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Abstract: A vibrating pylon, modeled as a waveguide, with an attached point mass that is time-
varying poses a numerically challenging problem regarding the most efficient way for eigenvalue
extraction. The reason is three-fold, starting with a heavy mass attachment that modifies the original
eigenvalue problem for the stand-alone pylon, plus the fact that the point attachment results in a
Dirac delta function in the mixed-type boundary conditions, and finally the eigenvalue problem
becomes time-dependent and must be solved for a sequence of time steps until the time interval of
interests is covered. An additional complication is that the eigenvalues are now complex quantities.
Following the formulation of the eigenvalue problem as a system of first-order, time-dependent
matrix differential equations, two eigenvalue extraction methods are implemented and critically
examined, namely the Laguerre and the QR algorithms. The aim of the analysis is to identify the
most efficient technique for interpreting time signals registered at a given pylon as a means for
detecting damage, a procedure which finds application in structural health monitoring of civil
engineering infrastructure.

Keywords: eigenvalue extraction; iterative methods; structural identification; complex eigenvalues;
waveguides; attached masses; dynamic response

1. Introduction

The presence of mass attachments in structural elements such as beams and columns
is quite common in civil engineering infrastructure, as is the case with pylons supporting
cables, wind turbines, antennas, lights, etc., [1]. In certain cases, these mass attachments
may vary with time on a scale comparable to that of the duration of the external dynamic
loads. This may occur under certain conditions, as for example if the mass attachment plays
the role of a damping device [2]. Specifically, pylons are infrastructure components serving
a variety of functions and can be efficiently modeled as waveguides [3]. The presence of
attachments on pylons leads to the concept of secondary systems, which may serve as
passive or semi-active structural control devices, a typical example being liquid column
dampers [4]. Furthermore, the attached mass may in turn be connected to a nonlinear
spring which acts as a vibration absorber [5]. In general, it is possible to view the pylon
with an attached time-variable mass as a system comprising a primary linear oscillator and
a nonlinear secondary system. Much work has been done in this field from a mechanical
engineering viewpoint, where the secondary system is often viewed as a Vibro-impact
nonlinear energy sink [6]. As a consequence, new methods of solving the problem must
be sought, such as multiple-scale expansions, which are possible for low mass ratios of
the combined primary-secondary system. For heavily attached masses that are also time-
dependent, recourse must be made to alternative techniques [7]. Here, we solve for the
time-dependent, heavy top mass on a beam element by developing a technique based on a
method originally outlined in [8] and further improved in [9], whereby the free vibration
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boundary-value problem (BVP) of a beam with point masses is reduced to an eigenvalue
problem through the separation of variables, but the characteristic equation involving
transcendental functions is bypassed.

Instead, the solution is expanded in series involving the eigenfunctions of the beam
without any attachments, plus a new set of generalized coordinates which can be recovered
from the solution of single-degree-of-freedom (SDOF) equations with generalized forces at
the right-hand side (RHS) that correspond to the point masses. An additional complication
arises when ground vibrations are considered because the motion of an attached mass
on the pylon cannot be uncoupled by modal analysis, since the absolute accelerations
experienced by the mass require contributions from all modes at the same instant [10].
This necessitates a second-stage modal analysis, and if the attached mass is time-dependent,
then the new eigen properties of the combined system are time-dependent since they are
influenced by the mass rate of change [7]. Based on this solution methodology, the tran-
sient pylon vibrations can be Fourier transformed to extract the time dependence of the
eigenfrequencies of the combined pylon-mass system.

The usual model for pylons is based on the Bernoulli–Euler fourth-order differen-
tial equation for bending, or second order differential equations for axial and torsional
responses [3]. For an effective modelling of the lumped mass, it is necessary to introduce
generalized functions [11], also known as Schwartz distributions, making it possible to
differentiate functions whose derivatives do not exist in the classical sense. In this work,
the inertia term that develops at the top of the beam is a temporal discontinuity, and the
Dirac delta function appears as a force term on the RHS of the differential equation under
study. It is noted that the Dirac delta function can also be used to model the presence of a
crack in a structural member, which reduces stiffness and alters the dynamic response [12].

From the above discussion, it follows that a computationally demanding problem
arises with the presence of point mass attachments in flexible structures. More specifically,
the numerical complication arises from the fact that the point mass attachment is theoreti-
cally singular in space and may also exhibit a temporal singularity if the mass suddenly
increases or decreases with time. Furthermore, if the magnitude of the mass attachment
is large as compared to the mass of the supporting pylon, then the dynamic properties of
the combined structural system change compared to the original, stand-alone beam. Thus,
a time-dependent eigenvalue problem arises, which must be solved in either a direct or
an iterative way, for every time step until the complete duration of the vibrations is cov-
ered. An additional issue is that the equations of motion yield an eigenvalue formulation
that includes a non-symmetric damping matrix, which in turn renders the eigenvalues
as complex quantities. Focusing on the eigenvalue analysis of the combined pylon-mass
system, the coefficients of the polynomial resulting from setting the determinant of the
system matrix equal to zero are recovered using the Leverrier–Faddeev algorithm [13].
Subsequently, two eigenvalue extraction methods are examined, namely the Laguerre
method, which is the complex number variant of the conventional Newton–Raphson
method used for real root extraction [14,15], and the QR method [16] in conjunction with
the Householder algorithm [16].

Once the eigenvalue problem has been solved and followed by synthesis of the tran-
sient response of the pylon-mass system [17], then it is possible to proceed to system
identification, either as a stand-alone endeavor or within the context of structural health
monitoring (SHM). Typically, this entails extracting information based on the dynamic re-
sponse of the monitored structure. Standard practice [18] utilizes the free vibration regime,
but here the short-term Fourier transform (STFT) of the forced vibration regime is used to
trace the time evolution of dominant eigenfrequencies of a pylon with a time-variable mass
attached at the top. The external forcing functions are harmonic ground motion, and two
cases are considered, one where the mass decreases to a nearly zero value starting from a
reference value, plus the opposite case where the additional mass increases from zero to the
same reference value, which can be substantial, i.e., reaching 20% of the pylon mass. These
eigenfrequencies converge to the standard values computed when the additional mass has
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a fixed value when ground motion ceases. The methodology presented herein is useful in
extracting as much information as possible from dynamic responses for use in the SHM of
typical civil engineering infrastructure ranging from pylons to bridges and buildings [19].

2. Non-Autonomous Dynamic Systems

In terms of the dynamic response of structural systems, the presence of attachments
that lead to passive and/or active control adds terms to either the differential operator
or the boundary conditions. This situation, however, presupposes that the mass and
stiffness parameters of the structural system remain time-invariant [20], i.e., the system
is autonomous. If this is not the case and these parameters are time-dependent, then the
structural system is labeled as non-autonomous [21]. The pylon with the attached transient
mass studied here belongs to the latter group, and the target is to move the eigenfrequencies
of the combined system away from the dominant frequency range of the externally applied
excitations [7]. In what follows, we focus on the longitudinal vibrations of the supporting
pylon, although the methodology can be extended to cover transverse vibrations as well.

2.1. Equation of Motion for Longitudinal Vibrations

The equation of motion and boundary conditions [3] for a cantilevered pylon of length
L with a time-varying, lumped mass attachment mL(t) = m0 ± µ·t at the top x = L and
undergoing longitudinal vibrations, see Figure 1, are given below as follows:

ρA
( ..
u +

..
xg
)
+
(
mL
( ..
u +

..
xg
)
+

.
mL
( .
u +

.
xg
))

δ(x− L) = EAu′′
u(0, t) = 0, EAu′(L, t) = 0

(1)
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Figure 1. Flexible pylon of length L with an attached point mass mL at the top and subjected to
ground vibrations in the longitudinal direction x.

In the above, E is the modulus of elasticity, A is the cross-section area, and ρ is the
material density of the pylon for a continuous mass distribution. Next, u(x, t) is the
displacement along the x-axis and xg(t) is the time-dependent ground motion imparted at
the base, with primes (′) and dots (·) respectively denoting spatial and temporal derivatives.
Moreover, initial conditions are assumed to be zero. It should be noted that the boundary
conditions in Equation (1) have been rendered homogeneous by absorbing the lumped mass
inertia effects mL

( ..
u +

..
xg
)
+

.
mL
( .
u +

.
xg
)

in the equation of motion using the Dirac delta
function δ(x). This however changes the eigenvalue problem of the original stand-alone
pylon to a more complicated one and requires an additional investigation as to the number
of terms required for convergence for a modal analysis [17]. Note that the presence of a
point discontinuity at boundary x = L poses a more stringent convergence requirement
as compared to the case of the discontinuity appearing in the interior 0 < x < L of
the waveguide.

2.2. The Dirac Delta Distribution

The definition of the Dirac delta function (δ) given below is heuristic, in the sense that
this is not a proper function [22], but can be defined as either a measure or as a distribution:∫ ∞

−∞
δ(x)dx = 1.0 (2)
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Listed below are the translation identity and its limiting form for weight function w(x)
as two stations, ξ and η, coalesce:∫ ∞

−∞ δ(ξ − x)δ(x− η)dx = δ(η − ξ),
limξ→η

∫ ∞
−∞ w(x)δ(ξ − x)δ(x− η)dx = w(η)

(3)

2.3. Steel Pylon with Attached Mass

The steel pylon shown in Figure 1 is a circular cylinder with a constant cross-section,
fixed at the base and with a time-varying mass attached at the top. The latter element can
be considered as a tank with a valve permitting the inflow and outflow of a liquid, e.g.,
water. The properties of this combined structural system are listed in Table 1. Two scenarios
are considered, the first for the water tank at the top being filled up from an initial mass
ratio R = 0.02 (nearly empty) to a mass ratio R = 0.20 (full) with a flow rate µ = +1 tn/s.
The second scenario is the reverse, starting from R = 0.20 and dropping to R = 0.02 with a
flow rate µ = −1 tn/s. The time scale required for each of these processes to be completed is
T = 0.85 s. The external force is a harmonic ground motion with a displacement amplitude
of xgo = 1·10−2[m].

Table 1. Dimensions and properties of steel pylon used as the numerical example.

Properties Symbol Value Units

Modulus of Elasticity E 200 GPa
Mass density ρ 7.85 tn/m3

Cross-section mean radius r 0.3375 m
Cross-section thickness d 0.0875 m

Cross-section area A 0.1855 m2

Pylon clear height L 10.0 m
Pylon mass mP 14.56 tn

Attached mass mL 2.91 tn
Rate of attached mass change µ ±1.0 tn/s

2.4. Dynamic Response of the Steel Pylon

Following the transposition of the attached mass inertia terms to the equation of
motion, the eigenvalue problem for the pylon is now defined at time t = 0, where a fixed
mass mL = m0 has been placed at the top end x = L. The characteristic equation for
the pylon modeled as a waveguide under axial vibrations with the boundary condition
mL

..
u(L, t) = −EAu′(L, t) is:

cos(kiL)− R(kiL) sin(kiL) = 1− R(kiL) tan(kiL) = 0
i = 1, 2, . . . , ∞

(4)

In the above, the mass ratio is defined as R = m0/mP, with mP = ρAL the mass
of the stand-alone pylon and ki is the corresponding wave number. Equation (2) can be
solved numerically to recover the eigenfrequencies in two stages, starting with the bisection
method to extract the roots, and followed by Newton–Raphson for better convergence [14].

Given the formulation in Equation (1), separation of variables is possible and therefore
the following expansion is obtained

u(x, t) = Φi(x)qi(t), i = 1, 2, . . . , ∞ (5)

where Φι(x) is the eigenfunction and qi(t) is the generalized coordinate. Note that the
summation convention is implied for repeated indices. For the stand-alone, cantilevered
pylon, the eigenfunctions are given [10] as Φi(x) =

√
2/mP sin(kix), ki = (2i− 1)(π/2L).
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2.5. Eigenvalue Problem Formulation

The eigenvalue problem is first expressed in terms of the aforementioned generalized
coordinates qi(t), for i = 3 eigenvalues, which are deemed sufficient in the analysis,
as follows:

[M(t)]
{ ..

q(t)
}
+ [C]

{ .
q(t)

}
+ [K]{q(t)} = {0}

[M(t)] =

 1 + 2(R + kt) −2(R + kt) 2(R + kt)
−2(R + kt) 1 + 2(R + kt) −2(R + kt)
2(R + kt) −2(R + kt) 1 + 2(R + kt)

,

[C] =

 2Q −2Q 2Q
−2Q 2Q −2Q
2Q −2Q 2Q

, K =

 ω2
1 0 0

0 ω2
2 0

0 0 ω2
3


(6)

In the above, [M(t)], [C], and [K] are the mass matrix, a damping–type matrix and the
stiffness matrix, respectively, written in a normalized form. Two mass ratios are defined
here as R = m0/mP (dimensionless) and Q = µ/mP (a normalized mass rate). Furthermore,
ωi [rad/s] are the eigenfrequencies of the stand-alone pylon. In order to recover a closed-
form solution, we proceed to recast the above second-order, matrix differential equation as
a first-order differential equation of double size as

[A(t)]
{ .

y(t)
}
+ [B(t)]{y(t)} = {0}, {y(t)}T =

⌊{ .
q(t)

}
, {q(t)}c,

[A] =

[
[0]

[M(t)]
[M(t)]
[C]

]
, [B] =

[
−[M(t)]

[0]
[0]
[K]

]
(7)

The more compact form for the above matrix equation is{ .
y(t)

}
= −

[
A−1(t)

]
[B(t)]{y(t)} = −[D(t)]{y(t)} (8)

At this point, we opted for a time-stepping solution of Equation (8) by defining a
total time interval of interest as T = N∆t [s], with N the total number of time steps ∆t.
Thus, T is the time it takes for the mass ratio R to commence from an initial value and
reach a final value. During a given time instant tn = tn−1 + ∆t, the system matrix [D(tn)]
is assumed to remain constant. Once the number of eigenvalue/eigenfunction pairs has
been decided upon (in our case, i = 3), the eigenvalue problem is solved starting at time
t = 0 with [D(0)] = −

[
A−1(0)

]
[B(0)]. This is continued for all time steps tn with system

matrix [D(tn)], and initial conditions equal to the final conditions for the displacement and
velocity of the immediately previous time step tn−1.

In more detail, since system matrices [A(t)], [B(t)] are symmetric, a solution in the form
{y(t)} = {ŷ} exp(λt), where the carat indicates the amplitude of the kinematic variables,
namely of the displacement and velocity. Upon substitution in Equation (8), the eigenvalue
problem assumes its standard form as follows:

([A(t)]λ + [B(t)]){ŷ} = {0} (9)

Solution yields the complex-valued eigenvalues λi, i = 1, 2, 3. Specifically, the condi-
tion |[A]λ + [B]| = 0 yields[

−[M] λ[M]
λ[M] λ[C] + [K]

](
λ{ŷ}
{ŷ}

)
=

[
{0}
{0}

]
⇒ −[M] λ{ŷ}+ λ[M]{ŷ} = 0(

λ2[M] + λ[C] + [K]
)
{ŷ} = 0

(10)

Since the first of the above equations is merely an identity, we impose on the second
one the determinant equal to zero as

∣∣λ2[M(t)] + λ[C] + [K]
∣∣ = 0. This is the equation that

can now be solved for every time increment from the onset of motion at t = 0. The time-
dependent eigenvalue code is depicted in Table 2 and all computations were carried out
using the Python [23] software.
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Table 2. Formation of system matrices [M(ti)], [C], [K], [D(ti)].

function MassMatrix(ti)
Input : ti
Output : M(ti)

M = zeros(N, N)
for i = 1, . . . , N do

for j = 1, . . . , N do
if (i + j) % 2 ! = 0 then

M[i, j] = −2 ∗R− 2 ∗ k ∗ ti
end if
if (i + j) % 2 == 0 then

M[i, j] = 2 ∗R + 2 ∗ k ∗ ti
end if
if (i + j) % 2 == 0 then

M[i, j] = 1 + 2 ∗R + 2 ∗ k ∗ ti
end if

end for
end for
return M

function : DampingMatrix
Output : C

C = zeros(N, N)
for i = 0, . . . , N do

for j = 0, . . . , N do
if (i + j) % 2 ! = 0 then

C[i, j] = −2 ∗ k
end if
if (i + j) % 2 == 0 then

C[i, j] = 2 ∗ k
end if

end for
end for
return C

function : StiffnessMatrix
Output : K

K = zeros(N, N)
for i = 1, . . . , N do

for j = 1, . . . , N do
if i == j then

K[i, j] = i ∗ π
L ∗

√
E
ρ

end if
end for

end for
return K

Assembly and solution using the 2N × 2N matrix [D(ti)] for a given time step,
see Equation (9):

[D(ti)] = −
[

A−1(ti)
]
[B(ti)] =

[
−
[
M−1(ti)

]
[C]

[I]
−[M−1(ti)][K]

[0]

]
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function : DeltaMatrix
Input : ti
Output: D (ti)

D = zeros(2N, 2N)
D1 = −inverse(MassMatrix(ti)) ∗DampingMatrix
D2 = −inverse(MassMatrix(ti)) ∗ StiffnessMatrix
D3 = identity(N, N)

for i = 0, . . . , N do
for j = 0, . . . , N do

D[i, j] = D1[i, j]
end for
for j = N, . . . , 2N do

D[i, j] = D2[i, j−N]
end for

end for

for i = N, . . . , 2N do
for j = 0, . . . , N do

D[i, j] = D3[i−N, j]
end for

end for
return D

3. Eigenvalue Extraction for Non-Autonomous Dynamic Systems

The general form of the eigenvalue problem is shown below, from which it is possible
to recover the eigenvalues as the roots of the polynomial p(λ) that results from setting the
determinant of the matrix system equal to zero:

p(λ) = det([D]− λ[I]) = 0 (11)

The first step in the solution of the characteristic equation which emerges from
Equation (11) requires the computation of the coefficients of the resulting polynomial.
This is achieved by using the Leverrier–Faddeev algorithm [24], which produces a se-
quence of successive matrices replacing [D] until it becomes diagonal and then computes
its trace as the sum of the diagonal terms. The trace is then used as input for the Laguerre
algorithm [25] and the output is N pairs of complex conjugate roots, where N is the number
of eigenmodes retained in the representation of the dependent variable, see Equation (5):

λi = ξiωi ± jωi

√
1− ξ2

i = δi ± jωd,i j =
√
−1, i = 1, 2, 3, . . . (12)

In the above, ωd,n (rad/s) are the damped eigenfrequencies of the stand-alone pylon for
Rayleigh damping, with ξi the viscous damping ratio. In order to recover real-valued eigen-
frequencies (in Hz) from Equation (12), the amplitude of λi is divided by 2π, resulting in

fi =
√
(ξiωi)

2 + ω2
ι

(
1− ξ2

i
)
/2π, i = 1, 2, 3, . . . (13)

3.1. The Laguerre Method

Laguerre’s method [25] expresses a polynomial of order n in a recursive form as

p0(x) = an, pi(x) = an−i + xpi−1(x), i = 0, 1, . . . , n− 1, n = 2N (14)

The derivatives of the polynomial are computed as

p′i(x) = pi−1(x) + xp′i−1(x), p′′i (x) = 2p′i−1(x) + xp′′i−1(x) (15)
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Thus, bringing the polynomial in the form

pn(x) = (x− r)(x− q)n−1 (16)

it becomes obvious that there is a root at x = r and there are n− 1 roots at x = q. The next
step is to take the derivative of Equation (16) as

p′n(x) = (x− q)n−1 + (n− 1)(x− r)(x− q)n−2 ⇒
G(x) = p′n(x)/pn(x) = 1/(x− r) + (n− 1)/(x− q)

(17)

Following that, one proceeds with the second derivative:

p′′n(x)/pn(x)−
(

p′n(x)/pn(x)
)2

= −1/(x− r)2 − (n− 1)/(x− q)2 (18)

By defining H(x) = G2(x)− p′′n(x)/pn(x) and manipulating terms finally yields the
recursive Laguerre formula for root r is as follows:

x− r = n/
{

x±
√
(n− 1)(nH(x)− G2(x))

}
(19)

The improved root r determined by choosing the sign results in the larger magnitude
of the denominator.

3.2. The Leverrier–Faddeev Method

For the purpose of numerical implementation, Table 3 below gives the struc-
ture of the Leverrier–Faddeev algorithm, which accepts as input matrix [D] and re-
turns as output coefficients {a} = [an, an−1, . . . , α2, α1, 1] of the characteristic polynomial
p(λ) = λn + a1λn−1 + . . . + an−1λ + an, where n = 2N and a[0] = an, a[1] = an−1, etc.

Table 3. The Leverrier–Faddeev method.

function : Leverrier _Faddeev
Input : D(ti)
Output : a

a = zeros(2N + 1)
D1 = D
a = insert(2N, 1)
a = insert(2N− 1,−trace(D1))
for i = 2, . . . , 2N do

∆i = ∆·(∆i−1 + a[2N− i + 1]·I)
a = insert

(
2N− i,− trace(∆i)

i

)
end for
return a

Before sending these coefficients as input to the Laguerre algorithm for computing the
roots of the characteristic polynomial, an ancillary function that computes its derivatives is
necessary. This function is labelled EvalPoly and appears in Table 4 below, while Table 5
gives the subroutine used for the polynomial root recovery.

Note that possible roots {x} at time zero are actually the vector of the wavenumbers
of the pylon:

xn = ±
(
(2n + 1)(π/2L)cp

)
j, n = 0, 1, . . . , N, j =

√
−1 (20)

where cP =
√

E/ρ is the longitudinal wave velocity.
The disadvantage of the Laguerre algorithm is that small changes in the coefficients

{a} = [an, an−1, · · · , α2, α1, 1] of the characteristic polynomial p(λ) = λn + a1λn−1 + · · ·+
an−1λ+ an may lead to large variations about the correct values of the roots. Figure 2 shows
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how these coefficients change as the eigenvalue problem for the pylon with the attached
mass is solved every time step ti = ti + ∆t, by retaining N = 2 eigenvalues. This leads to
a 4× 4 system of equations, which is the minimum size for reliable root recovery. More
specifically, the left column in Figure 2 is for the decreasing mass rate and the right column
is for the increasing mass rate.

Table 4. Algorithm EvalPoly for polynomial derivatives.

function : EvalPoly
Input : a, x :a are the coefficients of the p(λ), x is an arbitrary number
Output: p, dp, ddp

n = len(a)− 1
p = a[n]
dp = 0.0 + 0.0 j
ddp = 0.0 + 0.0 j
for i = 1, . . . , n + 1 do

ddp = ddp·x + 2·dp
dp = dp·x + p
p = p·x + a[n− i]

end for
return p, dp, ddp

Table 5. Polynomial roots by Laguerre’s method.

function : Laguerre
Input : a, x, tol :a are the coefficients of the p(λ), x are possible roots, tol is the tolerance
Output : x, iteration

n = len(a)− 1
iteration = 1
for iteration = 1, . . . , 30 do

p, dp, ddp = EvalPoly(a, x)
if |p| < tol then

return x, iteration
end if

G = dp
p , H = G2 − ddp

p , F =

√
(n− 1)

[
nH−G2

]
if |G + F| > |G− F| then

dx = n/(G + F)
else

dx = n/(G− F)
end if
x = x− dx
if |dx|< tol then

return x, iteration
end if

end for
print

(
‘Too many iterations′

)
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Figure 2. Time evolution of the characteristic polynomial coefficients an: Left column is the attached
mass decrease from R = 0.20 to R = 0.02; right column is the attached mass increase from R = 0.02
to R = 0.20.

3.3. The QR Method

The QR method [26,27] transforms a square matrix [D] into the product of an orthogo-
nal matrix [Q] (for which its transpose is the same as its inverse, i.e., [QT ] = [Q−1]) times an
upper triangular matrix [R], such that [D] = [Q][R]. In order to compute the eigenvalues
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of [D] ∈ Rn×n, one begins by setting an initial matrix [D0] = [D] and performing the
following iteration cycle:

[D0]= [Q1][R1] → [D1]= [R1][Q1]
[D1]= [Q2][R2] → [D2]= [R2][Q2]

...
[Dn−1]= [Qn][Rn] → [Dn]= [Rn][Qn]

(21)

After a number of iterations, matrix [Dn] converges to a lower triangular form:

[Dn] =



X X
X X

∗ ∗
∗ ∗

0 0
0 0

X X
X X

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

X X
X X

∗ ∗
∗ ∗

0 0
0 0

X X
X X


(22)

The eigenvalues of the original matrix system are now recovered in closed form for
each of the 2× 2 submatrices appearing along the diagonal. These are complex conjugate
pairs and are given by

λm, λm = 0.5 ∗ tr±
(

0.5
√

4det− tr2
)

j, j =
√
−1 (23)

for the m − th pair, where tr and det are the trace and determinant of the submatrix.
As a convergence criterion one may define that the absolute value of both the trace and
the determinant of any 2× 2 submatrix coming from the last (n − th) iteration [Dn] is
within ε = 10−12 from the corresponding one computed from the immediately previous
iteration [Dn−1].

3.4. The Householder Algorithm

In general, there are three basic methods for producing the QR factorization, namely
the (a) Householder, (b) Givens, and (c) Gram–Schmidt. The choice of the particular method
depends on the form of the original matrix [D] (e.g., sparse versus fully populated) [28].
Here we employ the Householder method, which is an algorithm requiring as input vector
{x} plus component k and producing as output matrix [H], so that the new vector [H]{x}
will have the remaining n− k components equal to zero. Table 6 below gives the coded
form of the Householder algorithm.

Table 6. The Householder algorithm.

function : Householder
Input : x, k: vector {x} and element k
Output : H

s =
√

x2
k + x2

k+1 + . . . + x2
n

sgn = xk
|xk|

s =
√

2s(s + |xk|)
u = 0
uk = 1

s (xk + sgn·s)
for j = k + 1, . . . , n do

uj =
1
s xj

end for
H = I− 2uuT

return H
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3.5. The QR-Householder Method

The flow of iterations begins by factorization using the Householder algorithm by
starting as input vector {x} the first column of matrix [D] and receiving as output matrix
[H1] with the n− 1 elements of the first column of the matrix product [H1][D] equal to zero.
In our case, for the 4× 4 matrix [D] we have

[H1][D] =


∗ ∗
0 ∗

∗ ∗
∗ ∗

0 ∗
0 ∗

∗ ∗
∗ ∗

 = [D1] (24)

The next step produces matrix [H2] with zero n− 2 elements of the second column of
[H2][D1], followed by a third step that results in an upper triangular matrix:

[H2][D1] =


∗ ∗
0 ∗

∗ ∗
∗ ∗

0 0
0 0

∗ ∗
∗ ∗

 = [D2], [H3][D2] =


∗ ∗
0 ∗

∗ ∗
∗ ∗

0 0
0 0

∗ ∗
0 ∗

 = [D3] = [R]. (25)

Arranging terms gives [H3][H2][H1][D] = [R], so that [D] = ([H1][H2][H3])[R] = [Q][R],
keeping in mind that all [H] matrices are orthogonal and symmetric. The programmed
structure of this method is given in Table 7 below.

Table 7. The QR-Householder algorithm.

function : QR _Householder
Input : D
Output : Q, R

R = D
Q = I
for i = 0, . . . , n− 1 do

H = Householder(D[:, i], n− i)
R = H·R
Q = Q·H

end for
return Q, R

In order to determine the convergence rate of the solution of Equation (1) with the
Dirac delta distribution formulation, both Laguerre and Householder-QR algorithms are
tested as the size of the system matrix increases. Specifically, the ratio f̂ N

i / fi, is examined,
where f̂ N

i is the i− th eigenfrequency recovered by either algorithm for a system matrix of
size N × N with fi is the exact value. Thus, the left column in Figure 3 plots the values of
the first four eigenfrequencies recovered by the aforementioned algorithms (in red color),
concurrently with the analytical solution (in black color) for a nearly zero mass ratio of
R = 0.02. At the same time, the left column in Figure 3 plots the rate of convergence as the
number N increases. Similarly, Figure 4 plots the same information, but for a substantial
mass ratio of R = 0.20. In both cases, the rate of convergence is satisfactory and after
N = 5 terms, the error is negligible. Note that both algorithms give the same ratio for
size N = 2, past which the Laguerre is no longer accurate and only the Householder-QR
algorithm is used.

3.6. Time Evolution of the Pylon Eigenvalues

When working with i = 5 terms in Equation (5), ten roots λi are recovered by the QR
Householder method for the eigenvalues, which appear as complex conjugate pairs. These
are now plotted in Figure 5 as fi = ωi/2π [Hz] (see Equation (13)) and the real part δi (see
Equation (12)) for every time step ∆t = 10−2 s starting from time zero to time T, past which
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the flow has stopped and we either have a stand-alone pylon or a pylon with a fixed top
mass m0. We clearly observe in Figure 5 the evolution of the eigenvalues for longitudinal
vibrations of the pylon as the mass of the water tank changes over time. As expected, this
system becomes stiffer as its mass decreases (Figure 5a) and becomes more flexible as its
mass increases (Figure 5b). In either case, the eigenfrequencies converge to their expected
values when the system is stationary.
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Figure 5. Pylon-mass system eigenfrequency fi, δi , i = 1, 2, 3, 4, 5 evolution with time for the case of
(a) decreasing fluid mass (µ > 0) and (b) increasing fluid mass (µ < 0).

4. Derivation of Spectograms

For SHM purposes, it is necessary to trace the evolution of the eigenvalues of the pylon
as its attached mass varies with time from tracing the transient displacement u(x, t) at a
given station x. In reference to the pylon described in Section 2, the dynamic characteristics
of the combined pylon-attached mass system vary with time and the resulting transient
response is characterized from a stochastic viewpoint as non-stationary. This requires
subjecting the transient signal to a series of continuous transformations to the frequency
domain by implementing the short time Fourier transformation (STFT). For sufficiently
small-time steps, the signal recorded within a given time interval can be considered as
stationary. To this purpose, we employ the Fourier transform [22] in the following form:

Fu( f , t) =
+∞∫
−∞

u(x = L, τ)e−i(2π f )τW(τ − t) dτ (26)

In the above, Fu(u, t) is a Fourier transform of the pylon displacement at x = L,
see Equation (5), and is known as a spectrogram. Moreover, f = ω/2π is the frequency
(in Hz) and function W is the Hanning window within a time interval ∆t = τ − t:

W(n) = 0.5− 0.5 cos(2π j/J), 0 ≤ j ≤ J (27)

The width of the Hanning window is H = J + 1 and should cover at least one cycle
of vibration. Fixing the window’s width, as well as the placement of two consecutive
windows, is a trial-and-error procedure for achieving optimal results.

The derivation of a spectrogram is now given for both cases where the mass attachment
on the pylon is either full of a liquid that is allowed to drain, or empty and allowed to
fill. At first, Figure 6 plots the transient response at the top of the pylon following a
modal analysis based on the results of the eigenvalue extraction problem. Note that when
alternative numerical methods such as the Runge–Kutta method are used for computing



Algorithms 2023, 16, 26 16 of 19

the transient displacements, then the time evolution of the eigenvalues cannot be recovered
directly, but require additional processing by various transformation techniques. The input
is a time harmonic ground motion with an excitation frequency of f = 10 Hz. As the
attached mass decreases with time, the structural system becomes stiffer and the response
of the pylon slowly decreases by about 18% at the end of the time interval of about 0.85 s
required to completely remove the mass, see Figure 6a. At the same time, the corresponding
spectrogram, which reproduces the analytically computed time evolution of the combined
system eigenfrequencies that was previously obtained, shows a 30% change as the system
becomes stiffer due to the decreasing top mass. Finally, the white line at the bottom of the
plot corresponds to the forcing frequency of 10 Hz. The exact opposite behavior is shown
in Figure 6b, with the response increasing and the eigenfrequencies dropping as the system
becomes more flexible with time.
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In this section, we compare the results for the eigenvalues of the pylon with a time 
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indirectly from the spectograms given above. Note that these spectograms were derived 

Figure 6. Axial displacement at the top of the pylon for harmonic ground motion xg(t) = xgo sin(2π·10t)
and computed spectrogram depicting the time evolution of the first three pylon-mass system eigen-
frequencies fi(t): (a) Decreasing top mass case (µ < 0); (b) increasing top mass case (µ > 0).

Comparison of Results

In this section, we compare the results for the eigenvalues of the pylon with a time
variable mass, as computed by the iterative methods of solution, see Section 3, and also
indirectly from the spectograms given above. Note that these spectograms were derived
from a numerical solution of the equations of motion using the Runge–Kutta method
that yielded the displacement function, to which the short-term Fourier transform was
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applied. The comparison is limited to three eigenvalues, because it becomes exceedingly
difficult to derive higher-order eigenvalues from the results given by the Runge–Kutta
method. Figure 7 depicts the results of this comparison study, which shows good agree-
ment between the pylon eigenvalues recovered from these two basic categories of solving
transient problems.
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Figure 7. First three pylon-variable mass structural system eigenvalues: (a) negative mass rate
µ = −1.0 (tn/s) and (b) positive mass rate µ = 1.0 (tn/s): Top graphs derive from a Runge–Kutta
solution of the equations of motion; bottom graphs derive from the iterative methods of solution of
the eigenvalue problem.

5. Discussion and Conclusions

This work investigates the applicability of iterative eigenvalue extraction algorithms
for the purpose of structural identification. More specifically, the application example is a
flexible, metallic cantilevered pylon with a time-dependent mass attachment. This specific
attachment renders the eigenvalue problem time-dependent for the time duration of the
action of the applied loads. Once the transient motion at a given station on the pylon is
synthesized by modal analysis, the application of the short-time Fourier transform yields a
clear picture of the manner in which the eigenvalues of the combined pylon-mass structural
system vary during the action of ground-induced motions.

Focusing on the eigenvalue analysis of the combined pylon-mass system, at first the
coefficients of the polynomial resulting from setting the determinant of the first-order matrix
system formulation equal to zero are recovered using the Leverrier–Faddeev algorithm.
This is a recursive method for calculating the coefficients of the characteristic polynomial
of a square matrix [13]. However, these coefficients show large differences in their absolute
values rendering any subsequent method for extracting eigenvalues potentially unstable.
Therefore, the eigenvalue extraction is first performed by the Laguerre method, which is
the complex number variant of the conventional Newton–Raphson method used for real
root extraction [14,15]. For the Laguerre method, an additional complication is computing
the correct initial values at the beginning of each time step, which are the final values
of the immediately previous time step. Next, the QR method [16] is implemented in
conjunction with the Householder algorithm, which is the best option in terms of both
accuracy and efficiency, while all limiting cases are correctly reproduced when the attached
mass attains a fixed value. In general, it is estimated that three eigenvalues are necessary
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for any subsequent modal analysis when the attached point mass is at a boundary, which
in our case is the top of the pylon. If the mass is attached at an intermediate station on the
pylon, then two eigenvalues are sufficient, which implies one can use the Laguerre method
as well.

At first, an analytical solution for the axial motion of the pylon modeled as a distributed
mass system is derived, with the formulation augmented to handle an attached, time-
dependent mass attachment at the top which is heavy and cannot be viewed as a secondary
system. The solution is obtained by modal analysis following the eigenvalue extraction.
What complicates the solution is the fact that the mass is time-dependent, i.e., may either
increase or decrease during the time interval the external forces are active. This requires a
second-tier solution of a time-dependent eigenvalue problem cast as a system of first order
differential equations with non-constant coefficients. Next, the eigenvalues are plotted
against the time duration of the increasing/decreasing fluid flow from a container at the
top of the pylon. The stiffening/softening of the combined fluid mass-pylon system is
manifested as a function of fluid decrease/increase in the container. Then, the time histories
at any station on the pylon for ground-induced motions can be computed by modal analysis.
Finally, if structural identification is the goal, then the aforementioned time histories can be
used as raw date, followed by application of the FT with Hanning windows sequentially
places across the time axis.

In general, the methodology developed herein is applicable to other types of structural
systems with transient mass attachments and to general types of dynamic loads, including
the case of a moving mass. A common case is the fixed, lumped mass at the top, which may
also act as a secondary system in the case of light-weight appendages. It is also possible
to augment the present formulation to model a compliant foundation by introducing
equivalent soil springs at the base of the pylon, and finally to treat beams with a non-
uniform cross-section. One field of application of this work is SHM for pylons used in
electrified rail lines, where high frequency ground vibrations are induced in the vertical
direction due to the passage of fast trains. In this case the presence of a time-variable
lumped mass at the top of the pylon may either be detrimental or beneficial, depending on
the frequency content of the external excitation and on the rate by which this mass increases
or decreases.
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