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Abstract

:

Evolutionary algorithms have been widely studied in the literature to find sub-optimal solutions to complex problems as the Traveling Salesman Problem (TSP). In such a problem, the target positions are usually static and punctually defined. The objective is to minimize a cost function as the minimal distance, time or energy. However, in some applications, as the one addressed in this paper—namely the data collection of buried sensor nodes by means of an Unmanned Aerial Vehicle— the targets are areas with varying sizes: they are defined with respect to the radio communication range of each node, ranging from a few meters to several hundred meters according to various parameters (e.g., soil moisture, burial depth, transmit power). The Unmanned Aerial Vehicle has to enter successively in these dynamic areas to collect the data, without the need to pass at the vertical of each node. Some areas can obviously intersect. That leads to solve the Close Enough TSP. To determine a sub-optimal trajectory for the Unmanned Aerial Vehicle, this paper presents an original and efficient strategy based on an evolutionary algorithm completed with geometrical heuristics. The performances of the algorithm are highlighted through scenarios with respectively 15 and 50 target locations. The results are analyzed with respect to the total route length. Finally, conclusions and future research directions are discussed.
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1. Introduction


The recent advances in Unmanned Aerial Vehicles (UAVs), such as increased payload, operating time and autonomous flight capacities, enable today to consider their use in a growing number of applications. In automatic mode, they can even autonomously take off, follow a previously defined trajectory and landing, [1]. They can act, for example, in smart farming, environmental monitoring, emergency aid and parcel delivery [2,3]. Moreover, combined with Wireless Sensor Networks (WSNs), they can collect data through radio communication, play the role of mobile gateway or communication relay in case of connectivity failure, and perform accurate operations, see [4,5,6].



However, planning the trajectory to be followed by an Unmanned Aerial Vehicle (UAV) in automatic mode can rapidly become a challenging task, in particular when the minimization of a cost function, as distance, time or energy, is pursued due the limited flight time of the UAV. For example, in the case of several static waypoints to be visited by the UAV in a free-obstacle working space, the search for the optimal trajectory requires to solve the Traveling Salesman Problem (TSP) [7,8,9]. The waypoints can be regarded as the cities to be visited. The time complexity of the TSP increases exponentially with the number of cities according to   ( n  b  c i t i e s   − 1 ) !  , leading rapidly to prohibitive calculation costs. For example, 25 cities represent already   24 ! ≃  10 23    possible routes. By considering a computer able to calculate 1 billion routes per second, it would take 10 million years to a brute force algorithm to calculate all the possible combinations (   10 23  /  (  10 9  ∗ 60 ∗ 60 ∗ 24 ∗ 365 )  ≃  10 7   ) to next find the best solution. An alternative is to accept to not find the optimal solution and seek a sub-optimal solution. Numerous algorithms have been proposed to that end in the literature. Some of them are inspired by the natural selection (e.g., genetic algorithms [10]) or animal behavior (e.g., Ant Colony Optimization algorithms [11], Particle Swarm Optimization algorithms [12]). These approaches are non-deterministic, iteratives, and a criteria is required to stop the algorithm (e.g., number of iterations, threshold reached). Additional constraints can be considered, leading to variants of TSP. In the classical TSP problem, called Symmetric TSP (STSP), the route between two cities can be performed indifferently in one direction or the other. In the Asymmetric TSP (ATSP), the travel cost can be different to travel from city A to city B, than to travel from city B to city A—see [13]. In the Precedence Constrained TSP (TSP-PC), an additional constraint is that a city A should not be visited unless the city B was visited first—see [14]. We can also mention the Capacited Vehicle Routing Problem (CVRP) where the vehicle has limited carrying capacity, requiring to go back to the depot when the vehicle is full—see [15]. Another variant is that the cities are not represented by points, i.e., an exact location, but by areas with various shapes called neighborhoods—see [16]. In this case, the vehicle has to enter successively within the areas without the need to pass through the center. The problem is called TSP with Neighborhoods (TSPN). A similar problem is the Close Enough TSP (CETSP) where the areas are defined by circles of different radius—see [17,18].



1.1. Application and Objective


The development of Wireless Underground Sensor Networks (WUSNs) is a recent research axis based on sensor nodes buried at a few dozen centimeters deep to not impact the aboveground activities [19,20,21,22], with as main applications the environmental monitoring and precision agriculture [23,24,25]. The radio communication ranges of the buried sensor nodes are however limited due to the high attenuation of the electromagnetic waves in soil. Our previous work highlighted that the communication ranges of radio devices based on LoRa technology can vary from a few meters to several hundred meters with respect to various parameters (e.g., burial depth, soil moisture, transmit power, frequency—see [26]. The idea consists to use an UAV to collect the data: that approach has the advantage to avoid the installation of numerous and costly gateway in the environment, and offer the possibility to rapidly and safely cover wide areas. To that end, the trajectory of the UAV has to be determined, entering successively within the communication ranges of each node to perform the data collection task with the minimal route length.



The objective of this paper is to propose a trajectory planning algorithm enabling an UAV to successively and optimally pass through several circular areas of different radius, representing the radio communication ranges of the buried sensor nodes, see the illustration in Figure 1 and the problem statement in Figure 2.



It is assumed that the UAV flies at a constant altitude h, leading to targets in the form of circular areas of radius r. The UAV does not need to pass at the center of the circles but only within the disks to receive the data. The circles can intersect, offering the possibility to position the UAV at the intersections. We can also mention that it is assumed that the flying height is smaller than the smallest communication range of the nodes to access to all the data. That application necessitates clearly to address the Close Enough TSP.




1.2. Related Works


For several years, numerous algorithms have been developed for solving the TSP, mainly the symmetric TSP. A classification of some of these algorithms is presented in Figure 3.



The exact algorithms aim to find the optimal solution to a TSP. For example, the Brute Force algorithm calculates all the possible permutations, whereas the Cutting Plane [27], the Branch-and-Bound [28] and the Branch-and-Cut methods [29] limit the number of possibilities to reduce the calculation time. Concorde is an exact solver which combines several of these techniques, and is able to solve TSP with numerous cities (tens of thousands) [30]. The limitation of these exact algorithms is however the calculation time which can be rapidly become excessive in case of numerous cities to be visited. A strategy can be to parallelize the algorithms and distribute the calculation on several CPU [31].



Another approach consists to develop approximate algorithms, with the objective to find a sub-optimal solution in a limited amount of time. As depicted in Figure 3, the approximate algorithms can be classified into three main groups, those based on constructive heuristics, those based on improvement heuristics and those based on meta-heuristics, see [32]. The principle of constructive heuristics is to start from an empty tour and iteratively extend the tour, for example by incorporating the nearest neighbor. The strategy of improvement heuristics is different because they start from a complete tour, which is progressively improved, for example using local permutations (e.g., K-opt [33], Lin-Kernigan-Helsgaun [34]). Meta-heuristic algorithms are generic algorithms able to deal with a broad range of problems. They have generally better performances than the heuristics algorithms, in particular by enabling to consider more complex and large TSP. They are usually based on the evolution of one or more starting populations (e.g., Genetic Algorithm [35], Ant Colony Optimization [36], Particle Swarm optimization [12]).



In the literature, the CETSP has been mainly addressed with meta-heuristic approaches. The difficulty of that problem is that the target areas are continuous, as at each point is associated a neighborhood, leading that even exact approaches are not easily applicable. The shapes of the neighborhoods are most of the time considered as discs with the same dimensions.



Initially, the CETSP was addressed by [37,38] to find the shortest route for a truck to perform automatic meter reading of customers from radio communication systems (e.g., remote electricity or water consumption measurements). Clustering-based and convex hull-based algorithms were proposed to group the customer nodes before applying a TSP solver. This approach is mainly based on the search for the adequate definition and position of groups of nodes, called supernodes, i.e., circles with a predetermined radius covering several customers. A CETSP with time window (CETSP-TW) was studied by [18] to take into account that each customer is available only for a limited period of time during the day. Ref. [39] introduced the Steiner Zones (intersection of the neighbohoods of degree k) and presented different methods to reduce the graphs. Ref. [40] proposed a branch-and-bound algorithm to address the CETSP in two and three dimensions, and [17] presented a method to estimate previously a tour length from the knowledge of several variables. Refs. [41,42] proposed discretization schemes to define first a finite number of points on the circumferences and inside the neighborhoods (hitting points), and next apply a TSP algorithm. Ref. [43] assumed disjoint regions and applied first a TSP algorithm to next modify the hitting points.




1.3. Contributions and Paper Organization


The definition of the optimal trajectory of an UAV to collect data from buried sensor nodes is an emerging application that, to the best of our knowledge, has not yet been addressed in the literature. The contribution of this paper is to propose an efficient algorithm, fast and easy programmable, to solve the CETSP applied to this application. The algorithm is decomposed of three steps, namely the definition of new target locations in case of intersections, the use of an evolutionary algorithm to find a sub-optimal order, and finally an iterative geometrical reduction to significantly reduce the trajectory length. This algorithm is programmed in a software developed in C++. In comparison to the previously presented work, this algorithm combines the resolution of a combinatorial problem (TSP) with geometrical heuristics, applied to a problem including the possibility of intersections.



The paper is organized as follows. The modeling and the methodology proposed are presented in Section 2. The algorithm is applied to two user cases. The results are reported in Section 3. The conclusion, discussions and future research directions are presented in Section 4.





2. Methodology


2.1. Modeling and Methodology Proposed


We consider a set of n circles of variable sizes, distributed in a Euclidean plane, see Figure 2. Each circle is defined by the coordinates (   x i  ,  y i  ,  r i   ) where    x i  ,  y i    are the coordinates of the center of the circle and   r i   its radius. The circles can intersect. The objective is to define a tour, having the minimal total distance, passing through all the circles. The trajectory will be composed of segment lines connecting the different circles.



To address this issue, we propose a methodology based on three successive steps. The first one determines new target locations for the nodes having some communication range intersections. The second one presents an evolutionary algorithm able to find a sub-optimal order to successively visit the target locations. Finally, from geometrical heuristics, the third one reduces significantly the length of the trajectory by passing either inside the areas (without the necessity to go by the center) or at the boundary of the areas.




2.2. First Step: New Target Locations in Case of Intersections


The communication ranges of some nodes can intersect. In this case, the UAV can be advantageously positioned at the intersections to communicate with several nodes simultaneously. The first step consists then to change the target locations by the points located at the center of the intersection areas, see Figure 4. That enables to reduce the number of target locations that will lead to reduce the tour length. For simplicity reasons, the communication ranges of these new points are defined by circles centered on the new point and whose radius is defined with respect to the boundaries of the previous circles.




2.3. Second Step: Evolutionary Algorithm to Find a Sub Optimal Order


The second step consists to define an algorithm able to find a sub-optimal order to reach the different locations. The cost function is the shortest distance. The principle of the proposed algorithm is depicted in Figure 5. It is a genetic algorithm based on three mutations.



The algorithm starts with the creation of a set of initial solutions (list of node numbers whose order is randomly determined): that forms the initial population. This population is next divided in groups: in each group, the best solution, that means the one with the route having the minimal Euclidean distance, is kept and called the survivor. The other routes of the group are replaced by copies of the survivor with mutations: on a random interval, the node orders are either reversed, shifted or swapped, see the details in Figure 6. All the routes are then randomly remixed to form the new population. This process is repeated until a stop criteria is satisfied (number of iterations). The advantage of such an algorithm is to be relatively simple and easy to program. The main parameters are the initial size chosen for the population and the number of iterations to stop the algorithm. A compromise has obviously to be reached between the calculation cost and the opportunity to find a good solution.




2.4. Step 3: Geometrical Reduction


An important aspect of the Close Enough TSP (CETSP) is that the trajectory can pass within the circular disks. To take this possibility into account, the strategy proposed consists, for each location, to consider the triangle formed with the previous and next locations, see Figure 7.



In the triangle ABC, the bisecting line is determined from the point A. If the length of the bisector is superior to the radius of the circle centered in A (left case on Figure 7), the point A is deplaced in A’ (intersection of the bisector and the circle). On the contrary, the point A’ is defined as being the intersection point between the bisector and the line (BC), (right case on Figure 7). This strategy is repeated on all the points in the order defined in step 2. At each iteration, the position of the previously calculated point is a vertex of the new triangle, see Figure 8. Once this procedure is applied on all the points, the trajectory length is significantly reduced. This procedure can be repeated until the shape of the trajectory stops changing.



The algorithm is summarized in the diagram presented Figure 9.





3. Results


3.1. Preliminary Test


The algorithm is first tested on a situation with a limited node numbers to easily highlight the different steps of the algorithm. To that end, 15 nodes are considered. That leads to   14 ! ≃ 8 .  10 10    route possibles. The coordinates of the nodes are given in Appendix A, Table A1, and presented in Figure 10 (screenshot of our software developed in C++).



We first applied the evolutionary algorithm on the data without taking account the intersections and communication ranges. The parameters are a population of 100 combinations, 25 groups, and stop criteria defined as 1000 iterations. The result is the node order “15 6 4 8 12 3 2 1 5 11 9 10 13 14 7” leading to a total route length of 4635 m, see Figure 11.



The proposed algorithm in three steps is then applied. In step 1, the fact to take into account the intersections leads to reduce the node number to 13 as depicted on Figure 12a. Step 2 is the application of the evolutionary algorithm. The result is presented in Figure 12b. The total route length obtained is 4410 m. That means a reduction of 4.8% in comparison to the previous result. Step 3 is the geometrical reduction of the trajectory found at step 2. Two iterations are carried out. The first iteration reduces significantly the trajectory length, see Figure 12c. The second one improves further the result, see Figure 12d.



The final result is represented with the 15 nodes on Figure 13a,b. The trajectory length is 3267 m, that means a reduction of 29.5% with respect to the initial result (4635 m).




3.2. Test with 50 Nodes


The algorithm is then tested on a greater number of data (50 nodes). The coordinates of the nodes are given in Appendix A (Table A3) and are displayed in Figure 14. There are   49 ! ≃  10 63    possible routes.



To compare the benefit of the algorithm, we first applied the evolutionary algorithm (population size: 100, group number: 25, iteration number: 1000) on the data without taking account the intersections and communication ranges. The result is presented on Figure 15: the total route length is 15,249 m with the node order “11 5 1 2 3 4 8 12 20 19 36 37 41 42 22 21 23 24 38 43 49 39 47 46 40 44 45 48 34 25 33 50 30 29 35 28 27 26 31 32 18 17 15 6 16 14 13 7 9 10 11”.



The algorithm in three steps is applied on these data. Step 1 found nine intersections, enabling to reduce the number of nodes. The result of the first step is presented in Figure 16a. Step 2 applies the evolutionary algorithm. A trajectory of length 13,382 m is obtained, see Figure 16b, that represents a reduction of 12.2% in comparison to the initial trajectory. Finally, step 3 is applied, based on geomtrical reductions. The result of step 3 is presented in Figure 16c. The length of the trajectory is 10,910 m. That represents a reduction of 28.4% with respect to the initial trajectory. The final result is represented with the 50 nodes in Figure 16d.





4. Conclusions


This paper addresses the Close Enough TSP to find a sub-optimal trajectory in term of minimal distance for an UAV having to collect data from buried sensor nodes distributed in the environment. The problem is addressed in 2D with the representation of the communication ranges by circular disks. An algorithm is proposed in three successive steps: the first one redefines some target points in case of intersections that enables to reduce the number of nodes. The second one is an evolutionary algorithm enables to find a sub-optimal order to visit the different nodes. Finally, the third step reduces significantly the length of the trajectory through geometrical heuristics. The algorithm is applied on two scenarios with respectively 15 and 50 nodes. The results highlight the obtention of limited trajectory length for the UAV. In particular, if the evolutionary algorithm is applied directly without geometrical heuristics on the 50 nodes, the obtained route length was 15,249 m. That distance was reduced by 28.4% (10,910 m) if the complete algorithm is applied.



This algorithm has been implemented in a software developed in C++. The advantage of this algorithm is to have a low implementation cost. It is easily programmable without the need of external libraries. The inputs, displayed in a geo-referenced map, are the GPS coordinates of the target locations with their respective communication ranges. These coordinates are first converted into Cartesian ones, to apply next the algorithm. The evolutionary algorithm proposed in this paper (genetic algorithm), as well as the geometrical heuristics, are easy to program and deliver a sub-optimal solution in a few seconds. The output is the trajectory to be followed by the UAV, with the successive waypoints.




5. Discussions and Future Work


5.1. Comparison with Other Works


To evaluate the performance of the algorithm proposed in this paper, we tested our algorithm on the “eil5” benchmark from TSPLIB composed of 51 nodes. The coordinates of the nodes and the corresponding radius are given in Appendix A (Table A3). We obtained the result presented in Figure 17, with a trajectory length of 320.6 m. In comparison with other works on this same benchmark, the approximation algorithm developed by [41] led to a trajectory with a length of 354 m, see [43]. The algorithm proposed by [43], based on the combination of a TSP solver and heuristics, found a very similar trajectory in comparison to the one depicted in Figure 17, with a length around 320 m. That solution seems to be the optimal one. That result clearly highlights the performance of our algorithm having the capacity to deliver pertinent results for such Close Enough TSP.




5.2. Future Work


The CETSP was evaluated in this paper in 2D. The assumption was made that the soil can be considered as a plane and that the UAV flies at a constant altitude (in a free-obstacle workspace). A first interesting perspective is to determine the optimal altitude for the UAV. In fact, the configuration of the problem changes with respect to the flight altitude as highlighted with the illustration on Figure 18. A flight at low altitude is more dangerous for the UAV with the possibility to encounter numerous obstacles (e.g., trees), but better in terms of quality of communication with the buried sensor nodes. On the contrary, a flight at high altitude is safer but the areas of the communication ranges are reduced.



The problem could also be approached directly in three dimensions to take into account the altitude variations of the ground. The approach presented in this paper will be completed to that end: the georeferenced points will be defined by 3D coordinates (longitude, latitude, altitude). In the first step, the intersections of the communication range will be determined by spheres. In the second step, the calculation of the Euclidean distance in the evolutionary algorithm will be calculated in 3D. Finally, in the third step, the geometrical reduction will be carried out by considering 3D shapes.



Another interesting way of improvement is to add some constraints on the curvature variations of the trajectory. In fact, the kinematic and dynamic behavior of the UAV could be advantageously considered to avoid sharp movements of the UAV, all the more at high speed. The consideration of obstacles in the workspace of the UAV could also be required when the UAV flies at low altitude, e.g., in case of very short communication ranges of the buried sensor nodes. A preliminary flight could also be performed to learn the actual communication ranges of the buried sensor nodes and model the variations with respect to different environmental measurements. Finally, it would be interesting to complete the trajectory with temporal aspects, in particular to take into account the time to collect the data at each node location.
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The following abbreviations are used in this manuscript:



	ATSP
	  Asymmetric Traveling Salesman Problem



	CETSP
	  Close Enough Traveling Salesman Problem



	CVRP
	  Capacited Vehicle Routing Problem



	STSP
	  Symmetric Traveling Salesman Problem



	TSP
	  Traveling Salesman Problem



	TSPN
	  Traveling Salesman Problem with Neighborhoods



	TSP-PC
	  Precedence Constrained Traveling Salesman Problem



	UAV
	  Unmanned Aerial Vehicle



	WUSN
	  Wireless Underground Sensor Network
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Table A1. Georeferenced and metric coordinates of 15 nodes to be visited with their respective radio communication ranges: benchmark used to test the algorithm in the Section 3.1.






Table A1. Georeferenced and metric coordinates of 15 nodes to be visited with their respective radio communication ranges: benchmark used to test the algorithm in the Section 3.1.





	n
	Latitude (°)
	Longitude (°)
	x (m)
	y (m)
	Range (m)





	1
	46.343386
	3.434335
	0
	0
	150



	2
	46.346520
	3.435697
	100
	350
	90



	3
	46.347632
	3.437019
	200
	475
	90



	4
	46.347387
	3.439093
	360
	450
	110



	5
	46.344879
	3.437938
	275
	170
	90



	6
	46.348953
	3.444582
	780
	630
	90



	7
	46.346051
	3.446861
	960
	310
	215



	8
	46.349827
	3.437973
	270
	720
	80



	9
	46.346187
	3.442187
	600
	320
	80



	10
	46.345326
	3.442819
	650
	225
	70



	11
	46.343771
	3.440838
	500
	50
	120



	12
	46.349679
	3.434721
	20
	700
	150



	13
	46.342789
	3.449263
	1150
	−50
	50



	14
	46.344312
	3.449944
	1200
	120
	50



	15
	46.349992
	3.448761
	1100
	750
	120
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Table A2. Benchmark of 50 nodes used to test the algorithm in the Section 3.2.






Table A2. Benchmark of 50 nodes used to test the algorithm in the Section 3.2.





	n
	x (m)
	y (m)
	Radius (m)
	n
	x (m)
	y (m)
	Radius (m)





	1
	0
	0
	150
	26
	2000
	50
	50



	2
	100
	350
	90
	27
	2100
	200
	50



	3
	200
	475
	90
	28
	2200
	400
	90



	4
	360
	450
	110
	29
	2300
	500
	110



	5
	275
	170
	90
	30
	2400
	800
	90



	6
	780
	630
	90
	31
	1600
	50
	120



	7
	960
	310
	215
	32
	1800
	400
	100



	8
	270
	720
	80
	33
	1900
	1000
	50



	9
	600
	320
	80
	34
	2400
	1200
	80



	10
	650
	225
	70
	35
	2400
	400
	150



	11
	500
	50
	120
	36
	250
	1400
	120



	12
	20
	700
	150
	37
	400
	1500
	80



	13
	1150
	−50
	50
	38
	800
	1450
	120



	14
	1200
	120
	50
	39
	1200
	1600
	100



	15
	1100
	750
	120
	40
	2000
	1500
	90



	16
	1200
	400
	150
	41
	100
	1800
	150



	17
	1350
	800
	90
	42
	500
	1700
	50



	18
	1400
	600
	50
	43
	900
	1600
	90



	19
	0
	1200
	50
	44
	2000
	1700
	80



	20
	100
	900
	50
	45
	2100
	1800
	120



	21
	450
	1000
	100
	46
	1800
	1600
	80



	22
	500
	1200
	50
	47
	1500
	1800
	100



	23
	600
	1050
	100
	48
	2400
	1500
	90



	24
	700
	1200
	50
	49
	1200
	1200
	100



	25
	1600
	1200
	90
	50
	2000
	600
	90
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Table A3. Benchmark of 51 nodes (eil5 from TSPLIB) used to test the algorithm in the Section 5.1.






Table A3. Benchmark of 51 nodes (eil5 from TSPLIB) used to test the algorithm in the Section 5.1.















	n
	x (m)
	y (m)
	Radius (m)
	n
	x (m)
	y (m)
	Radius (m)





	1
	37
	52
	2.8
	27
	30
	48
	3.3



	2
	49
	49
	3.3
	28
	43
	67
	3.0



	3
	52
	64
	3.0
	29
	58
	48
	3.0



	4
	20
	26
	2.7
	30
	58
	27
	3.6



	5
	40
	30
	0.2
	31
	37
	69
	2.0



	6
	21
	47
	3.0
	32
	38
	46
	3.2



	7
	17
	63
	4.0
	33
	46
	10
	3.6



	8
	31
	62
	3.7
	34
	61
	33
	3.0



	9
	52
	33
	2.0
	35
	62
	63
	2.0



	10
	51
	21
	2.0
	36
	63
	69
	2.6



	11
	42
	41
	2.5
	37
	32
	22
	2.4



	12
	31
	32
	2.7
	38
	45
	35
	3.0



	13
	5
	25
	3.4
	39
	59
	15
	2.5



	14
	12
	42
	2.8
	40
	5
	6
	3.4



	15
	36
	16
	2.4
	41
	10
	17
	2.9



	16
	52
	41
	2.8
	42
	21
	10
	4.0



	17
	27
	23
	2.2
	43
	5
	64
	3.0



	18
	17
	33
	3.2
	44
	30
	15
	3.4



	19
	13
	13
	2.0
	45
	39
	10
	2.8



	20
	57
	58
	3.0
	46
	32
	39
	0.8



	21
	62
	42
	2.3
	47
	25
	32
	3.0



	22
	42
	57
	2.5
	48
	25
	55
	2.0



	23
	16
	57
	2.0
	49
	48
	28
	2.0



	24
	8
	52
	3.0
	50
	56
	37
	2.8



	25
	7
	38
	2.8
	51
	30
	40
	1.0



	26
	27
	68
	3.4
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Figure 1. The objective is to optimally plan the trajectory of an UAV having to collect the data through radio communication of several buried sensor nodes distributed in the environment. 
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Figure 2. Problem statement in 2D: find the optimal trajectory passing through the circular disks representing the radio communication ranges of the buried sensor nodes at the altitude h. 
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Figure 3. Algorithms for solving TSP. 
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Figure 4. New target location defined by the intersection of communication ranges. 
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Figure 5. Principle of the evolutionary algorithm to generate a new population. 
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Figure 6. Mutations. 
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Figure 7. In the triangle ABC, relocation of the point A in A’: (left) either on the boundary of the communication range if the limit is reached, (right) on the straight line (BC). 
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Figure 8. The previously calculated point C is the vertex of the next triangle ABC. 
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Figure 9. Diagram of the algorithm. 
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Figure 10. Display of the node locations in the developed software. At each node location is assigned a number from 1 to 15, see Appendix A, Table A1. 
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Figure 11. Initial test of the evolutionary algorithm on the 15 nodes: the route length is 4635 m. 
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Figure 12. The three steps of the proposed algorithm. (a) Step 1: reduction of the node number; (b) Step 2: evolutionary algorithm; (c) Step 3: geometrical reduction (1st iteration); (d) Step 3: geometrical reduction (2nd iteration). 
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Figure 13. Display of the final result. (a) Final result; (b) Display in the software. 
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Figure 14. Node locations with their respective communication ranges. 
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Figure 15. Initial test with the evolutionary algorithm on the 50 nodes: the route length is 15,249 m. 
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Figure 16. The proposed algorithm applied to the 50 nodes. (a) Step 1: reduction of the node number; (b) Step 2: evolutionary algorithm; (c) Step 3: geometrical reduction; (d) Final result. 
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Figure 17. Test of our algorithm on the “eil5” benchmark from TSPLIB composed of 51 nodes. The length of the obtained trajectory is 320.6 m. 






Figure 17. Test of our algorithm on the “eil5” benchmark from TSPLIB composed of 51 nodes. The length of the obtained trajectory is 320.6 m.



[image: Algorithms 16 00044 g017]







[image: Algorithms 16 00044 g018 550] 





Figure 18. The communication ranges of the buried sensor nodes are represented by hemispherical shapes. The problem consists to find the optimal altitude of the UAV. 
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