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Abstract: Corrosion is one of the major causes of failure in pipelines for transporting oil and gas
products. To mitigate the impact of this problem, organizations perform different maintenance
operations, including detecting corrosion, determining corrosion growth, and implementing optimal
maintenance policies. This paper proposes a partially observable Markov decision process (POMDP)
model for optimizing maintenance based on the corrosion progress, which is monitored by an
inline inspection to assess the extent of pipeline corrosion. The states are defined by dividing the
deterioration range equally, whereas the actions are determined based on the specific states and
pipeline attributes. Monte Carlo simulation and a pure birth Markov process method are used
for computing the transition matrix. The cost of maintenance and failure are considered when
calculating the rewards. The inline inspection methods and tool measurement errors may cause
reading distortion, which is used to formulate the observations and the observation function. The
model is demonstrated with two numerical examples constructed based on problems and parameters
in the literature. The result shows that the proposed model performs well with the added advantage
of integrating measurement errors and recommending actions for multiple-state situations. Overall,
this discrete model can serve the maintenance decision-making process by better representing the
stochastic features.
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1. Introduction

Pipeline networks are the most economical method of transporting oil and gas prod-
ucts at different stages of the production process [1]. They carry different products, which
include crude oil, natural gas, and semi-processed and finished oil and gas products. These
products are not only health hazards (flammable, poisonous) but also pose a serious en-
vironmental risk in the case of pipeline damage. Some of the causes for pipeline damage
include corrosion, cracks, improper operation and maintenance, physical damage (acci-
dents as a result of excavation, vehicle operation), and natural disasters. Corrosion ranks
as one of the major causes of failure. According to the Association for Materials Protection
and Performance (AMPP), the oil and gas industry loses $1.372 billion per year, of which
$589 million (43%) is related to the pipeline distribution network [2].

A three-step procedure can be adopted to implement corrosion maintenance to
pipelines in the industry [3]. The first step is to detect and identify corrosion by per-
forming inspections, monitoring, or analysis. Information on the extent of the corrosion
is collected using technical personnel, inline inspection (ILI) tools, non-destructive tests,
and other evaluation methods. ILI, the most commonly used corrosion detection method,
includes magnetic flux leakage (MFL—either circumferential or triaxial), Ultrasonic Tools
(UTs), electromagnetic acoustic technology (EMAT), and eddy current testing (EC) [4].
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In the second step, the pipeline’s failure time is forecasted using corrosion growth rate
(degradation) estimation methods. These methods comprise deterministic (such as single-
value, linear, and nonlinear corrosion growth rate) and probabilistic (such as the Markov
model—Markov process (MP), (partially observable) Markov decision process ((PO)MDP),
Monte-Carlo simulation, time-dependent/independent generalized extreme value distribu-
tion, Gamma process, and Wiener process) models [4,5]. Finally, maintenance objectives
are optimized, including determining the best inspection intervals and efficient repair or re-
placement operations. Optimization tools include mathematical (exact) methods, heuristics
and metaheuristics, and machine learning.

Heidarydashtarjandi, Prasad-Rao, and Groth [6], Bediako et al. [7], and Yinka-Banjo
et al. [8] presented MDP models, whereas Compare et al. [9] discussed a POMDP model
for oil and gas pipeline-network-related problems. Heidarydashtarjandi, Prasad-Rao, and
Groth [6] and Bediako et al. [7] proposed Monte Carlo simulation and non-stationary
Gamma distribution models, respectively, for determining the degradation of pipelines
based on physical attributes. These articles formulated pipeline states using data collected
from ILI or simulation models. The MDP model was used to optimize the maintenance
actions based on these states. Yinka-Banjo et al. [8] discussed the implementation of the
MDP models, where the states of the pipeline were determined by using unmanned vehicles
for inspection. The research focused on the vehicles′ proficiency in detecting corrosion
along with its severity. Compare et al. [9] demonstrated the implementation of the POMDP
in the maintenance of gas transmission networks. It considered the network as a system
with different states (defined by the degradation and future load of nodes in the network)
that cannot be directly observed at any given time. Maintenance actions were optimized in
addition to some economic analysis based on the accuracy of the model.

This paper presents a model for the optimization of maintenance actions where ILI
methods detect corrosion defects while the POMDP formulates the deterioration rate and
respective maintenance action. The corrosion data collected through ILI is used to determine
the transition intensity rates for equally spaced deterioration states. The intensity rate is
used to calculate the transition probability, where Kolmogorov’s forward equations for a
pure birth process is applied to construct the transition of deterioration from one state to the
next. This matrix is transformed into an n-step transition probability matrix. The reading
errors of the ILI method, two sources, formulate the observation function. Two observation
formulation methods are considered in the model to assess the incorporation of ILI errors.
The cost of maintenance and failure define the rewards attained by implementing a certain
action. A numerical example is used to explain the model formulation and implementation.

The proposed methodology reported optimal maintenance action when the pipeline
degradation state could not be pinpointed to a specific state. The benefits of Markov’s
chain modeling (such as the consideration of only consecutive states and the integration
of a variety of actions) were retained in this method. However, the requirement for the
exact determination of the deterioration state, which in most ILI methods is difficult to
achieve, has been improved by introducing belief states. This gives maintenance technicians
and managers the flexibility to consider additional deterioration states to decide on the
appropriate operation. Furthermore, different factors that affect the ILI’s accuracy can be
defined in the model rather than implicitly expressed in the states.

The rest of the paper is organized as follows. Section 2 discusses the basic concepts of
the POMDP method and its application. Section 3 presents the POMDP model for pipeline
maintenance optimization based on an ILI method. This section describes the framework of
the problem and the available solver that can be adopted to solve the problem. In Section 4,
the application of the proposed model is demonstrated using modified numerical data
from the literature. Finally, Section 5 gives some concluding remarks and future research
extension directions for the proposed model.
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2. Partially Observable Markov Decision Process (POMDP)

Markov decision process (MDP) is a decision-making process where a given state of
the system/components is determined based on the immediate predecessor situation (state)
and the action taken at this state. The MDP model consists of states (present and succeed-
ing), action, transition probabilities (defines the probability of arriving at the different states
or remaining in a given state), and reward (the cost/benefit of taking action under a given
state). Even though the MDP has a wide range of applications in pipeline maintenance
optimization, the approach has some limitations when applied to real-world problems. For
most pipelines, detecting and identifying the defect state (corrosion deterioration, in this
case) is challenging due to several factors. For example, ILI technologies are inherently
inaccurate due to noise and other factors, which result in erroneous output. Pipe corrosion
monitoring systems and inspection technicians can also contribute to these detection errors.
The corrosion growth rate can only be estimated due to the stochastic nature of corrosion
processes, which contributes to the distortion in the reading of the true deterioration state.
When the underlying state cannot be accurately determined (or observed), a partially
observable Markov decision process (POMDP) framework can be used instead. A POMDP
uses a probabilistic observation model (or function) to relate possible observations to states.
The MDP core states are broken down into a finite number of belief states, for most cases,
using the observation function for the POMDP model. Actions, as well as rewards, are
calculated based on these belief states when solving the problem.

A POMDP model consists of states (S), which include the current state (s,
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For most POMDP problem models, the value (reward) obtained by taking an action
at a given stage is computed by adding the expected reward (V(b)) for the new belief
state to the discounted expected rewards from all old belief states accumulated in each
iteration. Starting from some initial value, the reward from a belief of being in a succeeding
state s′ multiplied by the belief was used to compute the expected marginal reward. The
discounting factor (γ) is included to control the overall impact of older rewards in the
decision-making process. The optimal value (V*(b)) (action) is the maximum of the value
function (V(b)) for all actions. The value function can be expressed as a piecewise-linear
and convex function under a finite time horizon. This optimal solution can also be rep-
resented as a set of vectors (α-vector). The formulation for both approaches is given in
Equations (2) and (3), respectively.
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(3)

Another variation for attaining an optimal solution (policy) is to link the belief state to
actions (referred to as policy iteration). In this approach, the optimization searches for the
optimal policy (δ*), i.e., the optimal state–action combination [10].

δ∗(b) = max
a

(
∑
s∈S

b(s)r(s, b) + γ ∑
o∈O

P(o|b, a)V(b(a, o))

)
(4)

Different search algorithms can be found in the literature to attain optimal values or
policies for a POMDP problem model. Kıvanç, Özgür-Ünlüakın, and Bilgiç [11] categorized
these algorithms into two broad categories: exact and approximate algorithms. In exact al-
gorithms, every α-vector for the complete belief state is defined, including the actions. This
approach becomes computationally complex as the number of iterations increases, making
it unsuitable for large-scale optimization problems. Some of the algorithms categorized in
this group include Monahan’s enumeration (identifies all possible α-vectors and only keeps
those that are relevant to the problem in each iteration), One Pass (generate an α-vector and
search the belief space where this vector is dominant for any action or outcome), Linear
Support (modified version of One Pass where only the actions are searched), and Incremen-
tal Pruning (combines Monahan’s enumeration with Witness). Value and policy functions
are used to search for the best solutions in the sub-space believed to have contained these
solutions. MDP-based solvers include Most Likely State (searches the state with the best
action-using probability), QMDP (uses Q-function search, picking one vector at a time with
all future states being observable to compute the value function), and Fast Informed Bound
(searches the best action-state combination using the observation function). Grid-based
solvers include a Fixed Grid Method (a fixed number of grids are used to represent an
infinite number of states, which could be searched using some boundaries to calculate the
value function) and a Variable Grid Method (continually varying the grid point, which
would lead to generating a policy) [12]. Point-based solvers search the solution space by
sampling the belief states. Some of the algorithms include Point-Based Value Iteration
(starts from an initial state and gradually builds up by selecting the best points), Random-
ized Point-Based Value Iteration—Perseus (builds up by randomly selecting points), and
Heuristic Search Value Iteration, HSVI- SARSOP (uses heuristics to select points for value
functions bounded by upper and lower limits). Monte Carlo simulation-based models have
also been developed to solve large POMDP models. For example, Monte Carlo Tree Search
(MCTS) combined random sampling and tree search approaches to balance the search effort
between exploitation and exploration [13]. These Monte Carlo methods have also been
applied to the continuous POMDP models (refer to Sunberg and Kochenderfer [14] and
Mern et al. [15]).

The implementation of the POMDP to corrosion maintenance optimization requires
the adoption of this general formulation model in order to apply the solution to attain
the recommended maintenance action. The next section discusses this formulation of the
model by defining each POMDP component, as presented above.

3. Model Formulation

The POMDP model consists of five major components: states, actions, transition
probability, observation function, and reward. In this section, these model components are
discussed in order to formulate and solve the pipeline maintenance problem model.
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3.1. State

(PO)MDP states for the pipeline problem describe the degradation level due to pipeline
corrosion. Degradation in the pipeline constitutes two processes: the formation of corro-
sion and the growth of the formed corrosion. These processes can be formulated either
independently or in an aggregated form to determine the degradation state. In most cases,
corrosion formation is considered a Poisson distribution process [16]. However, Valor
et al. [17] have shown that negative binomial distribution can also be used to model it.
Deterministic and stochastic models have been developed to formulate the growth of
corrosion [4]. Deterministic methods include single-value, linear, and nonlinear growth
models, whereas stochastic methods include the Gamma process, Markov process (pure
birth process), Monte-Carlo simulation, and time-dependent or independent generalized
extreme value distribution. For the aggregated formation and growth model, a Markov
process-based model has been frequently adopted in the literature [6,18]. A Markov process
is a continuous process where only the immediate predecessor state impacts the current
state. Therefore, the degradation states extend over the life of the pipeline (from no cor-
rosion to the maximum allowable corrosion defect level—failure). For a discrete state
model formulation, the degradation level range was broken down into distinct states. After
determining the number of states, dividing the total deterioration range by the number of
states will give each state’s deterioration range.

3.2. Action

The maintenance (repair) activities are considered actions that can be undertaken for
a given state of the pipeline. For example, an earlier state of degradation can be treated
with corrosion inhibitors to retard the growth. As the degradation exacerbates, coating and
pigging should be prioritized as the better methods of maintenance. Corrosion can also
be mitigated by coating cathodic protection. These maintenance actions must justify their
investment. Otherwise, a do-nothing action should be taken into account, which is the case
for most newly installed pipelines. When the degradation levels go beyond any financially
viable maintenance action, the pipelines are replaced, starting a new cycle of degradation
calculation.

3.3. Transition

The transition probability from one state to another for the POMDP model can be
formulated using different methods. When a Markov process defines the states (for a
do-nothing action), the degradation process is modeled as either a homogenous or non-
homogeneous growth process (pure birth process). Heidarydashtarjandi, Prasad-Rao, &
Groth [6] and Timashev et al. [19] used the transition intensity to formulate a transition
matrix for a continuous time horizon with a non-homogenous growth rate. The method
first determined the probability of a degradation state (Prob(s)) by computing the ratio of
each state to the total number of defects obtained either from ILI or a simulation model
such as Monte Carlo (Equation (5)).

Prob(s) =
ns

N
∀s, s ∈ S (5)

where
ns = the number of defects in state s

N = the total number of corrosion defects detected

Then, the transition intensity (λ) was calculated by sequentially differentiating Kol-
mogorov’s forward equations for a pure birth process. The equation was solved for a very
small time interval (∆t), where a maximum of one state transition can occur. For a pure
birth process, the initial transition matrix is defined as the product of transition intensity
and time interval (i.e., λs∆t), as shown in Figure 1. This is a square matrix (s (current state)
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by s′ (succeeding state) where s = s′). An n-step transition matrix (based on the initial
transition) determines the transition probability for any inspection time interval t.
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The determination of a small time interval (∆t) value could be subjective. However, a
general guideline can be set to create a time interval for only a single state transition. A
Poisson distribution defines the number of events (in this case, the transition to another
state) for a Markov process (pure birth process). The value of ∆t was set to make the
probability of having more than one event a sufficiently small value.

The Markov method can be modified to meet some specific process requirements. For
example, Caleyo et al. [20] have presented a method for incorporating additional growth-
rate factors, such as soil conditions or the surrounding environment for external corrosion
(based on empirical data), in the transition probability to describe the degradation level bet-
ter. As Bushinskaya [21] demonstrated, the Markov method based on the pure birth process
can be transposed to create a pure death process and compute the strength of the pipeline
instead of the degradation. Li et al. [22] proposed an empirical method for formulating the
transition probability. This method defined the corrosion states (i.e., deterioration ranges
for each state) first, then the transition probability matrix was calculated by categorizing
the expected deterioration per year (for the time horizon under consideration) under each
state and analyzing these yearly deteriorations under each state independently.

3.4. Observation

Because of the limitations of ILI equipment and methods, the actual state of the
pipeline can be hard to accurately observe. The POMDP observation values are what
is reported as a reading from the ILI. The observation, however, can be related to the
actual states through a probability distribution. This can be determined empirically or by a
numerical analysis of the main contributors to these discrepancies.

Dann and Maes [23] illustrated four sources of ILI tool errors: detection errors, sizing
errors, false call errors, and reporting threshold errors. Detection errors occur when the ILI
equipment fails to detect existing corrosion. This error increases as the size of the corrosion
decrease since small-size corrosion defects are easy to miss. The probability of detection
(PoD) is defined as a function of defect depth (d > 0) and tool detection capacity (kd) [16].
The tool detection capacity can be replaced by mean detection thresholds (defined as 1/kd),
which are information supplied by the manufacturers.

PoD = 1− e−dkd (6)

where
d = defect depth; kd = tool detection capacity

Random measurement errors (ε) are generated due to the inherent nature of the tool.
Thus, they cannot be avoided. This error can be formulated as an independent, normally
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distributed function [16]. The actual corrosion defect depth d is the sum of the depth
reading of the equipment (dr) and the measuring error (ε).

False calls are created when ILI equipment reports a defect that does not exist in the
pipeline. According to Dann and Maes [23], the cause for this error can be attributed to
noises in the reading process or the misinterpretation of readings. This error depends on
the ILI tool’s state (quality) and the corrosion defect’s size. In this case, the probability of
committing an error increases as the size of the defect increases. Therefore, the probability
of making a true call (PoTC) in the ILI reading is defined as a function of the equipment
working condition factor (kw) and the depth of the defect (d).

PoTC = 1− e−dkw (7)

where
d = defect depth; kw = tool detection capacity

Reporting threshold errors arise from the limitations of the ILI equipment. Most
manufacturers label their equipment’s threshold level, meaning any corrosion defects
below this level will not be detected. All sources of error identified above refer to defects
above this threshold level.

3.5. Reward

The cost of maintenance operations comprises the reward function in this model. Hei-
darydashtarjandi, Prasad-Rao, and Groth [6] proposed the sum of inspection, maintenance
action cost (defined as a function of state and action), and failure cost as the reward function.
The failure cost was computed by defining the types of failures (such as small leaks, large
leaks, and ruptures) and their probability under each state. This cost integrated the risk
associated with failures due to unexecuted maintenance actions. Zhang and Zhou (2014)
detailed the maintenance cost, which incorporates excavation, sleeving, and recoating,
which are commonly applied to repair pipelines. All the cost computation approaches dis-
cussed in the articles can be adopted for POMDP reward function computation. However,
the inspection cost would have a meaningful impact if the POMDP model is formulated in
such a way that different inspection intervals are considered in the problem.

RS,A = CMS,A + CFS (+CI) (8)

where

CMS,A¯the cost of maintenance (costs such as excavation, sleeving, coating, labor, and equipment)

CFS¯the cost of failure

CI¯the cost of inspection

4. Numerical Examples

Two numerical examples were formulated to demonstrate the implementation of the
proposed model in the preceding section. The first example implements a maintenance
optimization method for a single pipeline. Based on this, this section discussed a two-
pipeline system maintenance optimization method as another significantly more complex
example.

4.1. Numerical Example 1
4.1.1. Model Formulation

Numerical values from various articles have been compiled in order to create a POMDP
model to demonstrate the implementation of the proposed approach. The MDP model
proposed by Heidarydashtarjandi, Prasad-Rao, and Groth [6] defined eight equally spaced
deterioration states with four actions (do-nothing, inhibitor application, pigging, and
replacement) to mitigate deterioration. The transition matrix (do-nothing action) was
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adopted by modifying data from the article. Thus, the probability of a pipeline inspected
to be in each state is computed using a Monte Carlo simulation. A pure birth transition
intensity was computed using this probability. Then, the intensity was used to find the
probability of transitioning to the succeeding state and remaining in the current state (for
∆t = 0.0005 years). For the inspection interval of 5 years, a 10,000-step transition matrix was
used to define the transition probability. Tables 1 and 2 present these parameters for the
model.

Table 1. State probability and transition intensity (modified from the source: Heidarydashtarjandi,
Prasad-Rao, and Groth [6])).

State Probability of the State Transition Intensity (λi) in Years

1 0.01% 1.842068074
2 1.96% 0.043999123
3 58.87% 0.221188399
4 32.39% 0.173228351
5 3.62% 0.011165733
6 1.10% 0.00227737
7 0.55% 0.001113594
8 1.49% 0

Table 2. Transition matrix using a pure birth Markov process and n-step transition do-nothing
(modified from the source: Heidarydashtarjandi, Prasad-Rao, and Groth [6]).

State (S′)
1 2 3 4 5 6 7 8

St
at

e
(S

)

1 0.000 0.822 0.111 0.051 0.016 0.000 0.000 0.000
2 0.000 0.803 0.117 0.060 0.020 0.000 0.000 0.000
3 0.000 0.000 0.331 0.414 0.250 0.005 0.000 0.000
4 0.000 0.000 0.000 0.421 0.561 0.018 0.000 0.000
5 0.000 0.000 0.000 0.000 0.946 0.054 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.989 0.011 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.994 0.006
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

For the observation matrix, the ILI errors were estimated based on the numerical
example published by Dann and Maes (2018). Mean values of 0.93 and 0.9 were obtained
for the PoD and PoTC (actual depth 40–80% of wall thickness and mean detection 10–25%
of wall thickness). Based on this, a reading error of 15% was considered for the numerical
analysis. In other words, a 1.2 state deviation was estimated as the error in reading for an
eight-state model (i.e., 1.2 = 8 ∗ 0.15). The other factor considered in the model was how
the observation errors were applied. The first case defined the multiple observed states
overlapping with actual states, whereas the second categorized the observed states as only
pre-defined multiple actual states (see Table 3).
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Table 3. Observation probability matrix.

Observation (O)
1 2 3 4 5 6 7 8

St
at

e
(S

)

1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.80 0.20 0.00 0.00 0.00 0.00 0.00
3 0.00 0.20 0.60 0.30 0.00 0.00 0.00 0.00
4 0.00 0.00 0.20 0.40 0.32 0.25 0.00 0.00
5 0.00 0.00 0.00 0.30 0.35 0.25 0.00 0.00
6 0.00 0.00 0.00 0.00 0.33 0.25 0.30 0.00
7 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.20 1.00

(a) Overlapping observed states

St
at

e
(S

)

1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
4 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.30 0.30 0.30 0.00
6 0.00 0.00 0.00 0.00 0.35 0.35 0.35 0.00
7 0.00 0.00 0.00 0.00 0.35 0.35 0.35 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(b) Non-overlapping observed states

Finally, the reward function combined the maintenance and failure cost for each
state–action pairing. The failure costs were adopted from Heidarydashtarjandi, Prasad-
Rao, and Groth [6], whereas the failure-type probability was generated based on some
understanding of the nature of the failures across the states (Table 4). The reward for do-
nothing decreases as the deterioration of the pipeline increases due to the loss of potential
savings by prolonged life through maintenance. Inhibitors, pigging, and replacement can
only be applied to certain states, and the remaining states were assigned large values.
Table 5 presents the reward values applied to the test model.

Table 4. Cost of failure (modified from the source: Heidarydashtarjandi, Prasad-Rao, and Groth [6].)

Cost of Failure
Probability of Failure

1 2 3 4 5 6 7 8

No failure 0.00 0.90 0.69 0.45 0.30 0.05 0.00 0.00 0.00
Small leak 1000.00 0.10 0.30 0.50 0.60 0.70 0.60 0.20 0.00
Large leak 8000.00 0.00 0.01 0.05 0.10 0.20 0.30 0.60 0.80
Rapture 40,000.00 0.00 0.00 0.00 0.00 0.05 0.10 0.20 0.20

Table 5. Reward function (values).

States
1 2 3 4 5 6 7 8

Action

Do nothing −20 −200 −300 −400 −500 −600 −700 −800
Inhibitors −180 100 250 300 −5500 −5500 −5500 −5500
Pigging −5500 −5500 −5500 −400 1100 1700 2000 −5500
Replace −5500 −5500 −5500 −5500 −5500 −5500 200 1580

4.1.2. Results

MATLAB MDPToolBox [24] was used to solve this problem. Even though the tool
primarily solves the MDP model, it has integrated packages (pomdp and pomdpsolve) to
convert POMDP models into MDP forms using belief states. The test model was formulated
for a 5-year operational run of a pipeline. The backward iteration of the Bellman equation
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method solver was used to solve the problem. Only ten belief states were defined for each
deterioration state in order to meet the computation limit of MATLAB. An MSI GT72S 6QE
Dominator laptop with Intel Core i7-6820 and 48 GB RAM was used to run the model.

For both observation matrix formulations, the solver reported a do-nothing action
for state 1, the application of inhibitors for states 2 and 3, pigging for states 3 through
6, and replacement for states 7 and 8 when the POMDP model considered all states that
can be fully observed. In other words, this result is what would be attained when the
model is formulated as an MDP (i.e., the states are fully observable). The main objective
of this modeling was to obtain a recommendation for optimal maintenance operations
for different belief states of pipeline deterioration. Accordingly, the result of the model
consisted of recommendations for 19,448 belief states combinations. These are obtained
from the ten belief states (for each of the eight states) that add up to 1. The optimal action
and its cost were given for these belief states. A user interface will be required to read the
maintenance action for the specific belief states′ combination since the reported combination
of belief states is large. Figure 2 gives the general framework of this interface. Do-nothing
was recommended at 80.5% (15,662 combinations) and 72% (13,996 combinations) for
overlapping and no-overlapping models, respectively. Inhibitors, pigging, and replacement
were reported at 1.2% and 1.4%, 3.3% and 3.8%, and 15% and 22.9%, respectively, for the
two models.
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4.2. Numerical Example 2
4.2.1. Model Formulation

Pipeline maintenance can be performed based on routing and segments, where
each consists of multiple pipes. If maintenance decisions need to be made on the rout-
ing/segment level, a systemic approach would have to be applied to consider the interaction
of components. The individual pipeline model components described above were com-
bined to construct a two-pipeline system model. For identical pipes and ILI readings, the
states of the system were formulated as s1, s2 (
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For most POMDP problem models, the value (reward) obtained by taking an action 
at a given stage is computed by adding up the expected reward (V(b’)) for the new belief 
state to discount the expected rewards from all old belief states accumulated in each iter-
ation. Starting from some initial reward value, the reward from a belief of being in a suc-
ceeding state s’ multiplied by the belief was used to compute the expected marginal re-
ward. The discounting factor (γ) is included to control the overall impact of older rewards 
in the decision-making process. The optimal value (V*(b’)) (action) is the maximum of the 
value function (V(b)) for all actions. The value function can be expressed as a piecewise-
linear and convex function under a finite time horizon. This optimal solution can also be 
represented as a set of vectors (α-vector). The formulation for both approaches is given in 
Equations (2) and (3), respectively. 𝑉∗(𝑏′) = max 𝑟(𝑠 , 𝑎)𝑏′(𝑠 )∈ + 𝛾 𝑃(𝑜|𝑏, 𝑎)𝑉∗(𝑏)∈    (2)

where 

1 ∈ S1,
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observations to states. The MDP core states are broken down into a finite number of belief 
states, for most cases, using the observation function for the POMDP model. Actions, as 
well as rewards, are calculated based on these belief states when solving the problem. 

A POMDP model consists of states (S), which include the current state (s, Ɐs Є S) and 
succeeding state (s’, Ɐs’ Є S), action (a, Ɐa Є A), transition probabilities (P(s’, s), Ɐs, s’ Є S), 
observation (o, Ɐo Є O), observation function (o(s), Ɐs Є S, Ɐo Є O), belief state (b(s), Ɐs Є 
S), and reward (r(s, a), Ɐa Є A, Ɐs Є S). Bayes’ rules are applied to update the probability 
of each belief state in each iteration (Equation (1)). The probability of being in a succeeding 
state s’ when observing o after taking action a (P(o|s’,a)) was normalized by dividing it by 
the observation o in all belief states for action a (P(o|b,a)). Multiplying this normalized 
value by the expected belief of transitioning from the current state to the succeeding state 
gives the updated belief state (b’(s)). The new belief state is the update of the old belief 
(b(s)) based on the probability of observation and transition. 𝑏′(𝑠′) = 𝑃(𝑜|𝑠 , 𝑎)𝑃(𝑜|𝑏, 𝑎) 𝑃(𝑠′|𝑠, 𝑎)𝑏(𝑠) ∈  (1)

where 𝑃(𝑜|𝑏, 𝑎) = 𝑃(𝑜|𝑠′, 𝑎) ∈ 𝑃(𝑠′|𝑠, 𝑎)𝑏(𝑠) ∈  

For most POMDP problem models, the value (reward) obtained by taking an action 
at a given stage is computed by adding up the expected reward (V(b’)) for the new belief 
state to discount the expected rewards from all old belief states accumulated in each iter-
ation. Starting from some initial reward value, the reward from a belief of being in a suc-
ceeding state s’ multiplied by the belief was used to compute the expected marginal re-
ward. The discounting factor (γ) is included to control the overall impact of older rewards 
in the decision-making process. The optimal value (V*(b’)) (action) is the maximum of the 
value function (V(b)) for all actions. The value function can be expressed as a piecewise-
linear and convex function under a finite time horizon. This optimal solution can also be 
represented as a set of vectors (α-vector). The formulation for both approaches is given in 
Equations (2) and (3), respectively. 𝑉∗(𝑏′) = max 𝑟(𝑠 , 𝑎)𝑏′(𝑠 )∈ + 𝛾 𝑃(𝑜|𝑏, 𝑎)𝑉∗(𝑏)∈    (2)

where 

2 ∈ S2), which combined the
states of each pipe [25]. It is assumed that the deterioration of each pipeline is independent
and identical. Dependent pipelines and multi-component pipeline systems′ [26] deteriora-
tion were considered outside of the scope of this study. A total of 64 states were created
for an eight-state pipeline system. The actions were considered to be the same since the
pipeline system consists of identical pipes. The transition matrix was computed for the
individual pipes, which were used to formulate the system’s transitions. Therefore, for
a one state transition of this two-pipeline system, the transition matrix consisted of both
pipes remaining in their current states, one of the pipes moving to the next state, and both
pipes transitioning to the next state. A similar procedure was adopted to transform the
matrix into an n-state transition matrix (Table 6).
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Table 6. Transition probability for a two-pipe system based on pipeline 1 (P1) and pipeline 2 (P2).

State (S’)
P1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 . . . 8 8 8 8
P2 1 2 3 4 5 6 7 8 1 2 3 4 5 6 . . . 5 6 7 8

P1 P2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . . 61 62 63 64

St
at

e
(S

)

1 1 1 0 0 0 0 0 0 0 0 0 0.68 0.09 0.04 0.01 0 . . . 0 0 0 0
1 2 2 0 0 0 0 0 0 0 0 0 0.66 0.10 0.05 0.02 0 . . . 0 0 0 0
1 3 3 0 0 0 0 0 0 0 0 0 0 0.27 0.34 0.21 0.01 . . . 0 0 0 0
1 4 4 0 0 0 0 0 0 0 0 0 0 0 0.35 0.46 0.02 . . . 0 0 0 0
1 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0.78 0.04 . . . 0 0 0 0
1 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0.81 . . . 0 0 0 0
1 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0
1 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0
2 1 9 0 0 0 0 0 0 0 0 0 0.66 0.09 0.04 0.01 0 . . . 0 0 0 0
2 2 10 0 0 0 0 0 0 0 0 0 0.64 0.09 0.05 0.02 0 . . . 0 0 0 0
2 3 11 0 0 0 0 0 0 0 0 0 0 0.27 0.33 0.20 0 . . . 0 0 0 0
2 4 12 0 0 0 0 0 0 0 0 0 0 0 0.34 0.45 0.01 . . . 0 0 0 0
2 5 13 0 0 0 0 0 0 0 0 0 0 0 0 0.76 0.04 . . . 0 0 0 0
2 6 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0.79 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
8 5 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0.95 0.05 0 0
8 6 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0.99 0.01 0
8 7 63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0.99 0.01
8 8 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0 1.00

The observations and reward functions have been calculated by multiplying the
respective state’s values. Table 7 gives the observation probabilities for the overlapping
case of the model’s formulation and the cost of taking a given action under a specific state.

Table 7. Observation probability (overlapping case) and reward for a two-pipe system based on
pipeline 1 (P1) and pipeline 2 (P2).

State (S’)
P1 1 1 1 1 . . . 8 8 8 8
P2 1 2 3 4 . . . 5 6 7 8

P1 P2 1 2 3 4 . . . 61 62 63 64

St
at

e
(S

)

1 1 1 1.00 0 0 0 . . . 0 0 0 0
1 2 2 0 0.90 0.20 0.00 . . . 0 0 0 0
1 3 3 0 0.10 0.60 0.30 . . . 0 0 0 0
1 4 4 0 0 0.20 0.40 . . . 0 0 0 0
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
8 5 61 0 0 0 0 . . . 0.35 0.25 0 0
8 6 62 0 0 0 0 . . . 0.33 0.25 0.30 0
8 7 63 0 0 0 0 . . . 0 0.25 0.50 0
8 8 64 0 0 0 0 . . . 0 0 0.20 1.00

Reward
P1 1 1 1 1 . . . 8 8 8 8
P2 1 2 3 4 . . . 5 6 7 8

1 2 3 4 . . . 61 62 63 64

A
ct

io
n

(A
) 1 −40 −220 −320 −420 . . . −1300 −1400 −1500 −1600

2 −360 −80 70 120 . . . −11,000 −11,000 −11,000 −11,000
3 −11,000 −11,000 −11,000 −5900 . . . −4400 −3800 −3500 −11,000
4 −11,000 −11,000 −11,000 −11,000 . . . −3920 −3920 1780 3160

4.2.2. Result

The same solver tool, i.e., MDPToolBox [24], was used on the same laptop to run the
two-pipeline system POMDP model. Three belief states were defined for each deterioration
state in order to meet the computation limit of MATLAB (lack of available memory size).
The backward iteration of the Bellman equation method was also selected from the solver
toolbox.
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The two-pipeline system also reported the same maintenance action for the fully
observable state under the two setups. The recommended actions for each observable
deterioration state are given in Figure 3.
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The result of this model run comprised 45,760 combinations of belief states for the
64 states of pipeline deterioration. The distribution of the recommended actions is given in
Table 8, along with a three-belief-state-run of the single pipeline model for comparison.

Table 8. Recommended action percentage for single and two-pipeline systems.

Single Pipeline Two Pipelines System

A
ct

io
n

Do-nothing 64.2% 87.0%
Inhibit 15.0% 1.8%
Pigging 18.3% 10.7%
Replace 2.5% 0.5%

The run time is significantly increased for the two-pipeline system, as expected. For the
single pipeline, it took 8 milliseconds (fully observable states) and 3 milliseconds (POMDP)
for the first observation setup, whereas the second setup needed 0.7 milliseconds (fully
observable states) and 0.6 milliseconds (POMDP) to obtain the results. The two-pipeline
system required 2 milliseconds (fully observable states) and 1100 milliseconds (POMDP)
for the first setup, while 1 millisecond and 300 milliseconds run times were obtained for
the second setup.

4.3. Discussion

Analysis of the recommended action under each observation model can aid the de-
velopment of a framework that defines the belief state combination for taking each action.
After screening out the belief states for each action, the level and combination of these states
can be studied to determine the deterioration state level. With such a kind of demarcation,
the decision alternative on the type of maintenance action can better be estimated under
different uncertainty levels of deterioration.

The transitional probability was computed for time (∆t) and inspection interval time
(T) values equal to 0.0005 years and 5 years, respectively. However, these values are not
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necessarily fixed and should be adjusted to meet the needs of specific pipelines. The transi-
tional probability change significantly impacts each belief state’s recommended actions.
It determines which actions are allowed to be taken in a particular state. The probability
matrix for specific maintenance actions can be computed using historical data, expert-
opinion analysis methods, or a combination of both. For the POMDP model considered in
this paper, only inline instrumentational errors have been considered as the sources of the
observational disparity. Nevertheless, other sources of errors can be integrated, including
the maintenance technician’s skill level, pipeline locations, surroundings, and the type
of product transported. The variation in the formulation of the observation for one- and
two-pipe systems has a limited impact on the overall recommended action except for the
run time. When more ILIs are considered, this variation influences the actions. The cost of
maintenance can be computed from the actual operating expenses and service charges. A
more detailed assessment of these costs would have to be performed to estimate the true
value. It is possible to exclude the cost of failure if the deterioration states considered in the
model are located well above the risk limits. This means that pipelines will be replaced
before reaching risky deterioration levels. Inspection costs can be added to the reward if
they can be related to the action. Otherwise, it will not have any impact on the reward since
it is a constant value.

5. Conclusions

The accurate determination of corrosion in pipelines is difficult in most real-world
cases. These inaccuracies emanate from different sources, including equipment errors,
human limitations, the environment, and/or the nature of pipeline transportation sys-
tems. Maintenance operations are performed with all these limitations, which can lead to
additional resource expenditure and maintenance costs. This paper proposed a POMDP
maintenance optimization model, which accommodates these inaccuracies (using equip-
ment error as an example) to identify the pipelines′ operating condition and propose the
optimal maintenance action. Each state represented a uniformly progressive level that cov-
ered the entire corrosion deterioration range. The different corrosion mitigation methods
were considered as maintenance actions for the model. Transition intensity was used to
define the probability of transition between states. The analysis of the inspection errors
formulated the observation probability. The cost of maintenance and failure made up the
reward function for a given state and action.

A single-pipeline and two-pipeline system corrosion maintenance optimization prob-
lem model were formulated to demonstrate the implementation of the proposed model.
The result of the model run showed that the optimal action and the cost of implementing it
could be obtained for the different probabilities of deterioration states. This loosens the need
for a strictly defined deterioration state, which would provide flexibility in decision-making
for maintenance technicians and managers.

The implementation of the POMDP for optimizing maintenance operations can be
further extended in different directions. The problem formulation and size of the model
could be enhanced to create a very complex pipeline system. With this approach, the
study could address the implementation of the POMDP method for the maintenance of
a system consisting of tens and hundreds of pipelines. The model could also include
the interaction among different components of the pipeline system. Furthermore, the
method can be explored for its suitability in determining maintenance criticality assessment
and policy optimization. Maintenance operations criticality can improve the utilization
of limited maintenance resources. Different preventive maintenance policies, including
multi-policy approaches, could also be adopted in the implementation of maintenance
actions in the models.

Companies in the oil and gas industries carry out pipeline maintenance under uncer-
tain conditions. The proposed model attempts to address these uncertainties to improve
the pipeline’s overall performance and safety. Maintenance is one of the industry’s major
functions that affect the success of a company.
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