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Abstract: Integro-differential equations involving Volterra and Fredholm operators (VFIDEs) are
used to model many phenomena in science and engineering. Nonlocal boundary conditions are
more effective, and in some cases necessary, because they are more accurate measurements of the
true state than classical (local) initial and boundary conditions. Closed-form solutions are always
desirable, not only because they are more efficient, but also because they can be valuable benchmarks
for validating approximate and numerical procedures. This paper presents a direct operator method
for solving, in closed form, a class of Volterra–Fredholm–Hammerstein-type integro-differential
equations under nonlocal boundary conditions when the inverse operator of the associated Volterra
integro-differential operator exists and can be found explicitly. A technique for constructing inverse
operators of convolution-type Volterra integro-differential operators (VIDEs) under multipoint and
integral conditions is provided. The proposed methods are suitable for integration into any computer
algebra system. Several linear and nonlinear examples are solved to demonstrate the effectiveness of
the method.

Keywords: integro-differential equations; Volterra; Volterra–Fredholm; nonlinear; nonlocal condi-
tions; boundary value problems; convolution; symbolic computations; exact solution
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1. Introduction

Volterra–Fredholm integro-differential equations (VFIDEs) are encountered in many
different branches of science and engineering [1–4]. As they are extremely difficult and in
some cases even impossible to solve in exact closed form, many different techniques have
been developed to construct approximate and numerical solutions. Some of these methods
are mentioned below.

Two well-known, traditional techniques are the series solution method [1,5] and the
variational iteration method [1]. A powerful and widely used method for solving linear
and nonlinear integro-differential equations including VFIDEs is the Adomian decomposi-
tion method (ADM) and its variant, known as modified ADM [6,7]. Methods employing
Taylor polynomial expansions were developed and applied to find the approximate so-
lution of high-order linear VFIDEs under mixed conditions [8] and high-order nonlinear
VFIDEs [9,10]. Collocation methods based on Haar wavelets and Legendre wavelets for the
numerical solution of nonlinear VFIDEs were presented in [3,11], respectively. An approach
using hybrid Legendre polynomials and block–pulse functions was also reported in [12].
The authors of [13] applied the polynomial least squares method to construct approximate
analytical solutions for a very general class of nonlinear VFIDEs. A moving least squares
(MLS) method was developed in [14]. The Tau method was also used for the numerical
solution of the general form of linear VFIDEs [15]. In [16], the reproducing kernel Hilbert
space method was employed to numerically solve first-order periodic VFIDEs. A method
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based on triangular functions and the relative operational matrix to determine the numer-
ical solution of specific nonlinear VFIDEs was proposed in [17]. Fixed-point techniques
for the approximate solution of linear and first-order nonlinear VFIDEs were discussed
in [18,19], respectively. A quadrature and iterative technique for solving a nonlinear VFIDE
with weakly singular kernels was developed in [20]. Numerical techniques for solving
fractional VFIDEs were proposed in [21–23] using second Chebyshev wavelets (SCWs),
fractional-order Bernoulli functions (FBFs) and Lucas wavelets (LWs), respectively. The
numerical solution of multipoint boundary value problems for linear VFIDEs was studied
using Legendre polynomials [24,25], and Bernstein polynomials [26,27]. A semi-analytical
numerical method for solving multipoint boundary value problems for linear VFIDEs of
the neutral type with linear functional arguments was presented in [28]. Finally, for other
related types of problems, such as ordinary differential equations under multipoint and
integral conditions and nonlinear Volterra equations with loads, see [29,30].

This paper deals with the exact closed-form solution of a class of Volterra–Fredholm
integro-differential equations of the Hammerstein type. It is emphasized that due to the
complexity involved in solving integro-differential equations (IDEs) and in contrast to
numerical methods, exact analytical techniques cannot have a general purpose but are
designed and applied to a specific class of IDEs. Methods for solving explicitly different
types of Volterra and Fredholm IDEs are discussed in detail in [31]. A method for the
exact solution of systems of first-order linear Fredholm IDEs under multipoint and integral
conditions was presented in [32]. The exact solution of linear and nonlinear convolution-
type Volterra–Fredholm integral equations (VFIEs) was efficiently treated in [33]. In [4],
the existence and uniqueness criteria and the closed-form solution of the convolution-type
linear VFIDEs of the following form were investigated:

n

∑
i=0

aiu(n−i)(x) +
n

∑
i=0

∫ x

0
ki(x− t)u(n−i)(t)dt

−
m

∑
j=1

∫ b

0
k̄ j(x, t)

n

∑
i=0

aiu(n−i)(t)dt = f (x), (1)

subject to the boundary conditions

Φi(u) = 0, i = 1, 2, . . . , n, (2)

where ai, i = 0, 1, . . . , n (a0 6= 0) and b > 0 are given real constants; ki(x), i = 0, 1, . . . , n,
k̄ j(x, t), j = 1, 2, . . . , m, and f (x) are given continuous functions; u(x) is the unknown func-

tion assumed n times continuously differentiable; and u(i)(x) = diu
dxi and Φi,

i = 1, 2, . . . , n, are given linear bounded functionals. This technique was used to solve the
second-order VFIDEs encountered in the bending analysis of elastic Euler–Bernoulli beams
in Eringen’s two-phase nonlocal integral model in the case of a distributed transverse load
and boundary conditions for a simply supported beam, cantilever beam, clamped pinned
beam and clamped beam [4,34].

In this article, we extend the technique to Volterra–Fredholm integro-differential
equation in the Hammerstein form

n

∑
i=0

aiu(n−i)(x) −
n

∑
i=0

∫ x

a
ki(x, t)u(n−i)(t)dt

−
m

∑
j=1

∫ b

a
qj(x, t)ϕj

(
t, u(t), u′(t), . . . , u(n)(t)

)
dt = f (x), (3)

under the general nonlocal boundary conditions
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Φi(u)−
l

∑
j=1

νijΘj(u) = 0, i = 1, 2, . . . , n, (4)

where ai, i = 0, 1, . . . , n, (a0 6= 0), a and b are given real constants; ki(x, t), i = 0, 1, . . . , n,
qj(x, t), ϕj(·), j = 1, 2, . . . , m, and f (x) are given continuous functions; u(x) is the un-

known function assumed n times continuously differentiable with u(i)(x) = diu
dxi ; Φi,

i = 1, 2, . . . , n, are some special, linear bounded functionals; Θj, j = 1, 2, . . . , l, are given
general linear bounded functionals involving values at fixed points and definite integrals
of u(i−1)(x), i = 1, 2, . . . , n, in the interval [a, b]; and νij, i = 1, 2, . . . , n, j = 1, 2, . . . , l, are
real constants.

The outline of the paper is as follows: In Section 2, a direct operator method for
solving nonlocal boundary value problems for nonlinear VFIDEs is presented. In Section 3,
existence and uniqueness criteria and a solution formula for linear VFIDEs are given.
Section 4 deals with the inversion of linear Volterra integro-differential operators (VIDEs) of
convolution type and the solution of the corresponding VFIDEs. The proposed methods are
tested by solving several examples in Section 5. Finally, conclusions and future directions
are discussed in Section 6.

2. Formulation and Solution of Nonlinear VFIDEs

First, we formulate the nonlocal boundary problem (3), (4) in a convenient opera-
tor form.

Let X = C[a, b], a, b ∈ R, and let the operators A, K : X → X defined as

Au =
n

∑
i=0

aiu(n−i)(x), (5)

Ku =
n

∑
i=0

∫ x

a
ki(x, t)u(n−i)(t)dt, (6)

be an nth-order linear differential operator and a linear Volterra-type integral operator,
respectively, where n ∈ N, a0 6= 0, ai, i = 1, 2, . . . , n, are real constants; u(x) ∈ Cn[a, b]; and
kernel functions ki(x, t) ∈ X× X, i = 0, 1, . . . , n.

Furthermore, let the nonlinear Fredholm.type integral operator K̄ : X → X be de-
fined as

K̄u =
m

∑
j=1

∫ b

a
qj(x, t)ϕj

(
t, u(t), u′(t), . . . , u(n)(t)

)
dt, (7)

where qj(x, t), ϕj(·), j = 1, 2, . . . , m, are continuous functions. We assume that kernels
qj(x, t) are degenerate, i.e., without loss of generality of the form

qj(x, t) = gj(x)hj(t), j = 1, 2, . . . , m,

where gj(x), hj(t) ∈ X. In this case, Equation (7) becomes

K̄u =
m

∑
j=1

gj(x)
∫ b

a
hj(t)ϕj

(
t, u(t), u′(t), . . . , u(n)(t)

)
dt. (8)

By defining the row vector of functions

g =
(

g1 g2 · · · gm
)
, gj = gj(x), j = 1, 2, . . . , m,

and the column vector of functionals
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Ψ(u) =


Ψ1(u)
Ψ2(u)

...
Ψm(u)

, Ψj(u) =
∫ b

a
hj(t)ϕj

(
t, u(t), u′(t), . . . , u(n)(t)

)
dt, (9)

where Ψj, j = 1, 2, . . . , m, are nonlinear functionals defined on X, Equation (8) is written
compactly as

K̄u =
m

∑
j=1

gjΨj(u) = gΨ(u). (10)

Let the column vectors of linear bounded functionals

Φ(u) =


Φ1(u)
Φ2(u)

...
Φn(u)

, Θ(u) =


Θ1(u)
Θ2(u)

...
Θl(u)

,

and the m× ` constant matrix

N =


ν11 ν12 · · · ν1l
ν21 ν22 · · · ν2l

...
...

. . .
...

νn1 νn2 · · · νnl

,

where νij, i = 1, 2, . . . , n, j = 1, 2, . . . , l, are real constants, and write the nonlocal boundary
conditions in the matrix form

Φ(u)−NΘ(u) = 0, (11)

where 0 denotes the zero column vector.
By employing (5), (6) and (11) define the linear Volterra-type integro-differential

operator V : X → X,

Vu = Au− Ku,

D(V) = {u : u ∈ Cn[a, b], Φ(u)−NΘ(u) = 0}, (12)

and then, by means of (10), the nonlinear Volterra–Fredholm-type integro-differential
operator T : X → X,

Tu = Vu− gΨ(u), D(T) = D(V).

Thus, the boundary value problem (3), (4) can be written in the operator form

Tu = f , f ∈ X.

We now state the following theorem.

Theorem 1. If linear operator V is bijective on X and its inverse is denoted by V−1, then the exact
solution to the problem Tu = f for all f ∈ X is given by

u = V−1 f + V−1gc∗, (13)

for every vector c∗ = Ψ(u) that is a solution of the nonlinear algebraic (transcendental) system

c−Ψ
(

V−1 f + V−1gc
)
= 0. (14)



Algorithms 2023, 16, 36 5 of 16

Proof. By multiplying the nonlinear equation

Tu = Vu− gΨ(u) = f ,

by inverse operator V−1, we obtain

u = V−1 f + V−1gΨ(u). (15)

By applying vector Ψ on both sides, we have

Ψ(u) = Ψ
(

V−1 f + V−1gΨ(u)
)

.

We set c = Ψ(u) and write
c = Ψ

(
V−1 f + V−1gc

)
,

which is a nonlinear algebraic (transcendental) system with vector c unknown. Let c∗ be a
solution of this system. By substituting c∗ into (15), we obtain the solution in (13).

3. Solution of Linear VFIDEs

In the case in which ϕj

(
t, u(t), u′(t), . . . , u(n)(t)

)
is a linear function in u(t), u′(t), . . . ,

u(n)(t), namely,

ϕj

(
t, u(t), u′(t), . . . , u(n)(t)

)
=

n

∑
i=0

ϕji(t)u(n−i)(t), j = 1, 2, . . . , m, (16)

where ϕji(t) ∈ X, j = 1, 2, . . . , m, i = 1, 2, . . . , n, Equation (8) is simplified as

K̄u =
m

∑
j=1

gj(x)
∫ b

a
hj(t)

n

∑
i=0

ϕji(t)u(n−i)(t)dt,

and Equation (9) is written as

Ψ(u) =


Ψ1(u)
Ψ2(u)

...
Ψm(u)

, Ψj(u) =
∫ b

a
hj(t)

n

∑
i=0

ϕji(t)u(n−i)(t)dt,

where now Ψj, j = 1, 2, . . . , m, are linear bounded functionals defined on Cn[a, b] (see [35]
(Theorem 3, p. 480)).

We introduce the m×m matrix

Ψ(g) =

 Ψ1(g1) · · · Ψ1(gm)
...

. . .
...

Ψm(g1) · · · Ψm(gm)

,

where element Ψi(gj) is the value of functional Ψi on element gj. It is noted that for a m× k
constant matrix C,

Ψ(gC) = Ψ(g)C. (17)

Define the linear Volterra–Fredholm integro-differential operator S : X → X as

Su = Vu− gΨ(u),

D(S) = D(V) = {u : u ∈ Cn[a, b], Φ(u)−NΘ(u) = 0},

and write the linear boundary value problem (3), (4) and (16) in the symbolic form
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Su = f , f ∈ X.

We now give the following theorem, where we use the notation Im to denote the m×m
identity matrix.

Theorem 2. If linear operator V is bijective on X, then linear operator S is injective if and only if

det W̄ = det
[

Im −Ψ
(

V−1g
)]
6= 0,

and the unique solution of the boundary value problem

Su = f , for all f ∈ X, (18)

is given by
u = V−1 f + V−1gW̄−1Ψ

(
V−1 f

)
. (19)

Proof. Suppose that det W̄ 6= 0 and u ∈ ker S. Then, Su = Vu− gΨ(u) = 0; hence,

u = V−1gΨ(u). (20)

By applying vector Ψ on both sides and using (17), we have

Ψ(u) = Ψ
(

V−1gΨ(u)
)
= Ψ

(
V−1g

)
Ψ(u),

and thus [
Im −Ψ

(
V−1g

)]
Ψ(u) = W̄Ψ(u) = 0,

from where it follows that Ψ(u) = 0. Then, from (20), it is implied that u = 0, i.e.,
ker S = {0}; therefore, operator S is injective. Conversely, we assume that S is injective,
and we will show that det W̄ 6= 0, or equivalently, we suppose that det W̄ = 0, and we will
show that S is not injective. Let c be a nonzero constant vector c such that W̄c = 0, and let
element v = V−1gc ∈ X, which is different from zero; otherwise,

W̄c =
[

Im −Ψ
(

V−1g
)]

c = c−Ψ
(

V−1g
)

c = c−Ψ
(

V−1gc
)
= c−Ψ(v) = c = 0,

which is a contradiction. Then,

Sv = Vv− gΨ(v) = gc− gΨ(V−1gc) = gc− gΨ(V−1g)c = g
[

Im −Ψ
(

V−1g
)]

c = 0,

which means that ker S 6= {0}; therefore, S is not injective.
To find the unique solution of the boundary value problem (18), we multiply (18) by

operator V−1 to obtain
u = V−1 f + V−1gΨ(u). (21)

By applying vector Ψ as above and solving with respect to Ψ(u), we obtain

Ψ(u) =
[

Im −Ψ
(

V−1g
)]−1

Ψ
(

V−1 f
)
= W̄−1Ψ

(
V−1 f

)
. (22)

By substituting (22) into (21), we obtain

u = V−1 f + V−1gW̄−1Ψ
(

V−1 f
)

,

which is the solution in (19).
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4. Volterra Integro-Differential Operators of Convolution Type

In the previous two sections, we assume that inverse linear operator V−1 is known a
priori. However, finding the inverse of a Volterra integro-differential operator is not always
an easy task.

In this section, we look at the special case where X = C[0, b], the Volterra integral
operator in (6) is of convolution type, namely,

Ku =
n

∑
i=0

∫ x

0
ki(x− t)u(n−i)(t)dt,

and the vector of functionals Φ(u) in (11) is as follows:

Φ(u) = col(Φ1(u), Φ2(u), . . . , Φn(u)) = col
(

u(0), u′(0), . . . , u(n−1)(0)
)

. (23)

In this case, the inverse operator V−1 of the linear Volterra integro-differential operator

Vu = Au− Ku,

D(V) = {u : u ∈ Cn[0, b], Φ(u)−NΘ(u) = 0} (24)

can be constructed analytically using the Laplace transform for certain classes of functions
as it is shown below.

First, we recall the following definitions and properties about the Laplace transform:
For a function f (x) ∈ C[0, ∞) of exponential order, that is, there exist real constants γ and
M such that | f (x)| ≤ Meγx for all x ≥ 0, the Laplace transform of f defined by

F(s) = L{ f } =
∫ ∞

0
e−sx f (x)dx,

exists for all s > γ. Laplace transform operator L is linear and injective. For any two
functions f (x) and g(x) of exponential order and any real constants a and b,

L{a f + bg} = aL{ f }+ bL{g},

and
f (x) = L−1{F}.

The convolution of f and g is defined as

( f ∗ g)(x) =
∫ x

0
f (x− t)g(t)dt,

and holds
L{ f ∗ g} = L{ f }L{g}).

For a function f (x) ∈ Cn[0, ∞) and its derivatives f (i)(x) ∈ C[0, ∞), i = 1, 2, . . . , n, of
exponential order, the Laplace transform of the nth derivative f n(x) exists and is given by

L{ f (n)} = snL{ f } −
n

∑
`=1

sn−` f (`−1)(0), (25)

see, for example, [36] and some new developments in [37].
We prove the following lemma.

Lemma 1. Let u(i)(x), ki(x), i = 0, 1, . . . , n, and f (x) be continuous functions of exponential
order. Then, the equation

Au− Ku = f , (26)

is equivalent to
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u = p̂Φ(u) + f̂ , (27)

where Φ(u) is the functional defined in (23), and

F(s) = L{ f }, Ki(s) = L{ki}, i = 0, 1, . . . , n,

Q(s) =
1

∑n
i=0(ai − Ki(s))sn−i ,

P`(s) =
n−`
∑
i=0

(ai − Ki(s))sn−`−i, ` = 1, 2, . . . , n,

f̂ = L−1{Q(s)F(s)},
p̂ =

(
p̂1 p̂2 · · · p̂n

)
, p̂` = L−1{Q(s)P`(s)}, ` = 1, 2, . . . , n. (28)

Proof. By applying the Laplace transform operator to (26), we obtain

L{Au− Ku} = L{Au} − L{Ku}

=
n

∑
i=0

aiL{u(n−i)} −
n

∑
i=0
L
{∫ x

0
ki(x− t)u(n−i)(t)dt

}
=

n

∑
i=0

aiL{u(n−i)} −
n

∑
i=0
L{ki}L{u(n−i)}

=
n

∑
i=0

(ai −L{ki})L{u(n−i)}

= L{ f }. (29)

From (25), we have

L{u(n−i)} =
(

sn−iL{u} −
n−i

∑
`=1

sn−i−`u(`−1)(0)

)
,

and after substituting into (29), we obtain

L{Au− Ku} =
n

∑
i=0

(ai −L{ki})
(

sn−iL{u} −
n−i

∑
`=1

sn−i−`u(`−1)(0)

)

=
n

∑
i=0

(ai −L{ki})sn−iL{u}

−
n

∑
i=0

(ai −L{ki})
(

n−i

∑
`=1

sn−i−`u(`−1)(0)

)

=

[
n

∑
i=0

(ai −L{ki})sn−i

]
L{u}

−
n

∑
`=1

[
n−`
∑
i=0

(ai −L{ki})sn−`−i

]
u(`−1)(0)

= L{ f },

or [
n

∑
i=0

(ai − Ki(s))sn−i

]
U(s)−

n

∑
`=1

[
n−`
∑
i=0

(ai − Ki(s))sn−`−i

]
u(`−1)(0) = F(s),
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where U(s) = L{u} and F(s) = L{ f }. By solving for U and using relations (28), we obtain

U(s) =
n

∑
`=1

Q(s)P`(s)u(`−1)(0) + Q(s)F(s).

By applying then the inverse operator, we obtain

L−1{U(s)} =
n

∑
`=1
L−1{Q(s)P`(s)}u(`−1)(0) + L−1{Q(s)F(s)},

and thus

u =
n

∑
`=1

p̂lu(`−1)(0) + f̂ = p̂Φ(u) + f̂ ,

which is Equation (27).

From Lemma 1, the next two results follow.

Lemma 2. The linear Volterra integro-differential operator V0 : X → X defined as

V0u = Au− Ku,

D(V0) = {u : u ∈ Cn[0, b], Φ(u) = 0}

is injective, and the unique solution of the initial value problem V0u = f , for any f ∈ X, is u = f̂ .

Lemma 3. The Volterra integro-differential operator V1 : X → X defined as

V1u = Au− Ku,

D(V1) = {u : u ∈ Cn[0, b], Φ(u) = c},

where c is a vector of arbitrary real constants, is injective, and the unique solution of initial value
problem V1u = f , for any f ∈ X, is u = p̂c + f̂ .

We now state the following theorem for finding the inverse (V−1) of linear operator V
in (24).

Theorem 3. Let u(i)(x), ki(x), i = 0, 1, . . . , n, and f (x) be continuous functions of exponential
order. Then, the linear Volterra integro-differential operator

Vu = Au− Ku,

D(V) = {u : u ∈ Cn[0, b], Φ(u)−NΘ(u) = 0}, (30)

is injective if
det Ŵ = det[In −NΘ( p̂)] 6= 0, (31)

and the unique solution of the nonlocal boundary value problem Vu = f , for any f ∈ X, is given by

u = p̂Ŵ−1NΘ( f̂ ) + f̂ . (32)

Proof. From Equation (30) and Lemma 1, we have that Au− Ku = f is equivalent to

u = p̂Φ(u) + f̂ , (33)

where Φ(u) is to be determined.
By applying vector Θ on (33), we obtain

Θ(u) = Θ( p̂Φ(u)) + Θ( f̂ ) = Θ( p̂)Φ(u) + Θ( f̂ ).
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By substituting Θ(u) into
Φ(u)−NΘ(u) = 0,

after some algebra, we obtain

[In −NΘ( p̂)]Φ(u) = NΘ( f̂ ). (34)

If condition (31) holds true, then Equation (34) can be solved uniquely with respect to
Φ(u) to obtain

Φ(u) = [In −NΘ( p̂)]−1NΘ( f̂ ). (35)

The substitution of (35) into (33) yields

u = p̂[In −NΘ( p̂)]−1NΘ( f̂ ) + f̂ ,

which is Equation (32).

Finally, for completeness, we mention that Theorem 3 can be extended to problems
with nonhomogeneous boundary conditions. For this, let operator Ṽ : X → X be defined
as

Ṽu = Au− Ku,

D(Ṽ) = {u : u ∈ Cn[0, b], Φ(u)−NΘ(u) = b}. (36)

where K is as usual the convolution-type integral operator; the linear bounded functionals
Φ(u) = col(u(0), u′(0), . . . , u(n−1)(0)); and b is a column vector of n real constants. It is
emphasized that Ṽ is not a linear operator since domain D(Ṽ) is a nonlinear set. With the
same arguments as above, the following theorem can be proved.

Theorem 4. Under the same conditions as in Theorem 3, the Volterra integro-differential operator
Ṽ is injective, and the unique solution of the nonlocal boundary value problem Ṽu = f , for any
f ∈ X, is given by

u = p̂Ŵ−1
(

NΘ( f̂ ) + b
)
+ f̂ .

5. Examples

In this section, we solve four examples representative of the presented theory to
demonstrate the ease of implementation and effectiveness of the method. The first example
concerns a Volterra integro-differential equation (VIDE) under various types of nonhomo-
geneous boundary conditions. The remaining examples are one linear and two nonlinear
boundary value problems for VFIDEs under nonlocal boundary conditions.

5.1. Example 1

Consider the first-order linear Volterra integro-differential equation

u′(x) + a1u(x)−
∫ x

0
e−(x−t)u(t)dt = f (x), x ∈ [0, 1], (37)

where a1 ∈ R, f (x) is the input or load function assumed to be a continuous function of
exponential order, subject to the following:

(i) Initial condition
u(0) = b1, (38)

(ii) Two-point boundary condition

u(0)− ν11u(x1) = b1, (39)
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(iii) Multipoint and integral boundary condition

u(0)− ν11u(x1)− ν12u(x2)− ν13

∫ ξ2

ξ1

u(t)dt = b1, (40)

where ν1l , l = 1, 2, 3, and b1 are real constants, 0 ≤ x1 < x2 ≤ 1 and 0 ≤ ξ1 < ξ2 ≤ 1.
We take n = 1 and

Au = u′(x) + a1u(x),

Ku =
∫ x

0
k1(x− t)u(t)dt, k1(x) = e−x,

Vu = Au− Ku, D(V) =
{

u : u ∈ C1[0, 1], Φ(u)−NΘ(u) = b
}

,

where

(i) Φ(u) =
(

u(0)
)
, N =

(
0
)
, b =

(
b1
)
,

(ii) Φ(u) =
(

u(0)
)
, N =

(
ν11

)
, Θ(u) =

(
u(x1)

)
, b =

(
b1
)
,

(iii) Φ(u) =
(

u(0)
)
, N =

(
ν11 ν12 ν13

)
, Θ(u) =

 u(x1)
u(x2)∫ ξ2

ξ1
u(t)dt

, b =
(

b1
)
.

We note that k1 is a continuous function of exponential order; therefore, we can apply
Theorem 4. Thus, the solution of the initial value problem (37), (38) for f (x) = 0 and b1 = 1
turns out to be

u(x) = e−
a1+1

2 x
(

cosh(cx) +
1− a1

2c
sinh(cx)

)
,

where c = 1
2

√
a2

1 − 2a1 + 5. This problem was studied in [38,39].
The solution of the two-point boundary value problem (37), (39) for a1 = 2, f (x) =

2e−x + x2 + 3x− 5, ν11 = −1, b1 = 0, and x1 = 1 is

u(x) = x2 − x− 1.

Finally, the solution of the nonlocal boundary value problem (37), (40) for

a1 = −1, f (x) = −(x + 2)e−x,

ν11 = −1, ν12 = e−1/2, ν13 = 1, b1 = 1 + e−
1
4 − e−

3
4 ,

and the points x1 = 0.25, x2 = 0.5, ξ1 = 0.75 and ξ2 = 1 is

u(x) = e−x.

5.2. Example 2

Solve the second-order linear VFIDE

u′′(x) + a1u′(x) + a2u(x)−
∫ x

0
cos(x− t)u′(t)dt−

∫ x

0
sin(x− t)u(t)dt

−
∫ 1

0
(x2 + xt)u(t)dt = f (x), x ∈ [0, 1], (41)

subject to homogeneous boundary conditions

u(0) = 0, u(1) = 0. (42)

First, we note that n = 2, m = 2 and ` = 2 and define
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Au = u′′(x) + a1u′(x) + a2u(x),

Ku =
∫ x

0
k1(x− t)u′(t)dt +

∫ x

0
k2(x− t)u(t)dt, k1(x) = cos x, k2(x) = sin x,

K̄u = x2
∫ 1

0
u(t)dt + x

∫ 1

0
tu(t)dt,

Φ(u) =

(
u(0)
u′(0)

)
, N =

(
0 0
1 −1

)
, Θ(u) =

(
u′(0)
u(1)

)
.

Next, we set the vectors

g =
(

g1(x) g2(x)
)
=
(

x2 x
)
,

Ψ(u) =

 ∫ 1
0 h1(t)u(t)dt∫ 1
0 h2(t)u(t)dt

 =

 ∫ 1
0 u(t)dt∫ 1
0 tu(t)dt

,

and define the linear operators

Vu = Au− Ku, D(V) =
{

u : u ∈ C2[0, 1], Φ(u)−NΘ(u) = 0
}

,

Su = Vu− gΨ(u), D(S) = D(V). (43)

We observe that k1, k2, g1 and g2 are continuous functions of exponential order. There-
fore, we use Theorems 2 and 3 to construct the unique solution of the boundary value
problem (41), (42).

Specifically, for a1 = −1, a2 = 1 and f (x) = −x2 + x, we obtain the unique solution

u(x) =
12

745e− 4611

(
238ex − (25e + 5)x3 − (71e− 81)x2 − (142e− 162)x− 238

)
.

For f (x) = ex, we obtain

u(x) =
1

745e− 4611
{[ (745e− 4611)x + 2111e− 836 ]ex

+
(
−300e2 + 340e + 1180

)
x3 +

(
−852e2 + 2406e− 672

)
x2

+
(
−1704e2 + 4812e− 1344

)
x− 2111e + 836

}
.

5.3. Example 3

Let the second-order nonlinear VFIDE of Hammerstein type

u′′(x)−
∫ x

0
cos(x− t)u′(t)dt− 120x

∫ 1

0
u(t)u′(t)dt = f (x), x ∈ [0, 1], (44)

subject to multipoint boundary conditions

u(0) = 2u′(
1
2
)− 3u(1), u′(0) = −u′(1). (45)

We start by setting n = 2, m = 1 and ` = 3, and
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Au = u′′(x),

Ku =
∫ x

0
cos(x− t)u′(t)dt,

K̄u = 120x
∫ 1

0
u(t)u′(t)dt,

Φ(u) =

(
u(0)
u′(0)

)
, N =

(
2 −3 0
0 0 −1

)
, Θ(u) =

 u′( 1
2 )

u(1)
u′(1)

.

Next, we define the vectors

g =
(

g1(x)
)
= (120x), Ψ(u) =

( ∫ 1
0 u(t)u′(t)dt

)
,

and the operators

Vu = Au− Ku, D(V) =
{

u : u ∈ C2[0, 1], Φ(u)−NΘ(u) = 0
}

,

Tu = Vu− gΨ(u), D(T) = D(V).

Theorems 1 and 3 are applicable. Let f (x) = − x
2 . It follows that (14) is a nonlinear

algebraic quadratic equation in c that has the following two real solutions:

c1,2 =
2351± 24

√
8922

149,520
.

Consequently, we obtain the following two solutions of the nonlinear boundary value
problem (44), (45):

u1,2(x) =
72±

√
8922

598,080

(
96x5 + 1504x3 − 2496x + 3

)
.

5.4. Example 4

As a last example, we consider the first-order nonlinear VFIDE of Hammerstein type

u′(x)−
∫ x

0
cos(t− x)u(t)dt− 2

∫ 1

0
(x + t)u2(t)dt = f (x), x ∈ [0, 1], (46)

subject to the boundary condition

u(0) = u(1). (47)

It is easily seen that n = 1, m = 2 and ` = 1, and

Au = u′(x),

Ku =
∫ x

0
cos(t− x)u(t)dt,

K̄u = 2
∫ 1

0
(x + t)u2(t)dt,

Φ(u) =
(

u(0)
)
, N =

(
1
)
, Θ(u) =

(
u(1)

)
.

Define the vectors

g =
(

g1(x) g2(x)
)
=
(

2x 1
)
,

Ψ(u) =

 ∫ 1
0 h1(t)u2(t)dt∫ 1
0 h2(t)u2(t)dt

 =

 ∫ 1
0 u2(t)dt∫ 1

0 2tu2(t)dt

,
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and then the operators

Vu = Au− Ku, D(V) =
{

u : u ∈ C1[0, 1], Φ(u)−NΘ(u) = 0
}

,

Tu = Vu− gΨ(u), D(T) = D(V).

The solution of Tu = f follows using Theorems 1 and 3. Let

f (x) = −7 sin x− 4 cos x− 331
105

x +
125
28

.

It turns out that the nonlinear algebraic system in (14) consists of two quadratic
equations with unknown vector c. It possesses two real and two complex roots, of which
only the real root

c =

(
c1
c2

)
=

( 331
210
43
28

)
is retrieved in exact form. In this case, the solution of the nonlinear boundary value
problem (46), (47) is

u(x) = x3 − 3x2 + 2x + 1.

We programmed the proposed methods into the free software Maxima computer
algebra system (CAS) running on Microsoft Windows. We used the available built-in func-
tions laplace, ilt and solve to compute the Laplace transform, the inverse Laplace transform
and the solution of linear and nonlinear systems of algebraic equations, respectively.

6. Discussion and Conclusions

In general, there are not many procedures available in the literature for solving bound-
ary value problems with nonlocal boundary conditions in closed form.

In this paper, a method is presented to solve in closed form a class of linear and
nonlinear VFIDEs under homogeneous nonlocal boundary conditions. The method requires
the existence of the explicit form of the inverse operator of the associated linear Volterra
integro-differential operator. A procedure for constructing this inverse operator in the case
of convolution-type VIDEs under homogeneous and nonhomogeneous nonlocal boundary
conditions is also given. The methods are implemented in a computer algebra system, and
several examples are solved.

The main advantage of the technique is that it is straightforward, does not require
approximations or numerical procedures and provides the exact solution in closed form.
Moreover, in the nonlinear case, unlike the numerical solutions, it can give all possible
solutions that can be calculated analytically. It was proved to be easy to use and very
effective. Its main drawback is that its applicability is limited to a class of continuous
functions of exponential order for which the direct and inverse Laplace transform exist. It
relies on the available facilities for the inverse Laplace transform and explicit integration in
the computer algebra software used.

Finally, the solution of VFIDEs subject to nonhomogeneous nonlocal boundary condi-
tions is a more challenging task that needs a different treatment that could be addressed in
a separate article in the future.
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