 0.06

R

ra 75 75 75 75 45 45 45 45 30 30 30 30

rt 0 0 0 0 0 0 0 0 0 0 0 0

F 0.94 0.95 0.02 0.02 0.64 0.64 0.64 0.64 0.62 0.62 0.06 0.06

J 0.32 0.46 0.16 0.13 0.21 0.21 0.21 0.21 0.14 0.14 0.04 0.04

5.3. Domain Interpretation of Considered Application Scenarios

This sub-section presents domain interpretation of the considered application sce-
narios provided by a domain specialist (M.V.I.) regarding the obtained process models,
the applicability of process mining in the target cases, and insights from the discovered
process models.

Process optimization is crucial for healthcare as there is always a lack of human and
time resources. It is even more pronounced in the management of hypertension and
COVID-19. In the first case, it is mainly due to the enormous amount of patients (who
are mostly outpatients) as around 33% of the adult population is hypertensive around the
globe [57]. With the introduction of telehealth home blood pressure (BP) monitoring was
given a “second life”. Home BP telemonitoring and remote counseling are now feasible
and practical approaches for hypertension management [58,59]. In addition, during the
COVID-19 pandemic, telehealth played a key role in chronic disease management, notably
hypertension [60]. A team approach is based on health behavior and psychological support
and on close physician supervision. In the observed BP telemonitoring scenarios (“Moni-
toring Process”), we suppose it could be wrong to ping-pong a patient from an operator
(or case manager) to a doctor and vice versa. Both doctor and nurse may act similarly
in most cases. In the meantime, optimization of the home BP telemonitoring supports
multidisciplinary patient care and early doctor alerts but only when there is something
wrong with the patients’ BP data (“red zone” or missed measurements). Optimized man-
agement process ensures patient safety and adherence. The proposed way of the process
model optimization approach (Table 4) seems plausible. A number of interim steps may be
taken off, and the scheme of BP telemonitoring may be distilled into 3–4 interpretable steps
without any loss in quality of patient care. The unnecessary closed loops of actions were
also suppressed.

Talking about COVID-19, less waiting time may be a lifesaver, especially for severe
cases. Recently, a British study found an increase in mortality rates with 5 and more hours
in the emergency departments. Jones et al. calculated that for every 82 patients with
a length of stay of 6 to 8 h, 1 extra death occurs [61]. The length of hospital stay may

Algorithms 2023, 16, 57 24 of 29

also play a crucial role in mortality and morbidity benefit, especially in elderly cases [62].
So, it is of great importance to look inside the business processes and to try to improve
them as process optimization may save not only time and money but also health and
lives. Here, (“Nurse Workflow” and “Physician Workflow”) the optimized process models
describe emergency patient care with a structured and more reasonable workflow for nurse
and physician. These provide early targeted therapy; therefore improved inpatient care
gives an opportunity to shorten hospital stays without posing a risk to patients but with
the possibility to treat more critically ill patients with faster hospital bed rotation. One
may argue that the nurse’s workflow seems to be more complex after optimization and
aggregation, but it should be noted that some physicians’ activities have been rescheduled.
These are mostly technical ones, and task shifting is one of the most important steps when
it comes to emergency care.

6. Discussion

The experimental study shows that the proposed approach can be applied in various
conditions and problem domains and diverse structure of process maps. The optimization
procedure enables the construction of explicit and understandable process maps with good
coverage of the event log. The optimized process maps for the considered cases reveal key
sequences of events and demonstrate a good reflection of the processes’ nature. One of the
challenging issues discovered within the study is managing cyclic meta-states as part of
the model optimization procedure and further domain interpretation.

The revealed complexity landscapes become highly “rugged” after the introduction
of aggregation procedures (see Figures 9–12). This leads to the appearance of multiple
local optimums. Although these optimums may be considered stable and interpretable
process maps, they cover or do not cover certain field-specific states. Within the proposed
approach, we focused on reaching higher interpretability of process maps from this point
of view. Thus, this issue goes beyond the problem of global optimization. The presence
or absence of particular meta-states should be considered from the domain-specific point
of view with a further interpretation that can impose restrictions on a global optimization
problem during process discovery within the proposed approach.

The number of meta-states varies over the parameter space significantly (see,
e.g., Figure 13a for the monitoring process). To analyze the structure of meta-states discov-
ered in different areas of the parametric space, we identified the meta-states’ appearance
for the monitoring program case. Within a basic grid search, we discovered 15 possible
combinations of meta-states (see Figure 13b,d for a description of states). Still, the more
important issues can be revealed when considering the structure of adjacent areas. In
Figure 13c, we introduce a graph structure showing the transitions between combinations
by adding meta-states (e.g., edge “+CF|HD” means that moving from combination C14
to combination C12 is reflected in adding two cycles “CF” and “HD”—see the Figure 13d
caption for the interpretation). Several measures can be introduced to identify the relevance
of the combination to the actual process, e.g., by assessing the coverage area in parameter
space or the centrality measure in the proposed graph structure. Here, one can select combi-
nations C2, C9, C14 by their centrality and high coverage of parameter space. Moreover, C2,
C9 have implicit evidence of their consistency as transitions from loose multiple meta-states
with increasing complexity (see, e.g., transitions to combinations C3, C4, C5, C6, C8). Thus,
in this case, the combinations can be selected to define the area for the optimization within
the parametric space.

Additionally, it is worth mentioning that common PM approaches focus on the most
frequent traces within the event log. Still, in many cases, rare behavior may also present
significant variants of the process. To tackle such issues, specific procedures may be
introduced both in the internal structuring process models [63] and in the decomposition of
event log data (e.g., by clustering) [41]. While the last approach may be directly combined
with the proposed methods, it introduces a series of process models where meta-states may
possibly be semantically connected. At the same time, internal restructuring of the process

Algorithms 2023, 16, 57 25 of 29

model may also be implemented as an extension of the proposed formal identification of
meta-states.

Algorithms 2023, 16, x FOR PEER REVIEW 25 of 29

(a) (b)

(c) (d)

Figure 13. Meta-state combination: (a) number of significant cycles; (b) covered area; (c) transition

states; (d) legend (meas. missing (operator), A; yellow zone (doctor), B; yellow zone (doctor FD), C;

red zone (doctor FD), D; patient informing (operator), E; red zone (operator), F; red zone (doctor),

G; meas. missing (doctor), H).

Additionally, it is worth mentioning that common PM approaches focus on the most

frequent traces within the event log. Still, in many cases, rare behavior may also present

significant variants of the process. To tackle such issues, specific procedures may be intro-

duced both in the internal structuring process models [63] and in the decomposition of

event log data (e.g., by clustering) [41]. While the last approach may be directly combined

with the proposed methods, it introduces a series of process models where meta-states

may possibly be semantically connected. At the same time, internal restructuring of the

Figure 13. Meta-state combination: (a) number of significant cycles; (b) covered area; (c) transition
states; (d) legend (meas. missing (operator), A; yellow zone (doctor), B; yellow zone (doctor FD), C;
red zone (doctor FD), D; patient informing (operator), E; red zone (operator), F; red zone (doctor), G;
meas. missing (doctor), H).

Considering the limitations of the proposed approach, several important issues have
to be mentioned. First, the proposed optimization is based on a balance between event
log coverage (fitness), process complexity, and interpretability. These criteria generally
contradict each other. This leads to a complex multi-criterion optimization problem which

Algorithms 2023, 16, 57 26 of 29

requires more sophisticated techniques to be used and/or new aggregated metrics to be
introduced. Still, similar to many modeling problems, there is no explicit and natural way
to introduce a unified criterion for such optimization. Second, the introduced meta-states
modify an optimization landscape which leads to the appearance of multiple local opti-
mums and potential violation of locality property due to triggering meta-states rules. This
leads to more sophisticated optimization methods being hired. Third, the introduction
of meta-states may lead to the appearance of unseen events in the map and more abrupt
changes in the structure of a map during slight modification of discovery algorithm param-
eters (e.g., activity and transition rate). This may negatively affect the interpretability of
the model. Fourth, the interconnection between complexity and interpretability (widely
claimed as conceptually existing and generally negative) may have a more complicated
nature. For example, both of them may be considered as subjective properties of human
perception in relation to personal experience, expertise, goals, etc. Finally, building DFG
as a reachable graph improves consistency and still may negatively introduce behavior
unseen in data. Although in practical cases, this issue rarely affects the model significantly
(usually in an abnormally low transition rate), this may cause certain limitations of the
proposed approach.

The discovered issues are an insight into the development of the proposed approach
towards higher domain-specific interpretability and consistency of process models dis-
covered automatically. Along with other interpretability issues, e.g., the tuning process
map layout for better human comprehension, we consider these issues as a direction for
further work.

7. Conclusions and Future Works

In this paper, we presented an algorithm for automatic process model discovery and a
method of process model abstraction and interpretation. We defined the problem of process
model optimization to achieve the balance between two terms: model correctness for event
data, i.e., fitness, and model complexity, i.e., a measure of its comprehension difficulty. We
proposed several complexity measures in the experimental part of the study and conducted
a comprehensive analysis of their influences on the model form and its parameters. We
demonstrated our solution validity on event logs from the healthcare domain. Still, the
algorithm is general-purpose and adaptable to different fields and tasks.

In future studies, we plan to extend the functionality of this project. A promising
direction for development is extending interpretability capabilities within the solution with
different knowledge sources, including formal knowledge and data mining. As an example,
machine learning models or hidden Markov models can be used to interpret meta-states
found in process models, or on the other hand, knowledge mined from the event logs can
be employed in predictive modeling [64]. We are also interested in the integration and
application of the developed solution in various problem domains. We see much research
potential in process mining application, which can lead to interesting and valuable results.

Author Contributions: Conceptualization, S.V.K.; methodology, S.V.K.; software, L.O.E. and A.D.K.;
validation, M.A.B. and M.V.I.; formal analysis, L.O.E.; investigation, M.A.B.; resources, M.A.B.;
data curation, A.D.K. and M.A.B.; writing—original draft preparation, L.O.E.; writing—review and
editing, L.O.E. and S.V.K.; visualization, L.O.E. and S.V.K.; supervision, S.V.K.; project administration,
M.A.B.; funding acquisition, S.V.K. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of Russian
Federation, goszadanie no. 2019-1339.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on the request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2023, 16, 57 27 of 29

References
1. Van der Aalst, W. Process Mining: Data Science in Action; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783662498514.
2. dos Santos Garcia, C.; Meincheim, A.; Faria Junior, E.R.; Dallagassa, M.R.; Sato, D.M.V.; Carvalho, D.R.; Santos, E.A.P.; Scalabrin,

E.E. Process mining techniques and applications—A systematic mapping study. Expert Syst. Appl. 2019, 133, 260–295. [CrossRef]
3. Buijs, J.C.A.M.; Van Dongen, B.F.; Van Der Aalst, W.M.P. Quality dimensions in process discovery: The importance of fitness,

precision, generalization and simplicity. Int. J. Coop. Inf. Syst. 2014, 23, 1440001. [CrossRef]
4. Batista, E.; Solanas, A. Process mining in healthcare: A systematic review. In Proceedings of the 2018 9th International Conference

on Information, Intelligence, Systems and Applications, IISA 2018, Zakynthos, Greece, 23–25 July 2018; Institute of Electrical and
Electronics Engineers Inc.: Piscataway, NJ, USA, 2019.

5. Erdogan, T.G.; Tarhan, A. Systematic Mapping of Process Mining Studies in Healthcare. IEEE Access 2018, 6, 24543–25567.
[CrossRef]

6. Riz, G.; Santos, E.A.P.; de Freitas Rocha Loures, E. Interoperability Assessment in Health Systems Based on Process Mining and
MCDA Methods. Adv. Intell. Syst. Comput. 2017, 569, 436–445. [CrossRef]

7. Martin, N.; De Weerdt, J.; Fernández-Llatas, C.; Gal, A.; Gatta, R.; Ibáñez, G.; Johnson, O.; Mannhardt, F.; Marco-Ruiz, L.;
Mertens, S.; et al. Recommendations for enhancing the usability and understandability of process mining in healthcare. Artif.
Intell. Med. 2020, 109, 101962. [CrossRef]

8. Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, methods, and applications in interpretable machine
learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [CrossRef] [PubMed]

9. Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining Explanations: An Overview of Interpretability
of Machine Learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics
(DSAA), Turin, Italy, 1–3 October 2018; pp. 80–89.

10. Mendling, J.; Reijers, H.A.; Cardoso, J. What Makes Process Models Understandable? In Business Process Management; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 48–63.

11. Ingvaldsen, J.E.; Gulla, J.A. Industrial application of semantic process mining. Enterp. Inf. Syst. 2012, 6, 139–163. [CrossRef]
12. Kinsner, W. System Complex. In Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2010; Volume 323,

pp. 265–295. ISBN 9783642160820.
13. Fernández-Cerero, D.; Varela-Vaca, Á.J.; Fernández-Montes, A.; Gómez-López, M.T.; Alvárez-Bermejo, J.A. Measuring data-centre

workflows complexity through process mining: The Google cluster case. J. Supercomput. 2020, 76, 2449–2478. [CrossRef]
14. Muketha, G.M.; Ghani, A.A.A.; Selamat, M.H.; Atan, R. A Survey of Business Process Complexity Metrics. Inf. Technol. J. 2010, 9,

1336–1344. [CrossRef]
15. Figl, K. Comprehension of Procedural Visual Business Process Models: A Literature Review. Bus. Inf. Syst. Eng. 2017, 59, 41–67.

[CrossRef]
16. Figl, K.; Laue, R. Cognitive complexity in business process modeling. In Proceedings of the 23rd International Conference on

Advanced Information Systems Engineering, London, UK, 20–24 June 2011; Lecture Notes in Computer Science (including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 6741, pp. 452–466.

17. Cardoso, J. Business process control-flow complexity: Metric, evaluation, and validation. Int. J. Web Serv. Res. 2008, 5, 49–76.
[CrossRef]

18. Jung, J.-Y.; Chin, C.-H.; Cardoso, J. An entropy-based uncertainty measure of process models. Inf. Process. Lett. 2011, 111, 135–141.
[CrossRef]

19. Kluza, K.; Nalepa, G.J. Proposal of square metrics for measuring Business Process Model complexity. In Proceedings of the
2012 Federated Conference on Computer Science and Information Systems (FedCSIS), Wroclaw, Poland, 9–12 September 2012;
pp. 919–922.

20. Cardoso, J.; Mendling, J.; Neumann, G.; Reijers, H.A. A discourse on complexity of process models. In Proceedings of the
2006 International Conference on Business Process Management, Vienna, Austria, 4–7 September 2006; Lecture Notes in
Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer:
Berlin/Heidelberg, Germany, 2006; Volume 4103, pp. 117–128.

21. Suriadi, S.; Andrews, R.; ter Hofstede, A.H.M.; Wynn, M.T. Event log imperfection patterns for process mining: Towards a
systematic approach to cleaning event logs. Inf. Syst. 2017, 64, 132–150. [CrossRef]

22. Leonardi, G.; Striani, M.; Quaglini, S.; Cavallini, A.; Montani, S. Leveraging semantic labels for multi-level abstraction in medical
process mining and trace comparison. J. Biomed. Inform. 2018, 83, 10–24. [CrossRef]

23. Chiudinelli, L.; Dagliati, A.; Tibollo, V.; Albasini, S.; Geifman, N.; Peek, N.; Holmes, J.H.; Corsi, F.; Bellazzi, R.; Sacchi, L. Mining
post-surgical care processes in breast cancer patients. Artif. Intell. Med. 2020, 105, 101855. [CrossRef]

24. Tax, N.; Sidorova, N.; Haakma, R.; van der Aalst, W.M.P. Event abstraction for process mining using supervised learning
techniques. In Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2018; Volume 15, pp. 251–269.

25. Alharbi, A.; Bulpitt, A.; Johnson, O. Improving pattern detection in healthcare process mining using an interval-based event
selection method. In Proceedings of the International Conference on Business Process Management; Lecture Notes in Business
Information Processing, Barcelona, Spain, 10–15 September 2017; Springer: Cham, Switzerland, 2017; Volume 297, pp. 88–105.

26. vanden Broucke, S.K.L.M.; De Weerdt, J. Fodina: A robust and flexible heuristic process discovery technique. Decis. Support Syst.
2017, 100, 109–118. [CrossRef]

http://doi.org/10.1016/j.eswa.2019.05.003
http://doi.org/10.1142/S0218843014400012
http://doi.org/10.1109/ACCESS.2018.2831244
http://doi.org/10.1007/978-3-319-56535-4_44
http://doi.org/10.1016/j.artmed.2020.101962
http://doi.org/10.1073/pnas.1900654116
http://www.ncbi.nlm.nih.gov/pubmed/31619572
http://doi.org/10.1080/17517575.2011.593103
http://doi.org/10.1007/s11227-019-02996-2
http://doi.org/10.3923/itj.2010.1336.1344
http://doi.org/10.1007/s12599-016-0460-2
http://doi.org/10.4018/jwsr.2008040103
http://doi.org/10.1016/j.ipl.2010.10.022
http://doi.org/10.1016/j.is.2016.07.011
http://doi.org/10.1016/j.jbi.2018.05.012
http://doi.org/10.1016/j.artmed.2020.101855
http://doi.org/10.1016/j.dss.2017.04.005

Algorithms 2023, 16, 57 28 of 29

27. Günther, C.W.; van der Aalst, W.M.P. Fuzzy Mining—Adaptive Process Simplification Based on Multi-perspective Metrics.
In Proceedings of the International Conference on Business Process Management, Brisbane, Australia, 24–28 September 2007;
pp. 328–343. [CrossRef]

28. Batista, E.; Solanas, A. Skip Miner: Towards the Simplification of Spaghetti-like Business Process Models. In Proceedings of the
10th International Conference on Information, Intelligence, Systems and Applications, IISA 2019, Patras, Greece, 15–17 July 2019;
Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019.

29. De Weerdt, J.; vanden Broucke, S.K.L.M.; Caron, F. Bidimensional process discovery for mining BPMN models. In Proceedings of
the International Conference on Business Process Management, Eindhoven, The Netherlands, 7–8 September 2014; Lecture Notes
in Business Information Processing. Springer: Cham, Switzerland, 2015; Volume 202, pp. 529–540.

30. Leemans, S.J.J.; Poppe, E.; Wynn, M.T. Directly follows-based process mining: Exploration & a case study. In Proceedings of
the 2019 International Conference on Process Mining, ICPM 2019, Aachen, Germany, 24–26 June 2019; Institute of Electrical and
Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 25–32.

31. Leemans, M.; van der Aalst, W.M.P.; van den Brand, M.G.J. Hierarchical performance analysis for process mining. In Proceedings
of the 2018 International Conference on Software and System Process—ICSSP’18, Gothenburg, Sweden, 26–27 May 2018; ACM
Press: New York, NY, USA, 2018; pp. 96–105.

32. Augusto, A.; Conforti, R.; Dumas, M.; Rosa, M. La Split miner: Discovering accurate and simple business process models from
event logs. In Proceedings of the IEEE International Conference on Data Mining, ICDM, New Orleans, LA, USA, 18–21 November
2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 1–10.

33. Sun, H.W.; Liu, W.; Qi, L.; Du, Y.Y.; Ren, X.; Liu, X.Y. A process mining algorithm to mixed multiple-concurrency short-loop
structures. Inf. Sci. 2021, 542, 453–475. [CrossRef]

34. De Smedt, J.; De Weerdt, J.; Vanthienen, J. Fusion Miner: Process discovery for mixed-paradigm models. Decis. Support Syst. 2015,
77, 123–136. [CrossRef]

35. Prodel, M.; Augusto, V.; Jouaneton, B.; Lamarsalle, L.; Xie, X. Optimal Process Mining for Large and Complex Event Logs. IEEE
Trans. Autom. Sci. Eng. 2018, 15, 1309–1325. [CrossRef]

36. Fahland, D.; Van Der Aalst, W.M.P. Simplifying discovered process models in a controlled manner. Inf. Syst. 2013, 38, 585–605.
[CrossRef]

37. Delias, P.; Doumpos, M.; Grigoroudis, E.; Manolitzas, P.; Matsatsinis, N. Supporting healthcare management decisions via robust
clustering of event logs. Knowl.-Based Syst. 2015, 84, 203–213. [CrossRef]

38. De Weerdt, J.; Vanden Broucke, S.K.L.M.; Vanthienen, J.; Baesens, B. Leveraging process discovery with trace clustering and text
mining for intelligent analysis of incident management processes. In Proceedings of the 2012 IEEE Congress on Evolutionary
Computation, CEC 2012, Brisbane, Australia, 10–15 June 2012.

39. García-Bañuelos, L.; Dumas, M.; La Rosa, M.; De Weerdt, J.; Ekanayake, C.C. Controlled automated discovery of collections of
business process models. Inf. Syst. 2014, 46, 85–101. [CrossRef]

40. Becker, T.; Intoyoad, W. Context Aware Process Mining in Logistics. Procedia CIRP 2017, 63, 557–562. [CrossRef]
41. Kovalchuk, S.V.; Funkner, A.A.; Metsker, O.G.; Yakovlev, A.N. Simulation of patient flow in multiple healthcare units using

process and data mining techniques for model identification. J. Biomed. Inform. 2018, 82, 128–142. [CrossRef] [PubMed]
42. Najjar, A.; Reinharz, D.; Girouard, C.; Gagné, C. A two-step approach for mining patient treatment pathways in administrative

healthcare databases. Artif. Intell. Med. 2018, 87, 34–48. [CrossRef]
43. Prodel, M.; Augusto, V.; Xie, X.; Jouaneton, B.; Lamarsalle, L. Discovery of patient pathways from a national hospital database

using process mining and integer linear programming. In Proceedings of the IEEE International Conference on Automation
Science and Engineering, Gothenburg, Sweden, 24–28 August 2015; IEEE Computer Society: New York, NY, USA, 2015;
pp. 1409–1414.

44. Camargo, M.; Dumas, M.; González-Rojas, O. Automated discovery of business process simulation models from event logs. Decis.
Support Syst. 2020, 134, 113284. [CrossRef]

45. De Oliveira, H.; Augusto, V.; Jouaneton, B.; Lamarsalle, L.; Prodel, M.; Xie, X. Optimal process mining of timed event logs. Inf. Sci.
2020, 528, 58–78. [CrossRef]

46. Effendi, Y.A.; Sarno, R. Discovering optimized process model using rule discovery hybrid particle swarm optimization. In
Proceedings of the 2017 3rd International Conference on Science in Information Technology: Theory and Application of IT for
Education, Industry and Society in Big Data Era, ICSITech 2017, Bandung, Indonesia, 25–26 October 2017; Institute of Electrical
and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 97–103.

47. Buijs, J.C.A.M.; van Dongen, B.F.; van der Aalst, W.M.P. Discovering and navigating a collection of process models using multiple
quality dimensions. In Proceedings of the International Conference on Business Process Management, Beijing, China, 26 August
2013; Lecture Notes in Business Information Processing. Springer: Cham, Switzerland, 2014; Volume 171, pp. 3–14.

48. Vázquez-Barreiros, B.; Mucientes, M.; Lama, M. ProDiGen: Mining complete, precise and minimal structure process models with
a genetic algorithm. Inf. Sci. 2015, 294, 315–333. [CrossRef]

49. Weijters, A.J.M.M.; van der Aalst, W.M.P.; de Medeiros, A.K.A. Process Mining with the HeuristicsMiner Algorithm. Beta Work.
Pap. 2006, 166, 1–34.

50. Van Der Aalst, W.M.P.; De Medeiros, A.K.A.; Weijters, A.J.M.M. Genetic process mining. Lect. Notes Comput. Sci. 2005, 3536,
48–69.

http://doi.org/10.1007/978-3-540-75183-0_24
http://doi.org/10.1016/j.ins.2020.07.003
http://doi.org/10.1016/j.dss.2015.06.002
http://doi.org/10.1109/TASE.2017.2784436
http://doi.org/10.1016/j.is.2012.07.004
http://doi.org/10.1016/j.knosys.2015.04.012
http://doi.org/10.1016/j.is.2014.04.006
http://doi.org/10.1016/j.procir.2017.03.149
http://doi.org/10.1016/j.jbi.2018.05.004
http://www.ncbi.nlm.nih.gov/pubmed/29753874
http://doi.org/10.1016/j.artmed.2018.03.004
http://doi.org/10.1016/j.dss.2020.113284
http://doi.org/10.1016/j.ins.2020.04.020
http://doi.org/10.1016/j.ins.2014.09.057

Algorithms 2023, 16, 57 29 of 29

51. van der Aalst, W. Academic View: Development of the Process Mining Discipline. In Process Mining in Action: Principles,
Use Cases and Outlook; Reinkemeyer, L., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 181–196. ISBN
978-3-030-40172-6.

52. Van Der Aalst, W.M.P. A practitioner’s guide to process mining: Limitations of the directly-follows graph. Procedia Comput. Sci.
2019, 164, 321–328. [CrossRef]

53. Leemans, S.J.J.; Fahland, D.; van der Aalst, W.M.P. Discovering Block-Structured Process Models from Event Logs Containing
Infrequent Behaviour. In BPM 2013: Business Process Management Workshops; Lohmann, N., Song, M., Wohed, P., Eds.; Springer
International Publishing: Cham, Switzerland, 2014; pp. 66–78.

54. Bonchev, D.; Buck, G.A. Quantitative Measures of Network Complexity. In Complexity in Chemistry, Biology, and Ecology; Springer:
Boston, MA, USA, 2005; pp. 191–235. ISBN 0387232648.

55. Morzy, M.; Kajdanowicz, T.; Kazienko, P. On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy.
Complexity 2017, 2017, 3250301. [CrossRef]

56. Zenil, H.; Kiani, N.; Tegnér, J. A Review of Graph and Network Complexity from an Algorithmic Information Perspective. Entropy
2018, 20, 551. [CrossRef] [PubMed]

57. Zhou, B.; Carrillo-Larco, R.M.; Danaei, G.; Riley, L.M.; Paciorek, C.J.; Stevens, G.A.; Gregg, E.W.; Bennett, J.E.; Solomon, B.;
Singleton, R.K.; et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A
pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [CrossRef]
[PubMed]

58. Tucker, K.L.; Sheppard, J.P.; Stevens, R.; Bosworth, H.B.; Bove, A.; Bray, E.P.; Earle, K.; George, J.; Godwin, M.; Green, B.B.; et al.
Self-monitoring of blood pressure in hypertension: A systematic review and individual patient data meta-analysis. PLOS Med.
2017, 14, e1002389. [CrossRef]

59. Ionov, M.V.; Zhukova, O.V.; Yudina, Y.S.; Avdonina, N.G.; Emelyanov, I.V.; Kurapeev, D.I.; Zvartau, N.E.; Konradi, A.O. Value-
based approach to blood pressure telemonitoring and remote counseling in hypertensive patients. Blood Press. 2021, 30, 20–30.
[CrossRef]

60. Omboni, S.; Padwal, R.S.; Alessa, T.; Benczúr, B.; Green, B.B.; Hubbard, I.; Kario, K.; Khan, N.A.; Konradi, A.; Logan, A.G.; et al.
The worldwide impact of telemedicine during COVID-19: Current evidence and recommendations for the future. Connect. Health
2022, 1, 7–35. [CrossRef]

61. Jones, S.; Moulton, C.; Swift, S.; Molyneux, P.; Black, S.; Mason, N.; Oakley, R.; Mann, C. Association between delays to patient
admission from the emergency department and all-cause 30-day mortality. Emerg. Med. J. 2022, 39, 168–173. [CrossRef]

62. da Costa Sousa, V.; da Silva, M.C.; de Mello, M.P.; Guimarães, J.A.M.; Perini, J.A. Factors associated with mortality, length of
hospital stay and diagnosis of COVID-19: Data from a field hospital. J. Infect. Public Health 2022, 15, 800–805. [CrossRef]

63. Mannhardt, F.; de Leoni, M.; Reijers, H.A.; van der Aalst, W.M.P. Data-Driven Process Discovery—Revealing Conditional
Infrequent Behavior from Event Logs. In Advanced Information Systems Engineering; Springer: Cham, Switzerland, 2017;
pp. 545–560.

64. Elkhovskaya, L.; Kovalchuk, S. Feature Engineering with Process Mining Technique for Patient State Predictions. Lect. Notes
Comput. Sci. 2021, 12744, 584–592. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.procs.2019.12.189
http://doi.org/10.1155/2017/3250301
http://doi.org/10.3390/e20080551
http://www.ncbi.nlm.nih.gov/pubmed/33265640
http://doi.org/10.1016/S0140-6736(21)01330-1
http://www.ncbi.nlm.nih.gov/pubmed/34450083
http://doi.org/10.1371/journal.pmed.1002389
http://doi.org/10.1080/08037051.2020.1813015
http://doi.org/10.20517/ch.2021.03
http://doi.org/10.1136/emermed-2021-211572
http://doi.org/10.1016/j.jiph.2022.06.010
http://doi.org/10.1007/978-3-030-77967-2_48

	Introduction
	Related Works
	What Are Complexity and Interpretability in PM?
	Towards Process Model Optimization

	Conceptual Approach
	Basic Idea
	Process Discovery Algorithm

	Implementation of the Extended Algorithm
	Model Discovery
	Model Optimization
	Discovering Meta-States
	Software Implementation

	Experimental Study
	Datasets
	Complexity Optimization
	Domain Interpretation of Considered Application Scenarios

	Discussion
	Conclusions and Future Works
	References

