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Abstract: Day by day pollution in cities is increasing due to urbanization. One of the biggest
challenges posed by the rapid migration of inhabitants into cities is increased air pollution. Sustainable
Development Goal 11 indicates that 99 percent of the world’s urban population breathes polluted
air. In such a trend of urbanization, predicting the concentrations of pollutants in advance is very
important. Predictions of pollutants would help city administrations to take timely measures for
ensuring Sustainable Development Goal 11. In data engineering, imputation and the removal of
outliers are very important steps prior to forecasting the concentration of air pollutants. For pollution
and meteorological data, missing values and outliers are critical problems that need to be addressed.
This paper proposes a novel method called multiple iterative imputation using autoencoder-based
long short-term memory (MIA-LSTM) which uses iterative imputation using an extra tree regressor
as an estimator for the missing values in multivariate data followed by an LSTM autoencoder for
the detection and removal of outliers present in the dataset. The preprocessed data were given
to a multivariate LSTM for forecasting PM2.5 concentration. This paper also presents the effect of
removing outliers and missing values from the dataset as well as the effect of imputing missing values
in the process of forecasting the concentrations of air pollutants. The proposed method provides
better results for forecasting with a root mean square error (RMSE) value of 9.8883. The obtained
results were compared with the traditional gated recurrent unit (GRU), 1D convolutional neural
network (CNN), and long short-term memory (LSTM) approaches for a dataset of the Aotizhonhxin
area of Beijing in China. Similar results were observed for another two locations in China and one
location in India. The results obtained show that imputation and outlier/anomaly removal improve
the accuracy of air pollution forecasting.

Keywords: MIA-LSTM; data preprocessing; iterative imputation; autoencoder; LSTM

1. Introduction

Almost sixty-eight percent of the total world population is predicted to be settled
in cities by 2050. Currently, almost fifty-five percent of the world’s population lives in
cities, and it is anticipated that by 2050, sixty-eight percent of the world’s population
will be living in cities (https://www.un.org/development/desa/en/news/population/20
18-revision-of-world-urbanization-prospects.html (accessed on 1 September 2022)). The
migration of the human population to cities impacts cities in multiple ways, one of which
is pollution. Urbanization and growth in industrialization cause increases of harmful gases
in the atmosphere [1].

Beijing is one of the most polluted cities in China, surrounded by numerous power
plants operating on coal. Almost 47 percent of the available coal in the world is consumed
by China. This is approximately half of the total consumption of the remaining countries
in the world. Some research studies indicate that the city of Ghaziabad in India also has
similar pollution problem to Beijing [2].

Algorithms 2023, 16, 52. https://doi.org/10.3390/a16010052 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16010052
https://doi.org/10.3390/a16010052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-7266-4664
https://orcid.org/0000-0002-4719-8734
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://doi.org/10.3390/a16010052
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16010052?type=check_update&version=2


Algorithms 2023, 16, 52 2 of 20

According to surveys, Ghaziabad is amongst the top five polluted cities in India (https://
timesofindia.indiatimes.com/city/lucknow/uttar-pradesh-ghaziabad-2nd-most-polluted-city-
in-world-lucknow-ranked-16th/articleshow/90385935.cms (accessed on 1 September 2022)).
In this research, datasets from Beijing (China) and Ghaziabad (India) were selected so that the
proposed method could be applied and validated.

When the concentration of foreign substances in the air is high enough to negatively
impact human health, it is considered to be polluted air. Carbon dioxide (CO2), nitro-
gen oxides (NOx), particulate matter (PM), ozone (O3), carbon monoxide (CO), sulphur
dioxide (SO2), and hydrocarbons (HC) are the major pollutants responsible for pollution.
Information about these pollutants was gathered with the help of an ambient information
system [3]. Due to the small size of pollutants, fine particulates (particulate matter with an
aerodynamic diameter <2.5 mm; PM2.5) can infiltrate the respiratory system’s bronchioles
and alveolar region as well as migrate into blood vessels [4]. PM10 and PM2.5 are the most
dangerous contaminants. Their pollution levels can be used by government organiza-
tions and authorities to take preventative measures and necessary action to control and
decrease pollution. Predicting PM2.5 and PM10 concentrations could be of great help to
administrations in mitigating the negative consequences of these pollutants. As a result,
new approaches for estimating PM2.5 and PM10 concentrations are always required to
be searched for by researchers. Quality of air and weather are inextricably linked with
meteorological elements, such as air pressure, humidity, temperature, cloud coverage, wind
speed, wind direction, and precipitation, having a significant impact on air quality fore-
casting. The latest artificial intelligence (AI) techniques are used for forecasting air quality.
Moreover, due to increased computational power, many researchers have focused on deep
learning techniques in various areas such as image analytics, video analytics, sequential
modeling, and data analysis using data-driven models [5]. In various fields, artificial neural
networks (ANNs) are also used for detection wherein the data used for analytics must be
preprocessed in order to get faithful results [6,7]. Raw data contains missing information
and noise which may hamper the end results of any applied techniques.

The research work presented in this paper focuses on a unique hybrid method named
the MIA-LSTM method which uses iterative imputation to deal with unavailable values
present in the data followed by an LSTM autoencoder to remove noise in the time series
data and then predict the PM2.5 concentration.

The main contributions of this research paper are as follows:

1. The use of an effective imputation method for handling missing information in the
data by using an iterative method with an extra tree regressor as an estimator for
finding replacements for missing fields in multivariate data.

2. Anomalies in the data are detected using an autoencoder that uses LSTM for encod-
ing and decoding purposes where the threshold was set on the value of MAE for
identifying the anomaly in the dataset

3. The proposed MIA-LSTM model that integrates a multivariate iterative imputation
method and an autoencoder LSTM predicts PM2.5 concentration with increased pre-
diction accuracy by adding an extra LSTM layer in the last stage.

2. Related Work
2.1. Missing Values, Imputation, and Forecasting

In data engineering, applications such as air pollution data analysis and prediction and
the imputation of missing values are real and inevitable problems [8,9]. As a result, various
ways to impute missing data have been developed. Many research papers have been
observed where the missing data were removed, and then the analysis is performed on the
remaining data. However, it is always vital to replace missing values with some significant
values that may improve the performance of the system. Moreover, if the data analysis is
performed without replacing missing values, the quality of the data analysis is contentious.
The proposed method in this paper takes care of missing values by implementing iterative
imputation. Missing data are always lost in its whole and for all time, but an adequate

https://timesofindia.indiatimes.com/city/lucknow/uttar-pradesh-ghaziabad-2nd-most-polluted-city-in-world-lucknow-ranked-16th/articleshow/90385935.cms
https://timesofindia.indiatimes.com/city/lucknow/uttar-pradesh-ghaziabad-2nd-most-polluted-city-in-world-lucknow-ranked-16th/articleshow/90385935.cms
https://timesofindia.indiatimes.com/city/lucknow/uttar-pradesh-ghaziabad-2nd-most-polluted-city-in-world-lucknow-ranked-16th/articleshow/90385935.cms


Algorithms 2023, 16, 52 3 of 20

imputation strategy can help to alleviate the problem as much as possible. Missing data are
a significant problem in several scientific fields, especially environmental research [10].

Many univariate methods, such as nearest neighbor imputation, linear imputation,
and spline imputation, along with multivariate methods, such as self-organizing map
imputation, multilayer perceptron imputation, regression-based imputation, and multivari-
ate nearest neighbor imputation, as well as hybrid methods containing combinations of
imputation methods were compared and evaluated, which shows that certain multivariate
methods for imputation are better choices [11]. Several factors including the pattern of
missing data and the type of missing data influence the appropriate technique for dealing
with missing data. Simple imputation methods include missing data imputation by either
mean, median of the respective column, or replacing the missing value with the proceeding
or succeeding value. The authors in [12] interpolated missing values in environmentally
contaminated datasets using a single imputation method termed the site-dependent effect
method (SDEM) which provides superior imputation than row-mean imputation. The
missing values can be imputed using various regression models, such as multiple linear
regression or artificial neural network techniques. In [13], it was concluded that for air
pollution prediction, the ANN method performed better than the simple regression method,
which provides intuition regarding the use of ANN techniques such as iterative imputation.

The vector autoregressive imputation technique (VAR-IM) is a novel approach for
imputing missing values in multivariate time series datasets that improves speed and
accuracy [14]. If the percentage of missing data is fairly minimal, VAR-IM does not
have priority for imputation (less than 10 percent). Out of the various methods used for
imputation, singular value decomposition (SVD), the k-nearest neighbor (KNN) method,
and the sequential k-nearest neighbor (SKNN) method provide better imputation accuracy
for air pollution datasets [15]. In a comprehensive literature survey performed on missing
data, it was determined that both the miss forest (iterative imputation method) and k
nearest neighbor methods can handle missing values successfully [16]. The missing values
were replaced with a linear interpolation method in the preprocessing stage, and then
multiple pollutants were predicted using the MS-TCN model, which performed better
compared to other baseline models [17]. The state-of-the-art method to impute multivariate
data via chained equations [18] and iterative imputation, miss forest, and deep learning
approaches [19,20] was used to impute missing data in air quality datasets. In order to deal
with missing data in the air quality datasets, multiple data mining techniques [21,22] as
well as statistical techniques [23,24] were implemented for appropriate imputation. The
missing values were found by building a model based on a complete instance of the dataset
excluding missing values; the nonparametric iterative imputation algorithm (NIIA) method
as an extension to the solution of imputation using incomplete instances of the dataset
was proposed [25]. Ref. [15] compared six imputation models and showed that various
KNN imputation methods were superior to simple imputation techniques, such as mean or
median imputation techniques. A hybrid imputation method proposed in [26], called KI, is
a combination of KNN and iterative imputation and obtained good results compred to a
simple KNN method. For NOx prediction, an LSSVM-based iteration strategy was utilized,
which improved the accuracy of pollutant prediction while reducing time complexity and
ensuring prediction speed and accuracy [27]. The missing values in the simple LSTM model
were filled up by zeros, and the author proposed another LSTM model where the missing
values were interpolated by Akima’s interpolation [28]. It was proved by imputing missing
attribute values that the suggested spatial–temporal (CNN BILSTON-IDW) prediction
approach may successfully tackle data imputation challenges for air quality modeling,
hinting that further interpolation can be improved using a multivariate dataset [29]. The
missing values were replaced with a linear interpolation method in preprocessing stage
followed by the prediction of multiple pollutants using the M-ConvLSTM model, which
performed better compared with single output models [30]. With the use of the Keras
development library, the complexity of RNN implementations has been extensively reduced,
enabling noncomputer scientists to use DL without coding overhead [31]. The LSTM model



Algorithms 2023, 16, 52 4 of 20

shows satisfactory results and applies to time series challenges, such as forecasting wide
area pollution from multiple stations and multiple pollutants. It could effectively predict
individual source emissions or model source apportionment under different criteria.

2.2. Outliers, Anomalies, and Forecasting

Multidimensional pollutant data and meteorological data consist of multivariate data
which is collected in chronological order from monitoring stations at a particular interval
of time. This data has various complications such as dimensional explosions, periodic
trends, etc. Due to these problems, simple outlier removal methods result in poor spotting
of outliers. Hence, there is a need to remove these outliers/anomalies from the dataset
before prediction. There are two types of anomalies in air pollution datasets: unwanted
data and others depending on the event of interest. Unwanted data are cleaned by using
simple outlier removal methods, such as the inter quartile range, z-score, Grubb’s test,
Tietjen–Moore test, and Hampel’s test methods [32]. In later cases, outliers/anomalies have
been removed by machine learning-based models, such as KNN, ARIMA, and SVM [33],
and deep learning models, such as variational models based on autoencoders [34] and
LSTM autoencoders [35]. Detecting anomalies using a combination of the robust projection
pursuit and Mahalanobis distance method implemented in [36] showed that anomaly
detection is important. Before removing the anomalies in the dataset, the missing values
were replaced by a simple column median calculated from available data.

2.3. Modern Methods Used for Forecasting

For the time series data prediction problem, the existing work [37] that uses machine
learning methods, such as ANN, does not remember the recurrent past data. However,
it is very important to consider past data in time series forecasting. In recent times, time
series data RNNs have gained a lot of attention; it is one of the classes of artificial neural
networks (ANNs). The first architecture to reveal the hidden structure of data was the
Elman RNN [38] where a simple RNN uses BPNN (back propagation through time). This
RNN outperforms simple ANNs with feed-forward networks for data that are dynamic
in nature [39]. Strength and limitations of forecasting techniques by in various research
papers are summarized in Table 1.

There are some limitations of RNNs too, as it is incapable of remembering long-
term significant important data. Further, whenever there are long-term dependencies,
BPNN experiences exploding and vanishing gradient problems. Long Short-Term Memory
(LSTM), a further extension to RNN, provides the solution to the above problem.

The state-of-the-art method of LSTM to predict the outbreak of COVID-19 infection is
provided in [40], which obtains good prediction accuracy but also concluded that missing
values in the data have put limitations in doing a thorough analysis. In this article, pre-
processing was performed using a state-space vector using Taken’s theorem, and outliers
were treated.

Hybrid methods utilizing LSTM are widely implemented for time series forecasting
problems, such as stock prediction [41], which results in improved prediction accuracy [42].
Hybrid versions of LSTM, such as wavelet LSTM, are better in time series prediction
compared to the traditional methods used [43]. Trending models for enhanced time series
forecasting were proposed in the electrical domain where researchers concluded that a
wavelet adaptive neuro-fuzzy inference system outperformed other competent models such
as the group method of data handling, LSTM, bootstrap aggregation, sequential learning,
and many ensemble learning methods [44]. Recently, many hybrid methods and ensemble
learning methods have been applied for time series forecasting problems and provide
encouraging results [45]. Out of the many ensemble learning models, random subspace
and stacking ensemble models provide better results for prediction. Moreover, compared
to LSTM, which takes higher computational power, the proposed ensemble models proved
to be better. PM2.5 concentrations can be forecasted in the future using state-of-the-art
ensemble learning methods [46].
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A deep learning model, i.e., multivariate LSTM, was used for air quality prediction
during the pandemic for short-term and long-term prediction; the bidirectional LSTM out-
performed other LSTM models. During this experimentation, missing values were replaced
with simple median values, and no comments on outliers and anomalies were stated [47].
Air pollutant concentrations were predicted wth multivariate LSTM; the researchers found
that meteorological features play a vital role in the prediction of CO concentrations for
PM2.5 prediction. Meteorological, pollutant, and traffic data were useful, but information
regarding imputation and outliers in the preprocessing step was missing [48]. Statistical ev-
idence shows that LSTM grouped by pollutant class (GP-LSTM) and LSTM with individual
groups of pollutants as inputs (IGP-LSTM) outperform benchmark algorithms that have
been observed. However, these models can still be improved, as LSTMs struggle to detect
the presence of sudden high peaks since past information weights on the predictions [49].

In the prediction of air pollutant concentration, many researchers are continuously
contributing to the literature by proposing many novel methods; recently, hybrid models
have become popular and provide state-of-the-art solutions to prediction problems by
extracting useful information from the raw data. When essential information is extracted
from data, the VMD (variational mode decomposition) and LASSO (least absolute shrinkage
and selector operation) feature selection increase the efficiency of the proposed model [50].
BA-SVR (bat algorithm for support vector regression) is a hybrid algorithm developed with
an optimization technique that obtains better results for short-, medium-, and long-term
forecasting for the closing price of eighteen indices of the mainland in China [51]. A novel
hybrid method was proposed, named ICEEMDAN–MOHHO–ELM (improved complete
ensemble empirical mode decomposition with adaptive noise multiobjective Harris hawks
optimization extreme learning machine), which first deals with high-frequency noise and
achieves stabler and higher predictive performance [52].

To identify abnormalities from air quality data in terms of NO2 concentrations, the
anomaly detection method used a hybrid proximity and clustering-based methodology;
before that, missing values were replaced by a linear interpolation method [53]. A new
method based on intelligent computing was proposed which uses LSTM and optimization,
called a smart air quality prediction model (SAQPM), for the prediction of six types of
pollutant prediction, namely PM2.5, PM10, SO2, O3, CO, and NO2, but did not mention the
imputation, and the missing values were dropped [54]. Two models named LSTM and DAE
(deep autoencoders) were proposed for predicting PM2.5 and PM10 values and concluded
that LSTM performs better than DAE but did not discuss crucial data preprocessing, such
as handling missing values and outliers [55].

Images were used for the prediction of air pollution, and the image features were en-
hanced by using meteorological data, which has boosted the accuracy of classification [56].
While preprocessing the data, a simple imputation technique of backward fill was used for
replacing the missing values in the dataset, but the author agreed that more sophisticated
methods for imputation can be used. Univariate LSTM with more batch size is effective in
predicting CO concentration [57]. Univariate LSTM and ARIMA comparison showed that
ARIMA exhibits better prediction in the case of CO concentration. A relative study consid-
ering LSTM, simple RNN, and GRU concluded that simple RNN outperforms the other
two in stock market prediction, which is the application of time series data. This is because
RNNs are susceptible to vanishing gradient problems [58]. A PCA-attention-LSTM model
was used to predict PM2.5 concentration, which obtained better accuracy compared to
LSTM and BPNN models [59]. A novel method was proposed that combines deep learning
and a geo-statistical approach, known as CNN-BILSTM-IDW, which increased the predic-
tion accuracy using only past values to predict future values, as the data availability was
poor [28]. The authors also suggested that using more data and multivariate interpolation
technique prediction could improve results, which is performed in the proposed method.
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Table 1. Strength and limitations of forecasting techniques.

Reference No Technique Preprocessing Method Strength Limitations

[28] CNN-BILSTM-IDW Linear interpolation for
missing values

Deep
learning and geostatistical
approach obtained better

accuracy.

Time complexity is not
discussed in the hybrid

method.

[49] LSTM Missing values ignored Different LSTM
configurations were tested. Missing values ignored.

[50] VMD-LASSO-SAE-
DESN VMD and LASSO Extracted information from

high-resolution dataset.
Time complexity is not

mentioned.

[53] Proximity and
clustering method

Linear interpolation for
missing values

Anomalies detected from air
pollution dataset. Not mentioned.

[55] LSTM and DAE Only checked for
missing values

LSTM proved slightly better
than DAE.

Data preprocessing needs
to be taken care of.

[56]
Four different

architecture including
CNN

Simple imputation of
backward fill used for

imputation

Data plus images used for
pollution prediction.

Requires more
computational power.

[57] Univariate LSTM
Negative values

present in dataset were
removed

Model performance checked
with different batch size.

Calibration part is missing
for the deployed device.

[58] Simple RNN, LSTM,
and GRU

Null values are
removed

For lower time intervals,
LSTM and GRU obtained

good accuracy.

Imputation not performed
for missing values.

[59] PCA-Attention-LSTM
Missing values filled

with average of
adjacent values

Analysis of variable
importance was performed.

Time complexity is not
mentioned.

3. Proposed MIA-LSTM Model

Figure 1 shows the unique methodology which is used in this paper for the prediction
of air pollution concentration. The unavailable values from the input data were found and
replaced using iterative imputation with an ET regressor as an estimator for calculating the
missing values. The output data after imputation contained some anomaly values which
were detected and further removed by using LSTM autoencoders by setting the threshold
level of MAE. The clean data were then passed through a multivariate LSTM module which
predicted the value of PM2.5 using the previous data of all pollutants and meteorological
parameters. Algorithm 1. is the algorithm for proposed MIA-LSTM model.
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Algorithm 1. Algorithm for Proposed Method:

1. Input feature1, feature2,→featurex.
2. Output values prediction for PM2.5 based on minimum RMSE/MAE values
[v1 v2 v3]
3. Perform iterative imputation on raw data 4. Input [ f1| f2| ....... fn]
4. Remove the data with missing values
5. Now, split data into two

[f11, f12, f13.....f1n]: without missing values
[f21, f22, f23.....f2n]: missing values

6. for i = 0, where I = iteration
Apply ET regressor on [f11, f12, f13→f1n] by randomly choosing optimal point
7. Impute the data in place of missing values by predicting the values
8. Let
Pvj→predicted values at current level Pvi→predicted values at
α→minimum threshold at previous value for stopping criteria
If Pvj − Pvi <= α,
Then Stop
Else go to step 7 i++
9. Apply LSTM for Anomaly detection
Training set [m1, m2. mn] where m is n dimensional data
Testing set [m’1, m’2. m’n]
Timestamp T = 24
10. On training dataset (Train) calculate reconstructional error using MAE (Threshold
(MAE = max(RE)))
11. On testing dataset (test) Threshold < MAE (test)
Set 1 -> Anomaly
Else
Set 2 -> Normal
12. Now, apply LSTM on normal dataset after removing anomalies Input Train and test
dataset
13. Normalize the normal Dataset into 0-1
14. Choose window size of training data and testing data
15. Train the network N
16. Predict the values of testing data
17. Calculate the Loss using MSE, RMSE, and MAE

End

The following section of the paper provides the detailed explanation of every block
used in the MIA-LSTM model.

3.1. Dataset

The dataset used for the experimentations included air pollutants data (hourly) from
three nationally controlled air quality monitoring sites in China. The air quality data
and meteorological data were collected from twelve AQM sites by the Beijing Municipal
Environmental Monitoring Center and China Meteorological Administration [60]. The
meteorological data with the air quality data were matched with the closest weather station.
Missing data were denoted by NA. The percentage of missing data is also given in the last
row of Table 2. Another dataset for Ghaziabad city was obtained from the Central Pollution
Control Board of India [61]. These data contain all the fields described in Table 2. These
data contain hourly values of pollutants and meteorological parameters.

Out of the above attributes available, wind direction was excluded for the prediction
purpose from the Chinese dataset, and NOx values were excluded from the Indian dataset.
The datasets from both countries contain missing values (the percentage of missing values
is given in Table 2 for reference). For the application of various deep learning models,
the data were initially split into three sets, i.e., training, validation, and testing, in the
ratio of 60%, 20%, and 20%, respectively. The data were divided sequentially as it is time
series data.
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Table 2. Dataset Description.

Dataset Beijing Multisite Air Quality Data
Dataset Ghaziabad

Dataset Type Multivariate Multivariate
Time Interval Hourly Hourly

Monitoring Sites Aotizhongxin, Gucheng, and
Tiantan

Vasundhara, Ghaziabad
UPPCB

Monitoring Period 1st March 2013 to 28th February
2017

11 January 2017 to 11
December 2021

Numbers of attributes

18 (row number, year, month, day,
hour, PM2.5 concentration (µg/m3),
PM10 concentration (µg/m3), SO2

concentration (µg/m3), NO2
concentration (µg/m3), CO
concentration (µg/m3), O3

concentration (µg/m3),
temperature (degree Celsius),

pressure (hPa), dew point
temperature (degree Celsius),

precipitation (mm), wind direction,
wind speed (m/s), name of the air

quality monitoring site

13 (datetime, PM2.5
concentration (µg/m3), PM10
concentration (µg/m3), SO2
concentration (µg/m3), NO,
NO2 and NOx concentration
(µg/m3), CO concentration

(µg/m3), Ozone concentration
(µg/m3), temperature (degree

Celsius), relative humidity,
wind speed (m/s), name of

the air quality monitoring site

Missing values Aotizhongxin (9.26%),
Gucheng (7.3%), and Tiantan (6.3%) Vasundhara (15%)

3.2. Iterative Imputation Using Extra Tree Regressor

The iterative imputation method was used for replacing missing data in the available
dataset, where every feature was modeled as a function of other remaining features. The
function/model was created with the help of various regressors available. In this process,
the missing values were identified using the regressor model and repeated with multiple
iterations. This was performed in order to get a more accurate value of the missing data. As
many iterations were performed, this process is called iterative imputation. Here, the rows
and columns where the missing values were present were identified, and the respective
rows were removed. This created two datasets: one which did not contain missing values
and the other that contained missing values. The target was to replace these missing values.
Using the first set of data and applying the machine learning regression algorithm, the
missing values from the later set could be identified. In this paper, during imputation,
an extra tree regressor was used to find the missing values. For the same dataset, the
experimentation was carried out for the prediction of particulate matter by using various
regression techniques, such as LightGBM, gradient boosting regressor, KNN, decision tree,
extra tree, and thirteen more. Out of these techniques, extra tree regressor provided the
least RMSE and MAE values for prediction. Hence, the ET regressor was chosen as an
estimator in the iterative imputation. This was the first iteration; after imputation, the
dataset was merged, and after merging the dataset, the regression was applied to obtain
the new imputed values. Iterations were carried out until the difference in the imputed
values was the least, as shown in the flowchart.

3.3. Anomaly Detection and Removal

Autoencoders have architectural designs such as feed-forward artificial neural net-
works. Here, one of the hidden layers is a code layer, which has fewer nodes for dimen-
sionality reduction that can be selected by the user. The encoder performs dimensionality
reduction whereas the job of the decoder is to get the same output as input (the decoder is
a replica image of the encoder).

Autoencoders consist of a decoder and encoder in the output and input layer. When
both the encoder and decoder are LSTM modules, then these types of autoencoders are
said to be an autoencoder LSTM. Thus, LSTM autoencoders use encoder–decoder LSTM
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architecture to construct an autoencoder for time series data [62]. An encoder–decoder
LSTM is a setup to read an input sequence, replicate it, and recode it for a given dataset
of sequences. The model’s ability to replicate the input sequence is used to evaluate
its performance. The decoder section of the model can be removed after the model has
achieved the necessary degree of performance in replicating the sequence except for the
encoder model. The input sequences can then be encoded to a fixed-length vector using
this paradigm.

The method used for the determination of anomalies present in a concentration of
PM2.5 analyzed the training data for MAE loss. The reconstruction error threshold was
made equal to the maximum MAE loss value found in the training data. The data points
were classified in the test set as an anomaly if the reconstruction loss was higher than the
reconstruction error threshold value.

Input values were reconstructed by the LSTM autoencoder with MAE values as given
in the equations

fencoder: {xn : t ∈ [1, T ]}→ z t (1)

fdecoder: z→ {xn : t ∈ [1, T ]} (2)

While applying the proposed method, the meteorological data and pollutant data
with n dimensions were transformed by the LSTM model by extracting feature ‘z’: the
hidden layer with the ‘z’ dimension (less than the dimension of ’n’). Further in the decoding
procedure, using the same time steps of ‘z’, the original data were reconstructed. By this
process, the input sequence was taken in time steps from t = 1, 2, 3. ‘x’ was input into
fixed-vector ‘z’, which resulted in the model learning about complex temporal correlations
between the input variables.

Multivariate LSTM for Forecasting of Particulate Matter

LSTM has a forget gate based on a sigmoid function that helps to discard insignificant
information from previous timestamps. The input gate further helps to keep useful infor-
mation coming from previous timestamps as well as information from the current input
of the neuron; it does so by using the sigmoid and tanh functions, respectively. Next is
the memory cell, where the forget gate output and input from the input gate are added
point-wise, which is responsible for handling long-term dependencies. This memory cell
stores meaningful information. Finally, there is an output gate that provides the output to
the other neuron by taking the information from the memory cell and the input gate by
performing the point-wise operation. Pollutants usually show similar behavioral patterns
when studied with respect to time. While applying LSTM, the important information which
is used for prediction is stored in the memory cell, and irrelevant information is discarded
by forget cell.

For the input LSTM layer used for prediction, the inputs were the pollutant and
meteorological data at the tth time instant. The state of the hidden layer at this instant was ht,
which included short-term memory information for the pollutant and meteorological data.
The present output was provided by ot, the internal memory of the cell, and represented
by ct

Each LSTM neuron is represented by the following equations:
Input gate:

ft = σ(W f [ht−1, xt] + b f (3)

Forget gate:
it = σ(Wi[ht−1, xt] + bi (4)

State update:
c̃t = tanh(Wc[ht−1, xt] + bc (5)

ct = ft ∗ ct−1 + it ∗ c̃t (6)
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Output gate:
ot = σ(Wo[ht−1, xt] + bo (7)

ht = ot ∗ tanh(ct) (8)

W f , Wi, Wc, Wo represent the weight of the forget gate, input cell state, weight matrix,
and output gate.

bf, bi, bo, bc = corresponding bias
c̃ represents input of cell state to memory cell.
σ represents the sigmoid activation function used by the gates whereas the input and

cell state use the tanh function.

4. Evaluation Matrices

For a comparative analysis of the different models, the following evaluation metrics
were used: RMSE and R2 [63].

Root Mean Square Error:
Information regarding the standard deviation of the forecast error is given by the root

mean square error (RMSE) value. The forecasted value spread with respect to the original
value is measured by RMSE. The lower the RMSE value, the better the forecast accuracy of
any model.

RMSE =
√ n

∑
i=1

(ŷi − yi)
2

n
(9)

ŷi is the forecasted value.
yi is the actual or observed value.
n is the number of observations.
Coefficient of Determination (R2):
“R-squared” is a measure of the goodness of fit of a model. The coefficient of determi-

nation is calculated using the following equation.

R2 = 1− ∑(ŷi − yi)
2

∑(yi − yi)
2 (10)

yi is the mean of all values of y.

5. Results & Discussions

Since the concentration of a 2.5 micron-sized particulate matter depends on certain
factors such as the concentration levels of other pollutants, for example, PM10, CO, SO2,
NO2, O3, etc., and meteorological factors such as temperature, WSPM, rainfall DEWP,
etc., the important factors were identified. Different regressor approaches for forecasting
the pollutants, such as a random forest (RF) regressor, light gradient boosting machine
(LGBM), gradient boosting (GB) regressor, and decision tree (DT) regressor are applied
and discussed in the following section. State-of-the-art time series approaches, such as
univariate LSTM, gated recurrent unit, 1D convolutional neural networks, multivariate
LSTM, and proposed hybrid methods are also discussed.

5.1. Extra Tress Regressor Usage as an Estimator for Iterative Imputation

Five popular machine learning regressor methods were applied to the datasets of all
locations. The train and test sets were split in the ratio of 75% trained and 25% tested.
While doing so, if any of the missing values were present, the complete row was eliminated.
For the Aotizhonhxin location, the RMSE values for the extra tree regressor, random forest
regressor, light gradient boosting machine, gradient boosting regressor, and decision tree
regressor are 16.8418, 18.7612, 18.1819, 22.0409, and 27.2191, respectively, with R2 values of
0.9560, 0.9455, 0.9488, 0.9250, and 0.8853, respectively as shown in Table 3. The RMSE and
R2 values show that the extra tree regressor outperforms the random forest (RF) regressor,
light gradient boosting machine (LGBM), gradient boosting (GB) regressor, and decision
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tree (DT) regressor models. The same is observed for all datasets of all locations. This is
the reason we chose the extra tree regressor as the estimator during the imputation of the
missing values in the raw data in preprocessing stage.

Table 3. Comparison table for regressor used for deciding estimator in iterative imputation.

Aotizhonhxin Gucheng

Model RMSE R2 RMSE R2

Extra Trees Regressor 16.8418 0.9560 18.9825 0.9470
Random Forest Regressor 18.7612 0.9455 20.8966 0.9357
Light Gradient Boosting Machine 18.1819 0.9488 20.0165 0.9410
Gradient Boosting Regressor 22.0409 0.9250 24.9048 0.9086
Decision Tree Regressor 27.2191 0.8853 30.3225 0.8646

Tiantan Ghaziabad

Model RMSE R2 RMSE R2

Extra Trees Regressor 16.4132 0.9579 37.8253 0.8812
Random Forest Regressor 17.9955 0.9493 40.8506 0.8615
Light Gradient Boosting Machine 17.0169 0.9546 39.0488 0.8734
Gradient Boosting Regressor 20.7811 0.9325 45.0922 0.8322
Decision Tree Regressor 25.7433 0.8961 58.983 0.7162

The dataset used for this experimentation contained missing values for around 7 to
15% of the available data, which was imputed using iterative imputation that used extra
tree regression as an estimator as mentioned above.

5.2. Removing Outliers Based on the Values of MAE

The next step in the methodology is to identify the anomalies in the time series dataset;
usually, anomalies are where the reconstruction error is large. To check the anomalies, the
MAE values on the trained dataset were checked and decided as the threshold. For our
dataset, the threshold vale was set to MAE = 1.5, or the threshold can be defined as a 90%
value of maximum. Figure 2 shows the graph of the train data MAE values vs. the number
of samples. Above the threshold, all the corresponding values in the test dataset were
defined as anomalies and removed.
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5.3. Performance of Proposed Method

In the experimental setup for all the cases, the multivariate LSTM model at the last
stage of prediction has the same number of layers. The relu activation function was used.
Based on the experiments performed, the epoch size is limited to 10 epochs in each case,
as the error in 10 epochs is low. In Figure 3, a sample graph of the model training and
validation curve (loss) is presented. This graph shows the training and validation loss for
the Tiantan location dataset. From the graph, it is seen that the training loss and validation
loss decrease. It can be concluded from the graph that the proposed model is a good fit for
the used dataset.
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Figure 3. Sample graph of training and validation curve for Tiantan location dataset.

Table 4 shows the values for the performance evaluation parameters, namely MAE,
MSE, RMSE, and R2, for four different models, namely univariate LSTM, univariate 1D
CNN, univariate GRU, and multivariate LSTM, for three different scenarios, i.e., with the
original data with missing values removed, with IIET imputation, and finally with removed
anomaly dataset, respectively.

Each graph shown in Figures 4 and 5 is a visualization of the results and provides the
following information: the MAE and RMSE values for each of the four models with the raw
(blue), imputed (brown), and proposed method where anomalies were removed (green).

Table 4 shows the results of all experimentations performed for all three locations
of Aotizhonhxin, Gucheng, and Tiantan in Beijing. In the case of Aotizhonhxin, it is
observed that the RMSE values for the raw data with the missing values removed, with
IIET imputed data, and with the proposed data preprocessing method are 13.6125, 19.7891,
and 9.8883, respectively; the same is the case with the MAE values which are 10.4696,
13.7667, and 7.4455, respectively. Here, it is observed that the RMSE values and MAE values
for the MIA-LSTM method are much smaller compared to the state-of-the-art methods,
such as using univariate LSTM, univariate 1D CNN, univariate GRU, and LSTM without
data preprocessing. These stated methods with input data without preprocessing can be
considered benchmark methods for comparison. These results show the importance of
data preprocessing prior to the application of any prediction method. A similar variation is
observed for Gucheng and Tiantan locations.
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Table 4. Summary of results of experimentation performed on the dataset of four cities.

RAW Data (Removed Missing Values) Imputed Data Proposed Method

Aotizhonhxin MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Univariate LSTM 28.1138 63.4783 0.45535 18.083 44.4132 0.7165 30.6951 63.0365 0.3073
Univariate 1D 10.8385 19.8228 0.9468 11.2217 20.54922 0.9393 10.7215 19.4150 0.9342
Univariate GRU 20.9584 51.2164 0.6454 19.6057 47.97042 0.6692 16.9252 39.5841 0.7268
Multivariate LSTM 10.4696 13.6125 0.7509 13.7667 19.78918 0.8095 7.44549 9.8883 0.8159

Gucheng MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Univariate LSTM 24.574 61.329 0.5888 20.867 53.297 0.619 17.653 41.912 0.6882
Univariate 1D 12.586 23.795 0.9381 11.699 22.004 0.9351 10.56 19.832 0.9302
Univariate GRU 25.761 63.746 0.5557 25.227 61.884 0.4863 19.555 46.121 0.6224
Multivariate LSTM 19.12256 23.00376 0.148226 18.0171 26.6355 0.8444 11.1987 13.9660 0.6480

Tiantan MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Univariate LSTM 32.311 68.194 0.3872 57.104 65.6630 −0.382 21.272 47.265 0.6202
Univariate 1D 11.431 19.983 0.9474 11.674 20.352 0.9373 11.211 19.567 0.9349
Univariate GRU 31.733 67.657 0.3969 28.747 63.273 0.3939 19.312 43.369 0.6802
Multivariate LSTM 13.10567 17.301 0.8305 18.0027 28.239 0.8054 10.6244 13.884 0.5845

Ghaziabad MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Univariate LSTM 30.1511 62.4346 0.4963 43.7731 94.1758 0.4100 37.0318 74.6937 0.4000
Univariate 1D 17.5631 34.6024 0.8453 21.4284 43.8764 0.87194 24.7072 43.5987 0.7955
Univariate GRU 46.8667 87.3550 0.0140 31.1143 72.6943 0.6484 68.5177 112.294 −0.3561
Multivariate LSTM 32.3471 46.6165 0.6351 14.7406 21.0891 0.2630 13.002 16.5374 −0.0237
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It is clear that the proposed method obtains the best result with the smallest RMSE
value among all the methods. For the Gucheng location, the results show that the RMSE
values for the raw data with the missing values removal, with IIET imputed data, and with
the proposed data preprocessing method are 23.7949, 22.0042, and19.8316, respectively; the
case is the same for the MAE values which are 12.5858, 11.6991, and 10.5600, respectively,
which shows that prediction error decreases as we preprocess the data initially with
imputation and later by removing anomalies. Moreover, the R2 value is 0.9302, which is
the highest among all the methods, showing that 1D CNN is better in comparison to all
regression models in terms of the RMSE value.

Table 4 shows the results for the dataset from Ghaziabad, India. The best results
are obtained from the multivariate LSTM model. With the proposed method, the RMSE
values for the raw data with the missing values removal, with IIET imputed data, and
with the proposed data preprocessing method are 46.6165, 21.0891, and 16.5373, respec-
tively. The case is the same with the MAE values which are 32.3471, 14.7405, and 13.0029,
respectively. Although the 1D CNN method was obtaining good predictive results for the
dataset of Beijing, with the Ghaziabad dataset, the results are not close to the multivariate
LSTM method results; we can say that with more missing data, 1D CNN performance
degrades. As mentioned, there was more than 15% of data missing in the Indian dataset;
here, imputation plays an important role and can be observed in the better results of the
multivariate LSTM prediction compared to using the raw data for prediction with complete
rows removed, even if missing values were present. Further removal of anomalies in
the imputed dataset using the autoencoder improves the prediction accuracy further and
makes it a more reliable system by providing the least error in prediction. Visualization
in Figures 4 and 5 makes it clearer. Figure 5 shows a random 100 out of nearly 3000 data
points where the predicted and actual values are from the test dataset. It is also seen from
Table 4 that for Ghaziabad, the RMSE value for the proposed method is 16.5374, which
is quite high compared to the RMSE values of the Aotizhonhxin, Gucheng, and Tiantan
location datasets. Moreover, from Table 2, it is clear that the percent of missing values of
the Ghaziabad location is higher compared to the remaining three locations.

From Table 4 and Figures 4 and 5, it is observed that 1D CNN works better amongst all
three univariate models with a minimum value of MAE and RMSE. Graph of actual versus
predicted concentration of PM2.5 pollutant from sample of 100 points for each location is
given in Figure 6. From the results obtained, we can conclude that with imputed data, the
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error value decreases using the univariate 1D CNN model, which motivates the researcher
to handle missing values efficiently.

Algorithms 2022, 15, x FOR PEER REVIEW 17 of 22 
 

 
(a) 

 
(b) 

Figure 6. Cont.



Algorithms 2023, 16, 52 16 of 20

Algorithms 2022, 15, x FOR PEER REVIEW 18 of 22 
 

 
(c) 

 
(d) 

Figure 6. (a–d): Graph of actual versus predicted concentration of PM2.5 pollutant from sample of 

100 points for each location. 

The results obtained show that the proposed MIA-LSTM model obtains the best re-

sult with greatly smaller values of RMSE and MAE in all four graphs. The proposed model 

Figure 6. (a–d): Graph of actual versus predicted concentration of PM2.5 pollutant from sample of
100 points for each location.



Algorithms 2023, 16, 52 17 of 20

The results obtained show that the proposed MIA-LSTM model obtains the best
result with greatly smaller values of RMSE and MAE in all four graphs. The proposed
model performs better, obtaining the smallest value of MAE in all cities from two different
countries. This validates that there is a need for data preprocessing prior to applying
forecasting methods.

6. Conclusions and Future Scope

Researchers and scientists have developed good models for forecasting air pollution by
using various state-of-the-art methods. From the experimental analysis, it is concluded that
real-world datasets contain noisy data, and to achieve reliable and accurate forecasting of air
pollution, handling of the missing data, outlier detection and removal, and preprocessing
steps are of utmost importance. In this paper, these issues are addressed by using powerful
data preprocessing steps.

Similarly, effective evaluation measures, i.e., RMSE, MAE, and R2, are used to compare
and evaluate various prediction models on different datasets. The results show that the ET
regressor outperforms other regressors, such as RF, LGBM, GB, and DT, for PM2.5 prediction.
The ET regressor was wisely chosen based on the experimentations for iterative imputation,
as demonstrated in Table 3. Different models, such as univariate LSTM, univariate 1D
CNN, univariate GRU, and multivariate LSTM, were used for forecasting the hourly value
of PM2.5. All these models were used in three cases: firstly, with raw data where all missing
values were removed; secondly, with imputation; and finally, with the removal of anomalies.
The proposed forecasting model, i.e., MIA-LSTM, is efficient and effective in predicting
PM2.5 concentration with the smallest error for noisy data. The proposed model shows
reduced RMSE and MAE values for all the datasets used, as shown in Table 4.

In the future, the existing work can be extended in the following ways:

• Datasets from different locations with different pollutant concentrations can be har-
nessed to understand the behavior of air pollution in those particular locations.

• The time complexity is one of the important parameters for forecasting models. Re-
ducing the time complexity without affecting the accuracy of the forecasting can be
one of the key aspects of the proposed work.

• More complex models and algorithms, such as an ensemble and CNN-LSTM, can be
utilized to further improve the accuracy of air pollution forecasting.
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