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Abstract: The boundary value problem, BVP, for the PDE heat equation is studied and explained in
this article. The problem declaration comprises two intervals; the (0, T) is the first interval and labels
the heating of the inside burning chamber, and the second (T, ∞) interval defines the normal cooling
of the chamber wall when the chamber temperature concurs with the ambient temperature. It is
necessary to prove the boundary function of this problem has its place in the space H1[0, ∞] in order
to successfully apply the Fourier transform method. The applicability of the Fourier transform for
time to this problem is verified. The method of projection regularization is used to solve the inverse
boundary value problem for the heat equation and to obtain an evaluation for the error between the
approximate and the real solution. These results are new and of practical interest as shown in the
numerical case study.

Keywords: error estimate; inverse boundary value problem; Fourier transform; ill-posed problem

1. Introduction

A heat speared problem handles the estimate of unidentified numbers appearing
in the mathematics of physical in thermal knowledges, by means of the dimensions or
measurement of the temperature, radiation intensities, heat flux, etc.

The inverse problem for the heat PDE system can be solved by many methods; for
example, the method of Tikhonov [1], the method of Lavrentiev [2], Ivanov [3], and many
others. The inverse problems in the heat PDE system can be grouped as two types de-
pending on the e unknown function or vector for the initial part or the boundary part
conditions, and many studies of these problems are considered in many works [4–12].
Various methods for solving this type of inverse problem have been proposed in many
works [13–17]. In the article [13], the BVP for the PDE heat equation in a hollow cylinder
was solved by using the Fourier projection method. Papers [14,16] studied the multigrid
method with the iterative method to find the solution for the inverse problem, IP, in the
heat PDE system. In [15,17], the iterative methods with necessary analyses were studied
for solving the inverse linear operator equation and the case study in this paper was the
inverse heat PDE system problem.

The successfully accomplished approaches for resolving the IPs are dependent, to a
large degree, on the deep insight into the mathematical problems related to the algorithms
and statements and the definition of the specific difficulties in their solving [18–23].

The goal of this article is to provide the approximation solution for the BVP in the PDE
for the heat equation system with the mixed interval for time. Hence, the result of this problem
(BVP) is not contingent continuously on the known data in the field, which means the solution
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is not stable; therefore, this problem is known as an ill-posed inverse problem. The proving of
the boundary function of this problem belonged to the class H1[0, ∞] necessary for applying
the projection regularization method by using the Fourier transform. For solving the ill-posed
problems, a central role is played by the error estimations between the approximation and real
solutions. We obtain the estimate solution by applying the projection regularization method
with the Fourier transform, making these results new and interesting.

2. Materials and Methods Direct Formulation of the Problem on Interval (0,T]

We considered the case of the heat equation on a segment with inhomogeneous
boundary data.

∂u1(x, t)
∂t

=
∂2u1(x, t)

∂x2 , 0 < x < 1, t ∈ (0, T], (1)

u1(x, 0) = 0, 0 ≤ x ≤ 1, (2)

u1(0, t) = 0, 0 ≤ t ≤ T, (3)

u1(1, t) = u(t), 0 ≤ t ≤ T, (4)

Assume the q(t) function is defined as the following

q1(t) ∈ C3[0, T], q1(0) = q′1(0) = q′′ 1(0) = q′1(T) = q′′ 1(T) = 0, (5)

by using Duhamel’s principle method ([24], p. 109)

u1(x, t) =
t∫

0

wt(x, t− τ)q1(τ)dτ, (6)

integration by parts for the right part for (6) once, we obtain

u1(x, t) =
t∫

0

w(x, t− τ)q′1(τ)dτ + q1(0)w(x, t). (7)

Now, we can decide to obtain the solution for w(x, t) as the following

w(x, t) = x + 2
∞

∑
n=1

(−1)n

nπ
e−(nπ)2t sin(nπx), (8)

by substituting (8) in (7), to obtain a solution to a non-stationary problem, from (5) q1(0) = 0,

u1(x, t) = x +
∞

∑
n=1

(−1)nCn(t) sin(nπx), (9)

Cn(t) =
2

nπ

t∫
0

e−(nπ)2(t−τ)q′1(τ)dτ, (10)

where x ∈ (0, 1), and t ∈ (0, T].

Lemma 1. Let q1(t) satisfy condition (5). Then, there exists a solution u1(x, t) for problem (1)–(5)
such that u1(x, t) satisfies the Equation (1) on the set (0, 1)× (0, T], initial condition (2), boundary
conditions (3), (4) and u1(x, t) ∈ C([0, 1]× [0, T]) ∩ C2,1((0, 1)× (0, T]).

Proof. By integrating the right side of the Formula (10) in parts twice, we obtain
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Cn(t) =
2

(nπ)5

t∫
0

e−(nπ)2(t−τ)q′′′ 1(τ)dτ +
2

(nπ)3 q′1(t)−
2

(nπ)5 q′′ 1(t), (11)

since |Cn(t) sin(nπx)| ≤ |Cn(t)| for any n and from the Cauchy–Bunyakovsky inequality∣∣∣∣∣∣
t∫

0

e−(nπ)2(t−τ)q′′′ 1(τ)dτ

∣∣∣∣∣∣ ≤ ‖q′′′ 1(τ)‖L2(0,T]
1√
2nπ

, (12)

by means of (5), (4) and (12) for any t ∈ (0, T] and for any n we obtain

|Cn(t)| ≤
√

2‖q′′′ 1(t)‖L2

(nπ)6 +
2

(nπ)3 q′1(t)−
2

(nπ)5 q′′ 1(t). (13)

Using Equations (11)–(13) and convergence of the series
∞
∑

n−1

1
n3 ,

∞
∑

n−1

1
n5 ,

∞
∑

n−1

1
n6 with the

Weierstrass criterion follows the unchanging convergence of the above series on (0, 1)× (0, T].
Since the functions e−(nπ)2(τ)q′′′ 1(τ) ∈ L2(0, T], obtaining

t∫
0

e−(nπ)2(t−τ)q′′′ 1(τ)dτ = e−(nπ)2t
t∫

0

e(nπ)2τq′′′ 1(τ)dτ ∈ C(0, T]. (14)

Thus, with q1(t), q′1(t) and q′′ 1(t) ∈ C(0, T] in addition to Equations (11) and (14),
we take Cn(t) ∈ C(0, T]. From this condition and the convergence of (19) in domain
(0, 1)× (0, T], we have u1(x, t) ∈ C((0, 1)× (0, T]). Differentiating a Cn(t) sin(nπx) with x
and by using (13), we obtain

∣∣∣(Cn(t) sin nπx)′x
∣∣∣ ≤ √2‖q′′′ 1(t)‖L2

(nπ)5 +
2

(nπ)3 q′1(t)−
2

(nπ)4 q′′ 1(t).

From the above relation, we obtain the convergence of the
∞
∑

n−0
(Cn(t) sin nπx)′x

in [0, 1] × [0, T], from (8) we have ∂u1(x,t)
∂x =

∞
∑

n−0
(Cn(t) sin nπx)′x in (0, 1) × (0, T] and

∂u1(x,t)
∂x ∈ ((0, 1)× (0, T]).

Now, let us examine the function ∂2u1(x,t)
∂x2 .

Differentiating the function Cn(t) sin(nπx) by x twice and using (11), we obtain

(Cn(t) sin(nπx))′′ xx = 2 sin(nπx)
(nπ)3

t∫
0

e−(nπ)2(t−τ)q′′′ 1(τ)dτ + 2 sin(nπx)
(nπ)

q′1(t)−
2 sin(nπx)
(nπ)3 q′′ 1(t),

since the number series
∞
∑

n−1

1
n3 , converge according to the Weierstrass criterion, the func-

tional series 2
∞
∑

n=0

sin(nπx)
(nπ)

q′1(t), converge absolutely and uniformly on (0, 1)× (0, T].

Then, we need to check the convergence for
∞
∑

n=0

sin(nπx)
(nπ)

to any ε > 0 in this series,

related to the Dirichlet criterion, the convergence is consistently on [ε, 1− ε].

Meanwhile, any ε > 0 series
∞
∑

n−0
(Cn(t) sin(nπx))′′ xx converges on [ε, 1− ε]× (0, T]

and the parts of this series are nonstop, we obtain
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∂2u1(x,t)
∂x2 =

∞
∑

n−0
(Cn(t) sin nπx)′′ xx,

∂2u1(x,t)
∂x2 ∈ C((0, 1)× (0, T]).

The lemma is proofed. �

Now, let us examine the function u1(x, T).

Lemma 2. Function u1(x, T), defined by formulas (9) and (11), belongs to space H4[0, 1].

Proof. From (5), (9) and (11) it follows that

u1(x, T) = x +
∞

∑
n=1

(−1)nCn(T) sin(nπx),

where

Cn(T) =
2

(nπ)5

T∫
0

e−(nπ)2(T−τ)q′′′ 1(τ)dτ +
2

(nπ)3 q′1(T)−
2

(nπ)5 q′′ 1(T). (15)

Since the conditions

∂u1(x,T)
∂x =

∞
∑

n=0
nπCn(T) cos(nπx),

∂2u1(x,T)
∂x2 = −

∞
∑

n=0
(nπ)2Cn(T) sin(nπx),

∂3u1(x,T)
∂x3 = −

∞
∑

n=0
(nπ)3Cn(T) cos(nπx),

∂4u1(x,t)
∂x4 =

∞
∑

n=0
(nπ)4Cn(T) sin(nπx),

(16)

are right, then, form (15) and (16) by means of the Weierstrass criterion which leads to the
convergence of the series, therefore

u1(x, T),
∂u1(x, T)

∂x
,

∂2u1(x, T)
∂x2 ,

∂3u1(x, T)
∂x3 ∈ C[0, 1]. (17)

We will show that ∂4u1(x,T)
∂x4 ∈ L2[0, 1]. From (16) and (17), we obtain

(nπ)4Cn(T) =
2

(nπ)

T∫
0

e−(nπ)2(T−τ)q′′′ 1(τ)dτ + 2(nπ)q′1(T)−
2

(nπ)
q′′ 1(T).

From (12), it follows that∣∣∣∣∣∣ 2
(nπ)

T∫
0

e−(nπ)2(T−τ)q′′′ 1(τ)dτ

∣∣∣∣∣∣ ≤ ‖q′′′ 1(t)‖L2[0,T]

√
2

(nπ)2 ,

First series
∞

∑
n=0

∣∣∣∣∣∣ 2
(nπ)

T∫
0

e−(nπ)2(T−τ)q′′′ 1(τ)dτ

∣∣∣∣∣∣ ≤ ∞.

Second series

2q′1(T)
∞

∑
n=0

(nπ) < ∞.
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Third series

2q′′ 1(T)
∞

∑
n=0

1
(nπ)

,

absolutely converges on [0, 1]× (0, T] then ∂4u1(x,T)
∂x4 ∈ L2[0, 1]. �

3. Expansion of the Direct Problem (1)–(5) on [T,∞)

Let us study the following PDE system in the interval [T, ∞).

∂u2(x, t)
∂t

=
∂2u2(x, t)

∂x2 , 0 ≤ x ≤ 1, t ∈ [T, ∞), (18)

u2(x, T) = u1(x, T) = f (x), 0 ≤ x ≤ 1, (19)

u2(0, t) = 0, T ≤ t < ∞, (20)

∂u2

∂x
(1, t) + κu2(1, t) = 0, T ≤ t < ∞, κ > 0. (21)

Assume that
f (x) ∈W2

2 [0, 1]; f (0) = 0, f ′(1) + κ f ′(1) = 0, (22)

We obtain the following solution by applying the separation of variables as a way for
solving problem (18)–(21)

u2(x, t) =
∞

∑
n=1

Ane−λ2
n(t−T) sin λnx, 0 ≤ x ≤ 1, t ≥ T, (23)

where cot λn = − λn
κ ,

An =
4

2λn − sin 2λn

1∫
0

f (x) sin λnxdx. (24)

By integrating the right side of (24) twice, we obtain

An =
4

λn(2λn − sin 2λn)

1∫
0

f ′′ (x) sin λnxdx, (25)

From (22) and (25), we define a number c1 > 0 such that for any n

|An| ≤
c1

λ2
n

. (26)

From (23) and (26), any t ≥ T + 1

|u2(x, t)| ≤ c1

∞

∑
n=1

λ−2
n e−λ2

n(t−T), (27)

∣∣∣∣∂u2(x, t)
∂x

∣∣∣∣ ≤ c1

∞

∑
n=1

λ1
ne−λ2

n(t−T), (28)

then, ∣∣∣∣∂2u2(x, t)
∂x2

∣∣∣∣ ≤ c1

∞

∑
n=1

e−λ2
n(t−T). (29)

Since
e−λ2

n(t−1) = e−λ2
n e−λ2

n(t−T−1), (30)
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Let us consider there exists the numbers c2 and c3 such that for any n

c2(n + 1) ≤ λn ≤ c3(n + 1), (31)

and, it follows from (30) and (31), that

e−λ2
n ≤

[
e−c2

1

]n
, (32)

then, it follows from (18), (27)–(32) that there is c4 > 0 known as a number such that for
any t ≥ T + 2

sup
0≤x≤1

{
|u2(x, t)|,

∣∣∣∣∂u2(x, t)
∂x

∣∣∣∣, ∣∣∣∣∂u2(x, t)
∂t

∣∣∣∣, ∣∣∣∣∂2u2(x, t)
∂x2

∣∣∣∣} ≤ c4e−(t−T−1). (33)

Now, let us examine the behavior ∂u2(1,t)
∂t ,

Lemma 3. Let An be defined by the formula (24). Then

An =
4

2λn − sin 2λn

 1
λ4

n

 1∫
0

f (4)(x) sin λnxdx− f ′′′ (1) sin λn

+
1

λ3
n

f ′′ (1) cos λn

,

where f (4)(x) is the fourth derivative with respect to x for function f (x).

Proof. An defined by the Equation (24), and integrating
1∫

0
f (x) sin λnxdx in parts twice,

we obtain

1∫
0

f (x) sin λnxdx =
sin λn

λ2
n

f ′(1) +
cos λn

λn
f (1)− 1

λn
f (0)− 1

λ2
n

1∫
0

f ′′ (x) sin λnxdx,

from (3) and (19)
f (0) = u1(0, T) = 0.

Since

sin λn
λ2

n
f ′(1) + cos λn

λn
f (1) = sin λn

λ2
n

∂u2
∂x (1, t) + cos λn

λn
u2(1, t)

= cos λn
λ2

n

[
∂u2
∂x (1, t) + λnu2(1, t)

]
= λn

κ
cos λn

κλn

[
∂u2
∂x (1, t) + κu2(1, t)

]
= 0,

as a result, we obtain

1∫
0

f (x) sin λnxdx = − 1
λ2

n

1∫
0

f ′′ (x) sin λnxdx,

Integrating the right part of the previous equation twice in parts, it leads to

− 1
λ2

n

1∫
0

f ′′ (x) sin λnxdx =
1

λ3
n
[cos λn f ′′ (1)− f ′′ (0)]− 1

λ4
n

sin λn f ′′′ (1)−
1∫

0

f (4)(x) sin λnxdx

,

The lemma is proofed. �
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From Lemmas 2 and 3, the series
∞
∑

n=0
|λn|2|An| < ∞; hence, from (23), we obtain

∂u2(1, t)
∂t

= −
∞

∑
n=0

λ2
n Ane−λ2

n(t−T) sin λnx (34)

∂u2(1, t)
∂t

∈ C(T, ∞), and there exists, lim
t→T

∂u2(1, t)
∂t

< ∞. (35)

Denote u2(1, t) = q2(t), from (34) and (35), it follows that q2(t) ∈ H1[T, ∞).

Lemma 4. Let the function ∂u2(1,t)
∂t be defined by Equation (34). Then, d1 > 0 such that for any

t ≥ T + 1 ∣∣∣∣∂u2(1, t)
∂t

∣∣∣∣ ≤ d1e−(t−T−1) + A0e−λ2
0(t−T).

Proof. From (34) and (35), it follows that∣∣∣∣∂u2(1, t)
∂t

∣∣∣∣ ≤ d1

∞

∑
n=0

λ2
neλ2

n(t−T),

where d1 some number.
Let us assume that t ≥ T + 1 and n > 0

λ2
ne−λ2

n e−λ2
n(t−T−1) ≤ λ2

ne−λ2
n e−(t−T−1).

From d1n ≤ λn ≤ d2n it follows that, for n > 0 and numbers d1, d2 > 0

λ2
ne−λ2

n ≤ d2n2
[
e−d2

1

]n
, (36)

from (36), it follows that
∞
∑

n=0
n2
[
e−d2

1

]n
< ∞. Hence there is a number d3 for any t ≥ T + 2

∣∣∣∣∂u2(1, t)
∂t

∣∣∣∣ ≤ d3e−(t−T−1) + A0e−λ2
0(t−T),

from (35) and Lemma 4, it follows that

∂u2(1, t)
∂t

∈ C[T, ∞) ∩ L1[T, ∞) ∩ L2[T, ∞).

Now, let us introduce the notation

h(t) =

{
q1(t), t ∈ (0, T]
q2(t), t ∈ [T, ∞)

, u(x, t) =

{
u1(x, t), t ∈ (0, T],

u2(x, t), t ∈ [T, ∞),
x ∈ (0, 1), (37)

From (33) and (37), it follows that, for any ε > 0 there is χε(t) which is defined as a
function such that, for any t ≥ 0

sup
0≤x≤1

{
|u(x, t)|,

∣∣∣∣∂u(x, t)
∂x

∣∣∣∣, ∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣} ≤ χε(t), (38)

where

χε(t) =


d6(ε), 0 ≤ t ≤ T + 2,

d5(ε)
∞
∑

n=1
λ2

ne−λ2
n , t ≥ T + 2.
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Since χε(t) ∈ L1[0, ∞), then the Fourier transform for t can be used for the combined
direct problem (1)–(5) and (18)–(21).

The lemma is proofed. �

From Lemma 1 and Equation (38), we obtain the following theorem.

Theorem 1. Let Φ(t) ∈ C[0, ∞) and Φ(t) is limited over this line. Then, the following relations
are true

∞∫
0

∂u(x,t)
∂x Φ(t)dt = ∂

∂x

[
∞∫
0

u(x, t)Φ(t)dt

]
,

∞∫
0

∂2u(x,t)
∂x2 Φ(t)dt = ∂2

∂x2

[
∞∫
0

u(x, t)Φ(t)dt

]

Lemma 5. Let u(x, t) be a solution of the combined problem (1)–(5) and (18)–(21). Then, the
following relations are true

lim
x→0

∞∫
0

|u(x, t)− h(t)|dt =lim
x→1

∞∫
0

|u(x, t)− u(1, t)|dt =lim
x→1

∞∫
0

∣∣u′x(x, t)− u′x(1, t)
∣∣dt =0.

Proof. It follows from Lemma 1 and (35) that, for any t > 0

lim
x→0

u(x, t) = h(t), lim
x→1

u(x, t) = u(1, t) and lim
x→1

u′x(x, t) = u′x(1, t). (39)

Let the number d8 be defined by the formula

d8 = max
{
|u(x, t)|+ u′x(x, t) : 0 ≤ t ≤ T + 2

}
.

Then, let us denote by s(t) the function defined by the formula

s(t) =

{
d8; 0 ≤ t ≤ T + 2,

c4e−(t−T−1); t > T + 2.

Since
∞∫
0
|s(t)|dt < ∞ and for any t > 0

|u(x, t)| ≤ s(t),
∣∣u′x(x, t)

∣∣ ≤ s(t),

then, given (39); by the Lebesgue theorem on the passage to the limit under the integral
sign, the assertion of the lemma is proved. �

4. Solution of the Inverse BVPs (1)–(5) and (18)–(21)

Let us assume that the function h(t) in the combined problem (1)–(5) and (18)–(21) is
unknown, and, instead, the function is given as g(t) = u(x0, t), where x0 ∈ [0, 1], t ≥ 0.

Let us adopt that, for g(t) = g0(t), there is a function h0(t) ∈ H1[0, ∞] such that, when
it is substituted into the boundary of (1)–(5) and (18)–(21), we obtain a real solution u0(x, t)
which is defined as the following

u0(x0, t) = g0(t). (40)

Function g0(t) unknown, and, instead, we have gδ(t) and δ > 0 such that

‖gδ(t)− g0(t)‖L2[0,∞) ≤ δ. (41)
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It is necessary to use the given data gδ(t) and δ inverse BVP (1)–(5) and (18)–(21) in or-
der to find an approximate solution hδ(t) and obtain an error estimate ‖hδ(t)− h0(t)‖L2[0,∞).

5. Solution of the Inverse BVP (1)–(5) and (18)–(21) by the Projection
Regularization Method

Let H = L2(−∞;+∞) + iL2(−∞;+∞) be the interval on the area of complex numbers,
and the set of correction class Mr ⊂ H demarcated by the following

Mr =

h(t) : h(t) ∈ H,
∞∫

0

|h(t)|2dt +
∫ ∣∣h′(t)∣∣2dt ≤ r2

, (42)

r known positive number.
In order to resolve the problem (1)–(5) and (18)–(21), we present F, as the operator

which is mapping from H to H and we named as the operator via the Fourier transform

ĥ(τ) = F[h(t)] =
1√
2π

+∞∫
0

h(t)e−iτtdt, τ ∈ R, h(t) ∈ H ∩ L1(−∞, ∞). (43)

There L1(−∞, ∞)—interval on the of complex numbers set.
Denote by F operator continuation F in H. Following from Plancherel’s theorem, the

operator F has isometric mapping H into H.
Let ĥ(τ) ∈ H. Then, we have

F−1
[

ĥ(τ)
]
=

1√
2π

lim
N→∞

+N∫
−N

ĥ(τ)eitτdτ, −∞ < t < +∞, (44)

where the way to the limit has the sense of the convergence of root-mean-square.
Using transform F, (1)–(5) and (18)–(21) come down to the following problem

∂2û(x, τ)

∂x2 = iτû(x, τ), x ∈ (0, 1), −∞ < τ < +∞, (45)

û(0, τ) = 0, û(x0, τ) = ĝ(τ),−∞ < τ < +∞, (46)

where û(x, τ) = F[u(x, t)], ĝ(τ) = F[g(t)].
Solutions (45) and (46) are of the form

û(x, τ) = D1(τ)eµ0
√

τx + D2(τ)e−µ0
√

τx, τ > 0, (47)

where µ0 = 1√
2
(1 + i), D1(τ) and D2(τ) are functions that satisfy (40) and (46).

With û(1, τ) = ĥ(τ) we obtain

ĥ(τ) =


sh µ0

√
τ

sh µ0
√

τx0
ĝ(τ), τ > 0,

0, τ ≤ 0,
(48)

Therefore, the problem (45) and (46) reduces to the equation

Aĥ(τ) = ĝ(τ), 0 < τ < ∞. (49)

Let ĝ0(τ) = F[g0(t)], ĝδ(τ) = F[gδ(t)] and, from the Formula (41), it follows that

‖ĝδ(τ)− ĝ0(τ)‖H ≤
√

2δ. (50)

Let M̂r denote a set of H such that M̂r ⊃ F[Mr] and
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M̂r =

ĥ(τ) : ĥ(τ) ∈ H,
∞∫

0

(
1 + τ2

)∣∣∣ĥ(τ)∣∣∣dτ ≤ 2r2

. (51)

Since h0(t) ∈ Mr, then ĥ0(τ) ∈ M̂r.
In order to find the approximation solution for (49)–(51) we use the regularizing family

of operators {Rα}, which are defined by

ĥα
δ (τ) = Rα ĝ(τ) =


sh µ0

√
τ

sh µ0
√

τx0
ĝδ(τ), 0 ≤ τ ≤ α,

0, τ > α,
(52)

For selecting a regularization parameter α̂ = α̂(ĝδ, δ) in Equation (52) from the initial

data (ĝδ, δ), use the equation
∥∥∥Aĥα

δ (τ)− ĝδ(τ)
∥∥∥2

= 16δ2.

Let us describe an estimated solution for (49) by the formulation of ĥδ(τ) = ĥα̂(gδ ,δ)
δ (τ).

This follows from the theorem formulated in the article [25] [c. 284], that∥∥∥ĥδ(τ)− ĥ0(τ)
∥∥∥ ≤ 7ω(δ, r), (53)

where ω(δ, r) =
{∥∥∥ĥ(τ)

∥∥∥ : ĥ(τ) ∈ M̂r,
∥∥∥Aĥ(τ)

∥∥∥ ≤ δ
}

.

Let us describe
{

Rα̂(ĝδ ,δ) : 0 < δ ≤ δ0

}
as the operator for use in the regularization

method in order to obtain the approximate solution for the problem. (49) in M̂r. Now, let
us introduce δ ∈ (0, δ0] as the quantitative characteristic of the accuracy of this method on
the set M̂r.

∆δ

[
Rα̂( f̂δ ,δ)

]
= sup

f̂0, f̂δ

{∥∥∥Rα̂(ĝδ ,δ) ĝδ(τ)− ĥ0(τ)
∥∥∥ : ĥ0(τ) ∈ M̂r, ĝδ(τ) ∈ H,

∥∥∥ĝδ(τ)− Aĥ0(τ)
∥∥∥ ≤ δ

}
.

From the theorem proved in [23], it follows that the following estimate holds

∆δ

[
Rα̂(ĝδ ,δ)

]
≥ ω(δ, r). (54)

Let

Φ2(α) = sup


∞∫

α

∣∣∣ĥ0(τ)
∣∣∣2dτ : ĥ0(τ) ∈ M̂r

. (55)

From (51) and (55), we obtain Φ2(α) = 2r2

1+α2 for ĥ0(τ) ∈ M̂r.

Lemma 6. Let α0 = 1
2x2

0
ln2 2. Then, for α ≥ α0 the ratio is true

1
4

e(1−x0)
√

α
2 ≤ ‖Rα‖ ≤ 4e(1−x0)

√
α
2 .

Lemma 6 tracks from the explanation of the operator norm. According to [26], lemma 2,
to compute the modulus of continuity, ω(δ, r) we need to solve

rαG(α) = δ. (56)

Solving α(δ) is replaced into the function G(α) parameter determined by

G̃(β) =
1√

1 + β2
, α = e(x0−1)

√
β
2 . (57)

From (56) and (57), it follows that
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ω(δ, r) = rG(α(δ)). (58)

Therefore, from (53), (57) and (58), we obtain the estimate∥∥∥ĥδ(τ)− ĥ0(τ)
∥∥∥ ≤ 7rG(α(δ)). (59)

In order to simplify the assessment (59), consider the equations

e(x0−1)
√

α
2 =

r
δ

, e2(x0−1)
√

α
2 =

r
δ

. (60)

Let α1(δ) and α2(δ), respectively, be solutions of the Equation (60).
Then, from (56), (60), we find that, for sufficiently small δ, defined α2(δ), the following

relations are valid
α2(δ) ≤ α(δ) ≤ α1(δ),

where α1(δ) = 2
(x0−1)2 ln2 r

δ , α2(δ) = 2
2(x0−1)2 ln2 r

δ and, from the resulting inequality,

we have
α(δ) ∼ ln2 δ at δ→ 0.

From the theorem proved in [26], it follows that

G(α2(δ)) ≤ G(α(δ)) ≤ G(α1(δ)), (61)

where
G(α1(δ)) =

4√
1 + 4

(x0−1)4 ln4 δ
, G(α2(δ)) =

1

4
√

1 + 1
(x0−1)4 ln4 δ

, (62)

from (54) we find that this is an exact ordinal estimate,

sup

{ ∥∥∥ĥα(δ)
δ (σ)− ĥ0(σ)

∥∥∥ : ĥ0(σ) ∈ M̂r,

‖ĝδ(σ)− ĝ0(σ)‖ ≤ δ

}
≥ r

4
√

1 + 1
4(x0−1)4 ln4 r

δ

. (63)

From lemma 5, (53) and (63) we obtain

Theorem 2. For method
{

Rα̂(ĝδ ,δ) : 0 < δ ≤ δ0

}
we have an exact estimate of the order error

r

4
√

1 + 1
4(x0−1)4 ln4 δ

≤ ∆δ

[
Rα̂( fδ ,δ)

]
≤ 74r√

1 + 1
4(x0−1)4 ln4 δ

. (64)

Applying к q̂δ(τ) transformation

hδ(t) =

 Re
[

F−1
[

ĥδ(τ)
]]

, t ≥ 0,

0, t < 0,
(65)

where F−1 is the inverse Fourier transform operator, we obtain an estimated solution for
the problem (1)–(5) and (18)–(21).

Thus, for an approximate solution hδ(t) for problem (1)–(5) and (18)–(21), we have a
precise error estimation by

‖hδ(t)− h0(t)‖ ≤
28r√

1 + 4
(x0−1)4 ln4 δ

. (66)
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6. Case Study

Consider the function h0(t) =
{

t sin(πt), t ∈ (0, T],
0, t ∈ (T, ∞), suppose T = 1, x0 = 0.5 and N = 100.

From the solution of the direct problem (1)–(5) and (18)–(21), we find u0(x0, t) = g0(t).
We set a partition of the time interval [0, T] with the number of nodes N such that

0 = t0 < t1 < t2 < . . . < tn = T, tk =
k
N

, k = 0, N.

This simulates the one-dimensional nature of the heat equation using the Fast Fourier
Transform, FFT, as shown in Figure 1. In this example, the PDE system is linear, and it is
possible to advance the system directly in the frequency domain.
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From Figure 1 we find gδ(t), introducing an error level δ1 = 0.05 and δ2 = 0.02 in g0(t)
by the following

gk
δ = g0(tk) +

δj√
T

.γ, j = 1, 2,

where the error level can compute by

‖gδ − g0‖.

Figures 2 and 3 show the visualization of the function as a solution for the inverse
problem with δ = 0.02 and δ = 0.05, respectively. The real solution is shown by a dotted
line and the approximate solution is shown by a line.
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7. Conclusions

In this work, the inverse BVP of a thermal conductivity equation in two different inter-
vals of time was solved. The heating process for an object was definitively separated into
two intervals: the first one, by the heating of the boundary part or place in domain, and the
second one, by the free cooling of the object. It has been verified that the boundary function
or condition fits the space H1[0, ∞]. This means we can use the projection regularization
method for solving this problem by using the Fourier transform for time. The error estimate
was obtained for the solution.
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