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Abstract: Electrical impedance tomography (EIT) is an imaging modality that can estimate a visual-
ization of the conductivity distribution inside the human body. However, the spatial resolution of
EIT is limited because measurements are sensitive to noise. We investigate a technique to incorporate
a priori information into the EIT reconstructions of the D-Bar algorithm. Our paper aims to help
engineers understand the behavior of the D-Bar algorithm and its implementation. The a priori
information is provided by a radar setup and a one-dimensional reconstruction of the radar data.
The EIT reconstruction is carried out with a D-Bar algorithm. An intermediate step in the D-Bar
algorithm is the scattering transform. The a priori information is added in this exact step to increase
the spatial resolution of the reconstruction. As the D-Bar algorithm is widely used in the mathematical
community and thus far has limited usage in the engineering domain, we also aim to explain the
implementation of the algorithm and give an intuitive understanding where possible. Different
parameters of the reconstruction algorithm are analyzed systematically with the help of the GREIT
figures of merit. Even a limited one-dimensional a priori information can increase the reconstruction
quality considerably. Artifacts from noisy EIT measurements are reduced. However, the selection
of the amount of a priori information and the estimation of its value can worsen the reconstruction
results again.

Keywords: electrical impedance tomography; D-Bar; radar; fusion

1. Introduction

Electrical impedance tomography (EIT) is a modality that allows estimating the con-
ductivity distribution inside the human body. Compared to other established imaging
techniques, such as magnetic resonance imaging or computed tomography, it has some
distinct advantages: firstly, an EIT system can be constructed at a low cost; secondly, it does
not depend on potentially harmful X-rays; thirdly, it can be applied long-term at the bedside
of the patient [1]. Medical applications of EIT may include the monitoring of the lung,
including observing regional lung ventilation and perfusion [2], estimation of the size and
volume of the bladder [3], monitoring of lung recruitment and lung collapse [4], tracking
of 3D brain activity [5], and usage in breast cancer imaging [6]. The EIT can also be used
outside the medical context, for example, for monitoring semiconductor manufacturing [7]
or monitoring damage in concrete [8].

The EIT belongs to the class of inverse problems. The solution to such problems
requires unique algorithms. These methodologies can be grouped into three major groups.
The first set of methods are the variational regularization algorithms. These methods
minimize a cost function that is made up of two parts. The first part minimizes the given
measurements to a conductivity distribution, while the second part is a regularization term.
Two examples of variational regularization algorithms are Thikonov regularization [9] and
the total variational regularization [10]. The variational methods are mostly used in the
field, as they deliver good results in rather quick time. Commercial devices such as the

Algorithms 2023, 16, 43. https://doi.org/10.3390/a16010043 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16010043
https://doi.org/10.3390/a16010043
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-5452-334X
https://orcid.org/0000-0002-6898-6887
https://orcid.org/0000-0003-2299-2250
https://orcid.org/0000-0002-3961-2173
https://doi.org/10.3390/a16010043
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16010043?type=check_update&version=2


Algorithms 2023, 16, 43 2 of 22

Draeger PulmoVista® 500 use this kind of algorithm. The second group is the statistical
inversion methods for EIT. The measurements and conductivities are modeled as random
variables. Here, an a posteriori distribution can be estimated, which, in turn, can give
estimates of the conductivity distribution [11]. The advantage of these types of algorithm
is that not only is a reconstruction generated, but so is a whole statistical distribution of
the reconstruction. Some publications also generate better results with such methods [12].
However, a major drawback is the computational cost. The third type of reconstruction
algorithms are the direct inversion methods. They analyze the nonlinear inverse problem
and try to develop an algorithm based on this analysis. One such algorithm is the D-Bar
algorithm [13].

The D-Bar method is a direct, noniterative algorithm used to compute the conductivity
distribution inside a domain of interest. The insights and tools for this algorithm date back
to Calderón [14], who analyzed the inverse conductivity problem. Subsequently, Nachmann
showed that the problem is uniquely solvable in the two-dimensional (2D) domain under
certain restrictions [15]. The first implementation of this algorithm was shown by Siltanen
et al. and, thus, opened the door for real-world usage of the algorithm [16]. Nowadays,
the D-Bar algorithm is known to have many benefits, such as robustness towards electrode
displacement, measurement errors, and errors in the injection current [17].

Significant disadvantages of EIT are its relatively low spatial resolution and sensitivity
to noise. Regularization strategies are used to dampen the noise dependence. The regular-
ization is a trade-off between a further loss of spatial resolution and resistance to noise. Due
to this fact, there are several strategies to incorporate information from other modalities.
This is often carried out by biasing the solution process with the a priori information. Sun
et al. modified the sensitivity matrix by using X-ray data and a collection of impedance
measurements to improve the reconstruction results [18]. Adler and Lionheart proposed
nudging the solution of the inverse problem towards the desired solution by careful selec-
tion of the prior [19]. This approach could also craft a custom regularization matrix [18].
Soleimani proposed a level set method based on ultrasound as a priori data [20]. Alsaker
and Mueller proposed an a priori information strategy based on the D-Bar algorithm from
CT data [21]. The stimulation patterns in the D-Bar algorithm used are the trigonometric
patterns; these are selected because of the orthogonality to each stimulation. Although this
is motivated on a theoretical level, it is confirmed by the results of Adler et al. on the work
of optimal injection patterns [22,23].

In this paper, we want to explain the D-Bar algorithm through a hands-on engineering
approach and analyze the behavior of one-dimensional a priori data in a 2D reconstruction
domain. We take a simplified version of their proposed algorithm and analyze its behavior
based on additional radar data, which adds further information along the x-axis. We explain
the implementation of a D-Bar algorithm and sweep across some parameters to gain a more
intuitive understanding of the algorithm. Since the radar data in our case only affect a
priori information along the x-axis, the behavior of the D-Bar algorithm exhibits interesting
properties. In the case of breast cancer, radar data provide more detail and are less noisy;
however, compared to EIT, the ease of usage is more complicated and damping of radar
waves in fat tissue is an issue. As radar data still provide valuable additional information,
we used the setup from Patri et al. for our a priori data [24]. We note that Flores-Tapia and
Pistorius have already embedded radar information into EIT reconstructions, but without
using the D-Bar algorithm [25].

2. Fundamentals
2.1. Basic EIT Equations

The EIT handles the problem of reconstructing the conductivities inside a domain
of interest, for example, the human body, through boundary voltage measurements. Ac-
cordingly, N electrodes are placed equidistantly across a slice of a body. A current pattern
is injected through these electrodes, and the resulting voltages are measured. There are
different current injection and voltage measurement patterns, which have distinct advan-
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tages and disadvantages. For more information on this, see [26]. The voltage measurement
patterns also have different advantages and disadvantages. The problem of EIT can be
modeled as follows:

∇(σ(z)∇u(z)) = 0, z ∈ Ω (1)

where u represents the electrical potential, Ω is the 2D domain (the slice through the body)
of interest, σ is the location-dependent conductivity of the domain, and z denotes the
position expressed as a complex number z = x + j · y (with j =

√
−1). The position is

denoted as a complex number z due to mathematical considerations with the usage of
complex geometrical optics solutions. Only real-valued conductivities are considered for
the sake of simplicity. The system from Equation (1) is excited by an electric current to
reconstruct an estimate of σ inside Ω. Mathematically speaking, this is the Neumann
boundary condition that constrains the partial differential equation of Equation (1). This
can be expressed in the notation of Equation (1) as

σ(z)
∂u
∂~n

(z) = J(z), z ∈ ∂Ω (2)

where~n is the outward normal vector of the boundary of Ω, J is the current density, and
∂Ω denotes the boundary of Ω. In theory, it is also possible to apply known voltage
distributions on the boundary of Ω and then measure the resulting currents. The known
voltage distribution is called the Dirichlet boundary condition and can be expressed in the
notation of Equation (1) as

u(z) = f (z), z ∈ ∂Ω (3)

where f (z) is an arbitrary function in the sense that, depending on the injected current,
it can lead to different forms. It is possible to map the Dirichlet boundary condition to
the Neumann boundary condition. This map is called the “Dirichlet-to-Neumann map”
(DN-map). It can more formally be stated as

Λσ : u � σ
∂u
∂~n

(4)

Astala and Päivärintas showed that knowledge of the DN-map dictates the conductiv-
ity inside Ω uniquely [27]. Our take on the explanation of its fundamentals can be found
in the Appendix A.1 or, for a more detailed look, in Chapters 14 and 15 of Mueller’s and
Siltanen’s book [28].

2.2. D-Bar Algorithm

The D-Bar algorithm can be summarized into four steps:

1. Compute the DN map Λσ from the voltage measurements.
2. Compute the scattering transform within |k| ≤ R1.
3. Solve the D-Bar equation, Equation (A4).
4. Recover the impedance values from Equation (A6).

3. Numerical Implementation
3.1. Numerical Implementation of the D-Bar Algorithm

We now describe the numerical implementation of the D-Bar algorithm used in this
work. All simulations were carried out using EIDORS [19]. We provide the original
functions in Matlab® used for this paper as Supplementary Materials along with this paper.

Throughout this paper, N denotes the number of electrodes, while M denotes the
number of linear independent stimulation current patterns. In the setting of EIT, M = N− 1
holds true as the maximum number of linear independent current patterns. Note that
this is true for the chosen trigonometric current pattern. Different choices of patterns may
result in a reduced number of linear independent patterns. An example of a stimulation
pattern is given in Figure 1 with a cosine stimulation around a circular domain. The current
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through each electrode is given by cos(8 ·Θn) (n denotes the nth electrode), which is similar
to the case m = N/2 in Equation (5) (m denotes the mth stimulation pattern). The standard
circular domain was used for better visualization.

Ω

Figure 1. Visualization of one stimulation pattern. Ω surrounded by the thick black circle denotes the
domain of interest. The red line indicates the current depending on the angle Θ. The dashed gray
line denotes a current amplitude of zero. Note that this is not the domain used in this paper, but a
standard circular domain for better visualization of the concept.

Step 1: Compute the DN map Λσ from the voltage measurements and known stim-
ulation currents. Λσ is an operator that can map a given set of boundary voltages to its
resulting boundary currents. Λσ is approximated through a matrix Lσ with the dimension
N − 1× N − 1 [28]. Thus, to map a discrete voltage measurement to its corresponding
current stimulation, the vector of voltage measurements on each electrode can be multiplied
by Lσ to obtain the corresponding current distribution. We first compute the Neumman-to-
Dirichlet (ND) matrix Rσ and then invert it to obtain Lσ, because the direct computation of
the DN matrix Lσ involves derivatives. Let J be the matrix of stimulated current distribu-
tions, whose columns contain one stimulation pattern each with the appropriate current on
every electrode. J is defined as

Jm
n =





I cos(mΘn), m = 1, . . . , N/2− 1

I cos(πn), m = N/2

I sin((m− N/2)Θn), m = N/2 + 1, . . . , N − 1

, (5)

where m is the column index (one specific stimulation), n is the row index (the electrode
position), I is the current amplitude, and Θn is the position angle of the nth electrode from
the model center. Since the maximum number of linear independent measurements is M =
N − 1 and the number of electrodes is N, the matrix has a shape of N × N − 1 = N ×M.

The matrix of voltages measured U describes the voltage on every electrode for each
stimulation pattern and has the same shape as J. Each column of U contains the voltages
measured on the electrodes. The voltage on the nth electrode for the mth stimulation pattern
is um

n . Regarding the mth stimulation pattern, the voltages on the electrodes must fulfill
∑N

n=1 um
n = 0. U can be assembled with [U]n,m = um

n .
We also need a geometrical correction term (see Figure 2), which scales each entry of

Rσ with the arc length differential, since our domain is not circular. This technique was
introduced by Herrera et al. [29]. The arc length differential for each electrode position n
and current injection m is calculated by

sm
n =

√
r2(Θn) +

r(Θn)− r(Θn−1)

∆Θn,n−1

2

· ∆Θn,n−1 ≈
√

r2(Θn) +
∂r(Θn)

∂Θn

2

· dΘ, (6)

where r(Θn) is the radius (distance from model center to electrode) of the model at electrode
angle Θn. The correction matrix S can be assembled by [S]n,m = sm

n . As can be seen in
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Equation (6), sm
n is independent of m. This is because the geometry does not change with

each current stimulation. The results are then formed to a vector, which is repeated M
times to form the N ×M matrix U.

r(Θ1)

r(Θ2)

∆Θ2,1

Figure 2. Visualization of the finite element method model with the electrode position in cyan and
domain boundary in blue. r(Θ1) and r(Θ2) are the positional angles of the first and second electrodes.
The angle difference ∆Θ2,1 is needed for the calculation of the derivative in Equation (6).

Rσ can be calculated with the help of J, U, and S through

Rσ =
1
A
(J � S)TU. (7)

A denotes the electrode area, while � is the elementwise multiplication and T represents
the transpose.

The last step is to invert Rσ to finally obtain the DN matrix Lσ = R−1
σ . The calcu-

lation steps for the DN matrix can be efficiently performed in Matlab® through matrix
multiplication.

Step 2: Calculation of the scattering transform.
The scattering transform can be viewed as a complex Fourier transformation. In-

stead of Equation (A5), we use an approximation of the scattering transform texp(k) =∫
∂Ω eik̄z̄(Λσ − Λ1)eikzds, which can be calculated according to Dodd and Mueller [30]:

The functions eik̄z̄|∂Ω and eikz|∂Ω need to be expanded in their orthonormalized current
pattern basis. The coefficients used are ~c(k) = [c1(k), . . . , cN(k)]T for eikz and ~d(k) =

[d1(k), . . . , dN(k)]T for eik̄z̄. The coefficients are calculated with

~c(k) = J′eikz and ~d(k) = J′eik̄z̄. (8)

The exponential approximation of the scattering transform is then expressed by

texp(k) ≈
N−1

∑
i=1

N−1

∑
j=1

cj(k)di(k)(Lσ(i, j) − L1(i, j)) (9)

= ~dT(k)
((

Lσ − L1
)
~c(k)

)
. (10)

The scattering transform represents the data in a frequency-like complex-valued space
called the k-space. Unlike the Fourier transformation, which is linear, in the sense that it
represents a function through sinusoidal waves, the scattering transform represents the
input via nonlinear waves. texp(k) is only evaluated for values of |k| < R, where R is
called the truncation radius. This is due to the fact that high values of |k| lead to numerical
instabilities. An example of the k-space for a specific conductivity enclosure and |k| < 3.5
can be observed in Figure 3.

For the implementation of this computational step, a grid in the k-space has to be
implemented. This becomes important, as choosing the grid wisely helps in the computa-
tion of the next step. In this work, we chose the strategy of Mueller and Siltanen, which is
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presented in Chapter 15 of their book [28], for the selection of the grid. This strategy was
used in this work. In the next step of the D-Bar algorithm, a singularity arises in the origin
in the k-space. For the computations inside the k-space, a matrix K is formed. It has the
shape P× P = 2p × 2p. An example is visualized in Figure 4. This has the advantage that
the singularity at the origin is avoided. The values inside K are computed depending on
the chosen truncation radius R. This is carried out with the help of the Matlab® function
meshgrid(). This function obtains a vector khelp = [−R,−R + 2R

M−1 , . . . , R− 2R
M−1 , R] as an

input argument. Finally, we can construct K = K1 + j · K2 with K1, K2 = meshgrid(khelp).
Note that K is complex-valued; this is for computational purposes, as it makes the following
steps easier. A simplified example of K can be seen in the Appendix A.2.

Lσ

L1

Equation (9)

conductivity enclosure

0.1

0.2

0.3

real part of k-space

−40

−20

0

20

imaginary part of k-space

−40

−20

0

20

40

Figure 3. Example of the k-space. At the top, the conductivity enclosure in our rectangular domain
is given. In the bottom left part, the real part of the k-space is given, while the imaginary part is
displayed on the right. The truncation radius is R1 = 3.5. It is important to note that the size of the
actual domain has no direct relation to the more abstract truncation radius, as the truncation radius is
placed in the k-space.
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Re{k}

Im{k}

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(4, 1) (4, 2) (4, 3) (4, 4)

Figure 3. Example of the sample strategy of K for p = 2 which results in a 4× 4 grid (Note that this is
just for illustration purposes and would be too low for computations). Every quadrant of the k-space
has the same number of points. The numbers above the points are the indices of the matrix K as
implemented in Matlab®.

represents a function through sinusoidal waves, the scattering transform represents the
input via non-linear waves. texp(k) is only evaluated for values of |k| < R, where R is
called the truncation radius. This is due to the fact, that high values of |k| lead to numerical
instabilities. An example of the k-space for a specific conductivity enclosure and |k| < 3.5
can be observed in Figure ??.
For the implementation of this computational step, a grid in the k-space has to implemented.
This becomes important, as choosing the grid wisely helps in the computation of the next
step. In this work, we chose the strategy of Mueller and Siltanen, which is presneted in
chapter 15 of their book [? ], for the selection of the grid. This strategy was used in this
work. In the next step of the D-Bar algorithm, a singularity arises in the origin in the
k-space. For the computations inside the k-space, a matrix K is formed. It has the shape
P× P = 2p × 2p. An example is visualized in Figure ??. This has the advantage, that the
singularity at the origin is avoided. The values inside K are computed depending on the
chosen truncation radius R. This is done with the help of the Matlab® function meshgrid().
This function gets a vector khelp = [−R,−R + 2R

M−1 , ..., R− 2R
M−1 , R] as an input argument.

Finally, we can construct K = K1 + j · K2 with K1, K2 = meshgrid(khelp). Note that K is
complex valued, this for computational purposes, as it makes the following steps easier. A
simplified example of K can be seen in the Appednix ??.

Step 3: Solution of the D-Bar equation (??).
As mentioned in the appendix, the D-Bar algorithm solves the conductivity for one position.
Thus, the steps outlined in the following have to be repeated for every position desired
inside the domain. We use the method proposed by Mueller and Siltanen, which is based
on a fast Fourier transform approach [? ]. Equation (??) can be regarded as the convolution

Figure 4. Example of the sample strategy of K for p = 2 which results in a 4× 4 grid (note that this is
just for illustration purposes and would be too low for computations). Every quadrant of the k-space
has the same number of points. The numbers above the points are the indices of the matrix K as
implemented in Matlab®.

Step 3: Solution of the D-Bar Equation (A4).
As mentioned in the Appendix A, the D-Bar algorithm solves the conductivity for one

position. Thus, the steps outlined in the following have to be repeated for every position
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desired inside the domain. We use the method proposed by Mueller and Siltanen, which
is based on a fast Fourier transform approach [28]. Equation (A4) can be regarded as the
convolution of the differential form of Equation (12) and the Green’s function G∂̄ for the
D-Bar operator, leading to

µ(k, z) =1 + G∂̄ ∗ (T(k, z)µ(k, z)). (11)

with

T(k, z) =
t(k)
4πk̄

e−z(k) (12)

G∂̄ =
1

πk
(13)

Note that the x–y-position inside the domain is expressed as a complex number, with
z = x + j · y. Instead of regarding Equation (11) for the full plane, it is transformed to a
periodic equation. To achieve this, a grid Q = [−2R− 3ε, 2R + 3ε]2 with ε > 0 is defined.
This ensures a sufficient grid size for the calculations to perform the FFT trick by Mueller
and Siltanen [28]. In our case, ε = R/6 was used. Q is very similar to the earlier constructed
K, except that it is larger.

Q =



−2R− 3ε + j · (2R + 3ε) . . . 2R + 3ε + j · (3R + 3ε)

...
. . .

...
−2R− 3ε− j · (3R + 3ε) . . . 2R + 3ε− j · (3R + 3ε)


. (14)

Since the fast Fourier transformation is used later, Q should be of the shape 2p × 2p,
where p can be freely chosen. We used p = 6 for this work, as it resembles a good
compromise between accuracy and computation speed. In addition, note that the grid—
similar to K—is symmetricand, thus, the origin 0 + j0 is not in the grid. This simplifies
calculations, otherwise, the origin is a singularity in the calculations (see Equations (12) and (13)).

On this grid, the Green’s function (13) is evaluated elementwise. We denote the
resulting matrix as G∂̄ to make the function represented by the matrix periodic. The matrix
is weighted such that the boundary of the matrix is zero, while a circle inside the matrix
has the original values. The weight function η(k) is defined as

η(k) =





1 |k| < 2R + ε

(2R + 3ε− |k|)/(2ε) 2R + ε ≤ |k|.
0 2R + 3ε < |k|

(15)

The periodic version of G∂̄ is denoted as G̃∂̄ and calculated through G̃∂̄(k) = G∂̄(k)�
η(k), where � denotes the elementwise multiplication (“.*”—operation in Matlab®).

Now that the periodic version of Equation (13) G̃∂̄(k) is calculated, the other known
part of Equation (11) T(k, z) needs to be evaluated. Note that K is a subset of the larger
grid Q. For every grid point of Q, T(k, z) = t(k)

4πk̄ e−z(k) is evaluated. Note that we still
write T(k, z) rather than using Q. This is because T(k, z) is only different from 0 inside
the truncation radius. Thus, we use K for the computation and just pad the border with
0 to make the dimensions compatible with the rest of the operations on Q. This can be
performed through the Matlab® function padarray. As explained earlier, this step (step 3)
has to be repeated for every position z, where we want to know the conductivity. Thus, there
is a small gain to make by computing the first part of T(k, z) (Tf irst(k) =

t(k)
4πk̄ ) beforehand

and saving it to memory.
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Now, the FFT trick from Mueller and Siltanen can be applied on Equation (11) using
the fast Fourier transform, through

µ = I + h2 IFFT(FFT(G̃∂̄)� FFT(Tµ)) (16)

↔
I = Iµ− P(Tµ) (17)

with

P(Tµ) = h2 IFFT(FFT(G̃∂̄)� FFT(Tµ)), (18)

where h is the spacing of the grid K, I is the identity matrix, and� denotes the elementwise
multiplication similar to that in Equation (7).

This equation can be solved with the help of a matrix-free equation solver such as
GMRES, as the function cannot be brought to the simple Ax = b form. This is due to the
fact that Equation (17) has a complex conjugate of µ in it. Thus, the equation is only linear
in its real part. When using GMRES, the real and imaginary parts must be detached from
one another. This can be achieved by transforming µ from its matrix form to its vector
form and separating the imaginary part and the real part. The complex matrix µ with
dimensions CH×H will become a vector of dimension R(2·H2), and the vector representation
is expressed as ~µ. The first M2 entries are the real components of µ, while the last M2 are its
imaginary components. The mapping from the vector form to the matrix form is denoted
as vecmat. This procedure is also described in [28].

A normal GMRES call in Matlab® to solve Ax = b would result in gmres(A, b). This
call must be modified. Instead of a matrix A, a function f is given to gmres(). The function
has two tasks; firstly, it converts ~µ from its vector to the matrix representation µ (vecmat);
secondly, it calculates the first step inside the GMRES loop, which is called the “Krylov
vector”. The calculation is given by

qnew = qold − vecmat(P(Tqold)), (19)

where q is the “Krylov vector” from the GMRES method. For more details about GMRES,
see [31].

Step 4: Calculation of the conductivity.
This is performed through σ(z) = µ2(k → 0, z). This can be understood when

observing Equation (A2). Ψ(k, z) = µ(k, z) holds true for k = 0, then the equation becomes
(−∆ + σ−1/2∆σ1/2)µ(k, z) = 0. Since

√
σ(z) = µ(z, 0), the equation can be reformulated

to

(−∆ +
∆
√

σ(z)√
σ(z)

)
√

σ(z) = 0↔ −∆
√

σ(z) + ∆
√

σ(z) = 0. (20)

Thus, a suitable solution to (A2) is
√

σ(z) = µ(z, 0). Squaring both sides of the
equation leads to the calculation of σ(z).

The process of solving the D-Bar equation needs to be repeated for every position z
inside the domain which will be reconstructed.

3.2. EIT Simulation Setup

The motivation behind the fusion is to be able to visualize tumors in the female
breast. Radar, as additional information for EIT, can increase the resolution of EIT. Rely-
ing solely on radar, however, might not be ideal as fat dampens the radar signals. The
general setup without any tumor inclusions for this paper is equal to the model shown
in Figure 5. The electrodes are placed in the cyan-colored areas. To mimic the female
breast, as in Prati et al. [24], we also added a 2 mm skin layer. The inside of the breast was
modeled as fat tissue. The conductivity values for both tissues were extracted from the
Gabriel database [32]. The conductivity enclosure is a tumor, with the values from the
measurements of Surowiec et al. [33].
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Figure 5. Structure of the used FEM model. On the bottom and top are the dual-use EIT elec-
trodes/radar antennas. On the right and left are pure EIT electrodes. The skin is colored in purple.
The rest of the breast is modeled with fat, which is represented by the pink-colored areas. The size of
the model is 100 mm × 100 mm. This is the same as in Prati et al. [24].

3.3. Radar Simulation Setup

For the simulation of radar, the setup from Prati et al. was used [24]. The antenna
patches are squared and have an edge length of lpatch = 3 mm. The antennas are etched
on the substrate RO4350B with a dielectric constant of εr = 3.55 @ 10 GHz. The antenna
is excited by a coaxial probe, whose position was chosen such that the input impedance
matched at 50 Ω. Radar antennas were placed on the top and bottom of the domain Ω.
The bottom antennas are used as transmitters, and the antennas on the top are used as
receivers. A pulse excitation was used for the stimulation of the antennas. One excitation
cycle was composed of a sawtooth signal with an up-chirp time of 433 µs, a down-chirp
time of 100 µs, and a waiting time in between the chirps of 100 µs. The simulation was
carried out as follows.

The described radar antennas were only used on the bottom and top of the domain.
While a fixed distance between the radar antennas is required for the above-described radar
setup, in reality, it is more practical to produce a circuit board with embedded antennas
already on it. Since breasts have different sizes, the placing of radar antennas on the sides
of the domain requires strenuous effort, to still ensure the correct placement of the antennas.
EIT electrodes, on the other hand, can be placed manually on the sides, as they can be
designed to stick on the skin.

As in the EIT setup, the skin was modeled with a thickness of 2 mm. For the skin, the
complex dielectric properties of the Gabriel database were used [32]. The breast fat and
tumor tissues were modeled from the values of Martellosio et al. of the subgroup with high
adipose tissue [34]. The radar simulations were performed in CST Microwave Studio 2019.

3.4. Radar Reconstruction

At first, a reference simulation with no enclosed tumor was performed as described
above. Each transmission antenna sends a pulse signal through the medium without
inclusion. The signals were captured by the receivers on the top. The reference signals
are denoted as ~s0

a,b = [s0
1, s0

2, . . . , s0
T ], where a indicates which transmitter was used for

sending the signal, b denotes the transmitter receiving the signal, and T denotes the length
of the signal.

After that, the simulation was carried out with the inclusions. In our case, we investi-
gated one inclusion. The inclusion signals are denoted as~sa,b = [s1, s2, . . . , sT ], using the
same notation as in the first case.

The reconstruction process was carried out as follows. At first, the root-mean-square
deviation (RMSD) was computed for each transmitter–receiver pair (a, b) by

RMSDa,b =

√√√√ 1
T

T

∑
t=1

(s0
a,b(t) − sa,b(t))2. (21)
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The vector RMSDa is defined as RMSDa = [RMSDa,1, . . . , RMSDa,B], where B is
equal to the number of receivers. The next step for the reconstruction is to compute the
mean RMSDa = 1

B ∑B
b=1 RMSDa,b of each RMSDa for each transmitter, where B is the

number of receivers. Only values above the mean are used for the final reconstruction,
resulting in

RMSD f inal
a,b =

{
RMSDa,b RMSDa,b > RMSDa

0 otherwise
. (22)

The cumulative RMSDa,cum for every receiver position is calculated from RMSD f inal
a,b

with RMSDa, cum = ∑B
b=1 RMSD f inal

a,b . The position of the enclosure can be estimated from
the resulting curve, as it shows local minima. This can be seen in Figure 6. An envelope of
the RMSD curve is constructed to obtain a better estimation of the tumor positions. This is
performed by gathering the local maxima and interpolating linearly between them. The
position estimate of the tumor is given by subtraction of the envelope with the RMSD curve.
This estimation is used as a priori information in the D-Bar algorithm.
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Figure 6. Reconstruction of two tumors using the reconstruction algorithm described. The RMSD
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domain requires strenuous effort, to still ensure the correct placement of the antennas. EIT
electrodes, on the other hand, can be placed manually on the sides, as they can be designed
to stick on the skin.
As in the EIT setup, the skin was modeled with a thickness of 2 mm. For the skin, the
complex dielectric properties of the Gabriel database were used [32]. The breast fat and
tumor tissues were modeled from the values of Martellosio et al. of the subgroup with high
adipose tissue [34]. The radar simulations were done in CST Microwave Studio 2019.

3.4. Radar reconstruction

At first, a reference simulation with no enclosed tumor was done as described above.
Each transmission antenna sends a pulse signal through the medium without inclusion.
The signals were captured by the receivers on the top. The reference signals are denoted as
~s0

a,b = [s0
1, s0

2, ..., s0
T ], where a indicates which transmitter was used for sending the signal, b

denotes the transmitter receiving the signal and T denotes the length of the signal.
After that, the simulation is carried out with the inclusions. In our case, we investigate
one inclusion. The inclusion signals are denoted as~sa,b = [s1, s2, ..., sT ], using the same
notation as in the first case.
The reconstruction process was done as follows. At first, the root-mean-square deviation
(RMSD) was computed for each transmitter-receiver-pair (a, b) by

RMSDa,b =

√√√√ 1
T

T

∑
t=1

(s0
a,b(t) − sa,b(t))2. (21)

The vector RMSDa is defined as RMSDa = [RMSDa,1, ..., RMSDa,B], where B is equal
to the number of receivers. The next step for the reconstruction is to compute the mean
RMSDa =

1
B ∑B

b=1 RMSDa,b of each RMSDa for each transmitter, where B is the number
of receivers. Only values above the mean are used, for the final reconstruction, resulting in

RMSD f inal
a,b =

{
RMSDa,b RMSDa,b > RMSDa

0 otherwise
. (22)

Figure 6. Reconstruction of two tumors using the reconstruction algorithm described. The RMSD
curve can be seen. The gray dashed line is the envelope that aids in the calculation of the estimated
tumor position, which is the red line—adapted from [24]. The position of the tumor along the y-axis
is 27.5 mm and it has a diameter of 8 mm.

3.5. Fusion of EIT and Radar

The spatial resolution of the radar is higher than that of EIT due to the low wavelength
used by radar. However, only information about the position of the object along the x-axis
is given in the introduced reconstruction of radar data, while the EIT is able to capture
the spatial details in both axes. Thus, a careful weighing of EIT and radar information is
necessary. A fusion can be performed by usage of the k-space and the scattering transform
t(k). Regarding |k| ≤ R1, we calculate the scattering transform for the EIT tEIT

R1
(k) using

Equation (9). Regarding R1 < |k| ≤ R2, we calculate tradar
R2

(k). For that, the conductivity
inside the domain needs to be estimated. This was performed as follows. The peak of the
radar reconstruction (see red line in Figure 6) gives the most likely position of the tumor;
moving farther off the peak, the tumor position is less likely (the curve is decreasing).
Along the x-axis of the FEM phantom, we added the difference conductivity of tumor and
fat to the domain weighted by the RMSD f inal

a,b -curve. Along the y-axis, the values are just
replicated, or, in other words, along the y-axis, values are padded such that vertically the
values of the conductivity do not change. From a strict mathematical point of view, we
have a two-dimensional prior; however, as the information is fixed along one axis, for all
practical purposes, information is only carried in one dimension.
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After that, the calculations follow the procedure described in Section 3. This mean that
we use Equation (10) to calculate texp(k). Thus, the calculation of the prior is performed
the same way as for the EIT data. The new scattering transformation with EIT and radar
information can be stated as

t f usion(k) =





tEIT
R1

(k), |k| ≤ R1

tradar
R2

(k), R1 < |k| ≤ R2

0, R2 < |k|
. (23)

t f usion(k) combines the advantages of both the EIT and radar. The concept is also visualized
in Figure 7. Note that this is equivalent to Alsaker et al.’s Equation 3.6 in [21]. However,
the actual calculation of tradar

R2
(k) is different from their calculations. In addition, we have a

one-dimensional prior instead of a two-dimensional one, compared to their setup. Later,
we analyze the behavior of under- and overestimation of the conductivity, by scaling the
added conductivity with a factor. The reconstruction with the help of t f usion follows the
same procedure as the pure EIT reconstruction (step 3 of the D-Bar algorithm).

Re

Im

R1 R2
EIT information

radar information

Figure 7. Visualization of the merging in the k-space. The purple area represents the k-space that is
filled with tradar(k), while the red area is filled with tEIT (k). Values outside |k| <= R2 are zero.

3.6. Evaluation of the Reconstructions

The fusion of D-Bar and EIT data with the D-Bar algorithm introduces a variety of
hyperparameters that all affect the quality of the reconstruction. The standard D-Bar
method has the truncation radius R1 as a hyperparameter. In our approach, a second
truncation radius is introduced, which is similar to [35]. As mentioned in Section 3.5, the
a priori conductivity σprior also has an effect on the reconstruction. Finally, the effect of
noise on the reconstruction is of great interest, as the radar data might be able to make the
algorithm more robust to noise.

We use the GREIT figures of merit for the evaluation of the reconstructions [36]. These
performance metrics are well established for the evaluation of different reconstruction
algorithms in EIT. The data have to be preprocessed to use the GREIT figures of merit in a
D-Bar setting, as the GREIT figures of merit assume that the reconstruction background is
centered around 0, which is the case for the majority of time-differential EIT algorithms,
such as GREIT, Gauss–Newton, or NOSER. The D-Bar reconstructions are centered around
1; thus, impedance inclusions with a conductivity greater than the background are greater
than one, and conductivities smaller than the background are smaller than one, but still
above zero. We simply subtract 1 from the reconstructed impedance values to apply the
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GREIT figures of merit, as this allows us to use the standard GREIT figures of merit. The
figures of merit are as follows:

Firstly, the quarter-amplitude set xq is calculated, which is defined as

x̂q =





1 [x]i ≥
1
4

max(x)

0 otherwise
, (24)

where [x]i is each pixel in the reconstructed image. According to Adler [36], the value of
the threshold is somewhat arbitrary and has little effect on the results. Amplitude response
(AR) is the summation of all pixels in the quarter-amplitude set divided by the sum of all
pixels in the reference image. It is calculated as follows:

AR =
∑ x̂q

∑ x0
, (25)

where x0 is the impedance target pixels of the reference image. The AR should be close to 1.
The position error (PE) measures the distance from the center of gravity (cog) of the

true conductivity to that of the reconstructed conductivity. Here, we differ slightly from
the original definition as our domain is not symmetric; however, the general idea is still the
same. We define the PE as

PE =
√
(cogo

x − ĉogx)
2 + (cogo

y − ĉogy)
2, (26)

where cogo
i i ∈ [1, 2] is the ith component of the center of gravity of the true conductivity dis-

tribution and ĉogi i ∈ [1, 2] is the ith component of the center of gravity of the reconstructed
quarter-amplitude-set conductivity. The PE should be as small as possible.

The reconstruction resolution (RES) measures the fraction of the area of the quarter-
amplitude set to the area of the entire medium. It is calculated as

RES =

√
Aq

A0
, (27)

where Aq is defined as the area of the quarter-amplitude set and A0 is defined as the area
of the entire medium. The RES should be low, as this allows one to distinguish impedance
enclosures better.

The shape deformation (SD) measures the fraction of the quarter-amplitude set which
does not fit into an equal-sized circle area. It is defined as

SD =

∑
j 6∈C

[x̂q]j

∑
j
[x̂q]j

(28)

The SD should be low, as the high values indicate inhomogeneous reconstructions.
Ringing (RNG) measures overshooting of the reconstruction. It is defined as the area

with a negative sign outside the reconstruction. It is the ratio of negative amplitude outside
the equivalent circle to the area of amplitude within the equivalent circle. It is defined as

RNG =

∑
j 6∈C & x̂<0[x̂]j

∑
j∈C

[x̂]j
(29)

RNG should be low.
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4. Results

Firstly, we gave an example of an EIT reconstruction in our squared domain. We
used the D-Bar algorithm described in the methods to obtain the reconstructions. The
reconstruction can be observed in Figure 8, in the bottom left. The EIT reconstruction of the
target is bigger than the ground truth. Throughout the whole paper, the truncation radius
was chosen empirically, in order tobetter see the effects. To also show the performance of
the reconstruction on two targets, we added, in Figure 9, a plot of two targets with the
settings. It showed the same characteristic of better resolution along the x-axis. The values
were in the range typically reported by the literature [13,22].

ground truth

0.5

1

1.5

2
·10−2

EIT recontruction

0.8

1

1.2

1.4

reconstruction combination

1

1.2

1.4

1.6

Figure 8. Top: Ground truth of the conductivity enclosure. Bottom left: EIT reconstruction with no
noise added and R1 = 3. Note: There is no a priori information in the image. Bottom right: Combined
reconstruction with a priori information with a truncation radius R2 = 4.

ground truth

0.5

1

1.5

2
·10−2

EIT recontruction

1

1.5

2

reconstruction combination

1

1.5

2

Figure 9. Top: Ground truth of the two conductivity enclosures. Bottom left: EIT reconstruction
with no noise added and R1 = 3. Note: There is no a priori information in the image. Bottom right:
Combined reconstruction with a priori information with a truncation radius R2 = 4.
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As a second reconstruction example, we tested an EIT reconstruction with R1 = 3, but
added noise of 0.75%. The ground truth, the EIT reconstruction, and the combination with
radar data are shown in Figure 10. Compared to Figure 8, the EIT reconstruction is more
blurred, while the combined reconstruction is thinner along the x-axis.

ground truth

0.5

1

1.5

2
·10−2

EIT recontruction

0.8

1

1.2

1.4

reconstruction combination

1

1.5

2

Figure 10. Top: Ground truth of the conductivity enclosure. Bottom left: EIT reconstruction with
0.75% noise added and R1 = 3. Bottom right: Combination of noisy EIT data (0.75% noise) and radar
data. R1 = 3 and R2 = 4. The noise was added to the voltages of the electrodes in percentage of the
peak-to-peak value.

As a third example, we gave two reconstructions with a priori information and two
different estimations of the conductivity in the a priori data. The results are shown in
Figure 11. The underestimation (scale factor of 0.001) resulted in a reconstruction similar
to that of Figure 8, while the overestimation is similar to the combined reconstruction in
Figure 10.

ground truth

0.5

1

1.5

2
·10−2

scale factor: 10-3

1

1.1

1.2

1.3

scale factor: 102

1

1.2

1.4

Figure 11. Visualization of under- and overestimation of the gourd truth conductivity. Top: Ground
truth of the conductivity enclosure. Bottom left: Combination reconstruction with R1 = 3 and R2 = 4.
The original conductivity of the enclosure is underestimated by a factor of 0.001. Bottom right:
Combination reconstruction with R1 = 3 and R2 = 4. The original conductivity of the enclosure is
overestimated by a factor of 100.
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Regarding the analysis with the GREIT figures of merit, we tested the EIT and radar
reconstruction for an EIT truncation radius of R1 = 3 without noise in Figure 12. AR
became lower with an increasing radar truncation radius R2, and reached a plateau for
R2 = 4.75. It then decreased again for R2 = 5.5. The AR with radar information was lower
than without. PE followed another pattern: it decreased until R2 = 4.25 was reached and
increased after that. The trend for RES followed the same behavior as AR. It first decreased
until R2 = 4.75. After that, it reached a plateau, but the value was still lower than without
radar information. It increased again at R2 = 5.5. SD decreased with increasing truncation
radius R2. Instead of a plateau after R2 = 4.7, the value increased again and surpassed
the pure EIT reconstruction. RNG behaved differently; instead of decreasing, it increased
steadily until it reached a plateau at R2 = 4; after that, it decreased again.
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Figure 12. GREIT figures of merit for the combination of EIT and radar data, for R1 = 3 without
noise. The orange line represents the scores of the EIT only data. R2 was increased from 3.25 to 5.5 in
steps of 0.25.

Figure 12. GREIT figures of merit for the combination of EIT and radar data, for R1 = 3 without
noise. The orange line represents the scores of the EIT-only data. R2 was increased from 3.25 to 5.5 in
steps of 0.25.
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Similar results occurred when adding the noise to the EIT measurements, which can
be seen in Figure 13. Thus, the benefits occur also when noise is present.
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Regarding the analysis with the GREIT figures of merit, we test the EIT and radar
reconstruction for an EIT truncation radius of R1 = 3 without noise. AR became lower
with an increasing radar truncation radius R2 and reached a plateau for R2 = 4.75. It then
decreases again for R2 = 5.5. The AR with radar information is lower than without. PE
follows another pattern: it decreases until R2 = 4.25 is reached and increased after that. The
trend for RES follows the same behavior as AR. It first decreases until R2 = 4.75. After that,
it reaches a plateau, but the value is still lower than without radar information. It increases
again at R2 = 5.5. SD decreases with increasing truncation radius R2. Instead of a plateau
after R2 = 4.7, the value increases again and surpasses the pure EIT reconstruction. RNG
behaves differently; instead of decreasing, it increases steadily until it reaches a plateau at
R2 = 4, after that, it decreases again.

Similar results occur when adding the noise to the EIT measurements.
The graphs of GREIT figures of merit are qualitatively similar to Figure 11. However,

when 0.75% noise is added, increasing R2 is at first not giving additional spatial information
as all the performance metrics stay in a plateau until around R2 = 4. Subsequently, that the
performance metrics have the same behavior as in the no noise case.

We next analyzed the behavior of wrong conductivity estimations in the radar a
priori information. While the conductivity estimate of the a priori radar data for the
previous plots was taken from literature, we now altered the conductivity estimate for
the radar. The estimated conductivity from the radar measurements were scaled by
γ := {0.001, 0.01, 0.1, 1, 10}. R1 was set to 3 and R2 = 4, while no noise was used.
The results can be seen in Figure 14. AR, PE, RES and SD have the same qualitative
behavior. They are on a plateau from 0.001 to 0.01 and start to decrease for λ from 0.01 to 1.
From 1 to 100 the values are building a plateau and increasing only slightly. For practical

Figure 13. GREIT figures of merit for the combination of EIT and radar data, for R1 = 3 with 0.75%
noise. The orange line represents the scores of the EIT-only data. R2 was increased from 3.25 to 5.5 in
steps of 0.25.

The graphs of GREIT figures of merit are qualitatively similar to Figure 11; however,
when 0.75% noise is added, increasing R2 at first does not give additional spatial informa-
tion, as all the performance metrics stay in a plateau until around R2 = 4. Subsequently,
the performance metrics have the same behavior as in the no-noise case.

We next analyzed the behavior of wrong conductivity estimations in the radar a
priori information. While the conductivity estimate of the a priori radar data for the
previous plots was taken from the literature, we altered the conductivity estimate for
the radar. The estimated conductivity from the radar measurements were scaled by
γ := {0.001, 0.01, 0.1, 1, 10}. R1 was set to 3 and R2 = 4, while no noise was used.
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The results can be seen in Figure 14. AR, PE, RES, and SD have the same qualitative
behavior. They are on a plateau from 0.001 to 0.01 and start to decrease for λ from 0.01 to 1.
From 1 to 100, the values are building a plateau and increasing only slightly. For practical
use, Alsaker et al. developed a nonlinear estimation algorithm for the estimation of an a
priori conductivity [37].
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reconstructed image. Thus, the area of the reconstruction tends to decrease, which results
in an increase in the aforementioned metrics. However, the best value for R2 in our set-up
lies around 4.0.
The conductivity for the calculation of the scattering transform needs to be estimated
because our radar setup only provides spatial information. In the previous case, we took
the exact value of simulated conductivity. This, however, is not a valid estimation for the
real-world case. We simulated different conductivity estimates to check the stability. Since
the simulated enclosure has a higher value than the background conductivity, overestimat-
ing the conductivity tends to get slightly better results, which are barely observable in the
reconstruction (see Figure 11). However, the improvements are very minor. This might no
longer be the case for more complicated geometries. Underestimation of the conductivity,
however, leads to a strong decrease in reconstruction quality. As low-frequency spatial
information from EIT and high-frequency spatial information from radar in the k-space
compete against one another during the reconstruction.

5. Conclusion and Outlook

We showed that radar information along the x-axis can improve EIT reconstructions
up to a certain point. The resolution is increasing along the x-axis, this can be seen
especially in Figure 9, as the two targets are better distinguishable. This is due to the
fact, that the EIT data needs to be truncated in the ka-space, while the radar data is less
noisy. Thus, the added information in the k-space is introducing more high frequency
components into the reconstruction. Which leads to more detail in the resulting images.
Adding too much radar information in this setting can result in a worse performance of
the reconstruction algorithm. When trying to reconstruct a single object with conductivity
higher than the background, an overestimation of the conductivity tends to be more

Figure 14. GREIT figures of merit for the combination of EIT and radar data, for R1 = 3
without noise and R2 = 4. The radar estimation conductivity was changed and scaled by
γ := {0.001, 0.01, 0.1, 1, 10}. The x-axis is scaled logarithmically.

When fixing R1 and increasing R2, we could observe that, at first, the results tended to
be better, but after R2 = 4.5, the figures of merit tended to become worse again in some
figures and a little bit better in others. At first, this behavior seems strange; however, the
radar information is only available along the x-axis. Thus, the more radar information is
added, the more the reconstruction tends to be narrowed down along the x-axis, but, at
the same time, is expanded along the y-axis. This results in an increase in the PE as the
center of gravity of the quarter-amplitude set is drawn to the center of the y-axis. The same
holds true for the SD. The behavior of the AR and RES, however, will become better as
more radar information is added. This can still be explained. As the radar information
contains solely values from the k-space with R1 < |k|, only the fine-detail components are
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enteringinto the reconstructed image. Thus, the area of the reconstruction tends to decrease,
which results in an increase in the aforementioned metrics; however, the best value for R2
in our setup lies around 4.0.

The conductivity for the calculation of the scattering transform needs to be estimated
because our radar setup only provides spatial information. In the previous case, we took the
exact value of simulated conductivity. This, however, is not a valid estimation for the real-
world case. We simulated different conductivity estimates to check the stability. Since the
simulated enclosure has a higher value than the background conductivity, overestimating
the conductivity tends to lead to slightly better results, which are barely observable in the
reconstruction (see Figure 11). However, the improvements are very minor. This might no
longer be the case for more complicated geometries. Underestimation of the conductivity,
however, leads to a strong decrease in reconstruction quality, as low-frequency spatial
information from EIT and high-frequency spatial information from radar in the k-space
compete against one another during the reconstruction.

5. Conclusions and Outlook

We showed that radar information along the x-axis can improve EIT reconstructions
up to a certain point. The resolution increases along the x-axis; this can be seen especially
in Figure 9, as the two targets are better distinguishable. This is due to the fact that the EIT
data need to be truncated in the ka-space, while the radar data are less noisy. Thus, the
added information in the k-space introduces more high-frequency components into the
reconstruction, which leads to more detail in the resulting images.

Adding too much radar information in this setting can result in a worse performance of
the reconstruction algorithm. When trying to reconstruct a single object with conductivity
higher than the background, an overestimation of the conductivity tends to be more
forgiving than underestimating the conductivity.

The shape of the truncation in the k-space needs to be investigated more in future
work. Shapes other than a circle may lead to even better results, and may potentially be
able to overcome some disadvantages when only additional information along the x-axis is
used. However, it is not clear what this shape might look like, as the k-space representation
has no humanly interpretable link to the real domain.

An improvement of the shape correction term used for the DN-map may even further
improve the results.

A more sophisticated construction of the prior might also lead to better results; for this
paper, however, we followed the steps for the EIT reconstruction as it is easier to follow
and does not change the findings.
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Abbreviations
The following abbreviations are used in this manuscript:

EIT Electrical impedance tomography
DN-map Dirichlet-to-Neumann map
ND Neumman-to-Dirichlet
RMSD Root-mean-square deviation
AR Amplitude response
PE Position error
RES Resolution
SD Shape deformation
RNG Ringing
CGO Complex geometric optics

Appendix A

Appendix A.1. D-Bar Algorithm

The D-Bar method uses complex geometrical optics (CGO) solutions to solve the con-
ductivity σ inside Ω, using the DN-map as an input. As a first step, the Laplace Equation (1)
is transformed to the time-independent Schrödinger equation, which is achieved through
the change of variables. With q(z) = σ−1/2∆σ1/2 and v = σ1/2u, Equation (1) becomes

(−∆ + q(z))v = 0. (A1)

Using the assumption that σ is constant near the boundary ∂Ω, the now more abstract
potential q(z) is extended from the domain Ω to the whole complex plane with q(z) = 0
outside Ω. This enables the integration along the boundary to be simpler. The CGO
solutions can now be used to solve q(z). After introducing a parameter k, we define the
solution by Ψ(k, z)—both k and Ψ are complex-valued—which satisfies

(−∆ + q(z))Ψ(k, z) = 0. (A2)

These CGO solutions were used by L. D. Faddeev in the context of quantum scatter-
ing [38]. Subsequently, Astala and Päivärintas used CGO solutions for their solution of the
Calderón problem (to determine the conductivity given the DN map) [27]. In order to solve
for Ψ of Equation (A2), we define a function µ(k, z) by

µ(k, z) := e−jkzΨ(k, z). (A3)

It is defined this way because Ψ is asymptotic to eikz and it also satisfies the ∂̄ (D-Bar)
equation, which gave the algorithm its name. It is given in integral form as [28]

µ(k, z) = 1 +
1

(2π)2

∫

R2

t(k)
(s− k)k̄

e−zµ(k, z)dk1dk2. (A4)

Here, e−z = e−j(kz+k̄z̄) and t(k) is the so-called scattering transform. We recommend
reading [28] for further details on the mathematical background. The scattering transform
can be regarded as a nonlinear Fourier transformation, i.e., it transforms inputs to a complex
frequency-like domain with nonlinear waves. It is defined as

t(k) =
∫

∂Ω
eik̄z̄(Λσ − Λ1)Ψ(k, z)ds, (A5)
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where Λ1 is the DN map for the case of conductivity 1 inside the domain Ω and ds is the
arc length of the domain boundary. When the D-Bar equation is solved for µ(k, z), one can
calculate the conductivity inside the domain by

lim
k→0

µ(k, z)2 = σ(z), z ∈ Ω (A6)

Note that (A6) is dependent on the z-position. Therefore, the D-Bar algorithm can
solve the conductivity for specific points inside the domain. The density of reconstruction
points can be selected to balance the computation speed and the potential spatial resolution.
Another option is to just reconstruct points in a certain region of interest. We recommend
reading [28] for a thorough explanation of the mathematical background.

The steps described above have a disadvantage in the case of real-world measurements.
When the data are noisy, the reconstruction results in distortions. One can imagine the
space of the scattering transform as a complex frequency-like domain, where |k| can be
interpreted as a kind of frequency. High-frequency (larger |k|) components provide greater
detail in terms of spatial resolution, for example, for sharp edges, but are simultaneously
more prone to noise. Thus, the scattering transformation t(k) is not evaluated in the whole
complex plane, but, rather, on a truncated disk of radius |k| <= R1 around the origin. The
scattering transformation outside R1 < |k| is set to 0.
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Figure A1. This figure shows a simplified example of the content of K. In this M = 4 (which implies
m = 2) and a truncation radius R = 4 was chosen. This grid is used through steps 2 and 3 of the
D-Bar algorithm.
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