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Abstract: Machine Learning (ML) and/or Deep Learning (DL) methods can be used to predict
fluid flow in porous media, as a suitable replacement for classical numerical approaches. Such
data-driven approaches attempt to learn mappings between finite-dimensional Euclidean spaces.
A novel neural framework, named Fourier Neural Operator (FNO), has been recently developed
to act on infinite-dimensional spaces. A high proportion of the research available on the FNO has
focused on problems with large-shape data. Furthermore, most published studies apply the FNO
method to existing datasets. This paper applies and evaluates FNO to predict pressure distribution
over a small, specified shape-data problem using 1700 Finite Element Method (FEM) generated
samples, from heterogeneous permeability fields as the input. Considering FEM-calculated outputs
as the true values, the configured FNO model provides superior prediction performance to that of a
Convolutional Neural Network (CNN) in terms of statistical error assessment based on the coefficient
of determination (R2) and Mean Squared Error (MSE). Sensitivity analysis considering a range of FNO
configurations reveals that the most accurate model is obtained using modes = 15 and width = 100.
Graphically, the FNO model precisely follows the observed trend in each porous medium evaluated.
There is potential to further improve the FNO’s performance by including physics constraints in its
network configuration.

Keywords: subsurface fluid flow; Fourier neural operator; small-shape data; finite element method;
convolutional neural network; sensitivity analysis

1. Introduction

A wide range of phenomena/processes in science and engineering are described
via measurable/estimable quantities that rely on independent variables. As an example,
in subsurface fluid flow, pressure and temperature are typically measured based on the time
and location variables. Given the available fundamental laws, it is feasible to determine
the relationships among the rates of change of these physical quantities. The mathematical
correlations typically used to do this are Ordinary and/or Partial Differential Equations
(ODEs/PDEs). In ODEs, the derivatives of the dependent variable(s) are taken with respect
to only one independent variable. On the other hand, partial derivatives are required in
PDEs when there are two or more independent variables involved.

Theories, methods, and tools available in scientific computing (also called compu-
tational science) make it possible to solve mathematical models of physical phenomena
described in terms of ODEs and/or PDEs [1]. The theories and methods are together
called numerical analysis/numerical mathematics, and tools refer to computer systems
on which codes are run. The more complex the mathematical models, the more advanced
the computational hardware requirements are to solve them. There are various numerical
methods available that can provide approximate solutions to such problems. These include
the finite difference method [2], Finite Element Method (FEM) [3], finite volume method [4],
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spectral method [5], and meshless method [6]. Such methods are usually time-consuming
to apply.

One way to mitigate the problem of the high computational cost in numerical calcula-
tions required to determine complex systems is to apply Machine Learning (ML) and/or
Deep Learning (DL) techniques. Machine learning methods such as Neural Network (NN),
adaptive-neuro-fuzzy-inference system, support-vector machine, and decision tree are
widely employed to find and predict relevant patterns within datasets. Machine learning
is now used to great advantage in various fields [7–10]. Deep learning methods represent
more complex extensions of existing ML methods, particularly neural networks, and have
demonstrated improved performance, particularly when applied to large datasets [11–15].
There are various DL algorithms, including Convolutional Neural Network (CNN), deep
auto-encoder, deep-belief network, recurrent neural network, and generative adversarial
network. There are some differences between ML and DL. For instance, manual feature
engineering tends to be performed with ML algorithms, sometimes requiring domain
knowledge about a given problem. To make the point clear, consider ’filling missing val-
ues’. A dataset can include missing values due to the difficulty of collecting complete data.
Missing values can be manually filled in based on expert knowledge, which is sometimes
a tedious process. However, with DL algorithms this is more often not required, being
performed automatically.

Classical neural networks concentrate on learning mappings between finite-dimensional
spaces. This makes such networks, when configured, confined to a particular discretization
(i.e., they are mesh-dependent). Mesh-independent networks have been developed to reduce
such constraints. In this regard, the Fourier Neural Operator (FNO) has recently been pro-
posed to learn a continuous function via parameterizing the model in its function space [16].
This makes it possible for FNO to be trained on one mesh and subsequently evaluated on
another. Unlike standard feed-forward networks that use activation functions (e.g., sigmoid,
tanh, relu), training an FNO model using the Fourier transform to find optimum weights
and biases is performed by employing sines and cosines as activation functions [17–19].

The Fourier neural operator has demonstrated its capabilities in solving parametric
PDEs. Different models were developed to solve the Navier–Stokes equation for a viscous,
incompressible fluid in vorticity form on the unit torus [16]. The viscosity was set to 0.001,
0.0001, and 0.00001. The resolution was 64× 64 for both training and testing. Based on the
results, the FNO-3D had the best performance in the case of available sufficient data. When
the amount of data was not sufficient, the FNO-2D achieved the lowest error.

An improved FNO-based DL model, U-FNO, was developed to solve a CO2-water
multiphase flow problem over a wide range of rock–fluid properties, such as permeability,
anisotropy, and flow rate [20]. The predictions generated for gas saturation and pressure
buildup confirmed the superiority of the U-FNO model compared to FNO and CNN models
applied to the same dataset. Additionally, U-FNO requires few training data to match the
prediction accuracy of CNN.

As a substitute for physics-based solvers, an FNO framework was employed to
learn/map certain mechanical responses of 2D composites [21]. The FNO models, trained
with few data, were able to predict high-resolution stress/strain tensor fields for geometri-
cally complex microstructures. Additionally, the models exhibited zero-shot generalization
with high precision on random geometries previously unseen by the trained FNO model.
Moreover, the trained FNO models were able to predict high-resolution stress/strain fields
when presented with low-resolution inputs.

An FNO model has also been applied to a Large Eddy Simulation (LES) of a 3D turbu-
lence system [22]. Filtered direct numerical simulation flow-field of isotropic turbulence
recorded at different times comprised the training data. In the a posteriori test of LES, The
FNO model outperformed dynamic Smagorinsky and dynamic mixed models to predict
the velocity spectrum, probability density functions of vorticity and velocity increments,
and the instantaneous flow structures.
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In addition to solving parametric PDEs, FNO has been successfully applied to solve
other problems. For example, FNO was used to classify images contained in the CIFAR-10
image database comprised of 60,000 distinct samples [23]. The input samples were color
images of ten different classes. A total of 83% of the total dataset was used to train the FNO,
and the remaining images were used to test the trained model. According to the different
evaluation criteria, the FNO performed slightly better than ResNet20. However, the FNO
model was computationally more costly.

As described, some research has been conducted applying FNO models to various
existing datasets. However, much of that research addresses problems involving big-shape
data (e.g., 421× 421 and 256× 256). Thus, there is a critical lack of analysis regarding the
performance of FNO models on small-shape data. Consequently, the major contribution
of this paper is to apply and evaluate an FNO model to predict pressure distribution in
small-shape data (30× 30). Specifically, the study answers the following questions:

1. Can FNO models perform accurately on small-shape data problems in terms of the
prediction error metrics?

2. How do mode and width affect the performance of FNO models?
3. Does downsampling have a positive or negative effect on FNO model performance

when applied to small-shape data?
4. Can FNO models satisfy the pattern applicable to porous media problems?
5. How does the performance of FNO models compare to that of CNN?

A 30× 30 uniform mesh problem from the domain of petroleum engineering is evalu-
ated as a relevant topic with a suitable dataset to address the research questions identified.
Continued constraints on the ability of the available energy supply to meet global energy
demand make it important to improve our understanding of subsurface oil and gas reser-
voirs to improve production and resource recovery. The problem evaluated is designed to
do that.

Comparing the FNO model performance with that of a CNN model applied to the
same dataset is justified because CNNs are proven in their applications to 2D arrays and
the mathematical basis underpinning convolutional-filter functionality is well established.
Convolutional neural networks are also able to learn the spatial hierarchy of dataset
characteristics on an unsupervised basis leading to good prediction performance based on
relatively sparse feature selections.

The remaining sections of this article are arranged as follows. Section 2 describes the
problem configuration and the dataset evaluated; Section 3 explains the configurations
of the FNO and CNN models applied to the dataset and how their performances are
optimized; Section 4 presents and compares the results generated by those two models;
Section 5 discusses the limitations of the research; and Section 6 draws conclusions and
makes recommendation for required future research.

2. Problem Setup with Governing Equations

The flow of fluids through porous media can be effectively described in terms of:
(i) the Darcy (or momentum) law, (ii) mass conservation, (iii) energy drive, and (iv) case-
specific rock–fluid correlations including compressibility and saturation equations, where
more than one fluid is involved (e.g., gas, oil and/or water) [24]. Energy conservation
can in many cases be disregarded if isothermal conditions are considered. However,
for reservoir systems in which temperature changes over time, such as for surface water
injected into subsurface reservoirs, energy conservation cannot be disregarded. For a single,
incompressible fluid phase with constant viscosity in a 2D linear and isothermal system,
Darcy’s law, assuming steady-state flow and ignoring gravitational effects, can be expressed
as [24]:

k−1µu +∇p = 0 (1)

where k = permeability, µ = fluid viscosity, u = Darcy velocity, and ∇p = gradient pressure
( ∂p

∂x , ∂p
∂y ).
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The formulation for the mass conservation law (also known as the continuity equation)
is [24]:

∇.u = f (2)

here, ∇.u = divergence velocity ( ∂ux
∂x +

∂uy
∂y ), and f = source term.

By combining Equations (1) and (2) and assigning values to the viscosity and source
term of one and zero, respectively, and assuming the permeability to be a diagonal tensor
in the isotropic medium, the below is obtained [24]:

∇.(−k∇p) = 0 (3)

In a homogeneous porous medium, k is constant, so the formulation becomes [24]:

k(∇.∇p) = k∆p = k(
∂2 p
∂x2 +

∂2 p
∂y2 ) = 0 (4)

where ∆p = Laplace pressure.
A heterogeneous porous medium indicates that it is not homogeneous, and thus

formation-related properties can have multiple scales. For example, in petroleum reservoirs,
there may be numerous fractures (connected or disconnected) with different lengths, whose
width is much smaller than the domain size. For a heterogeneous medium, Equation (3)
changes to [24]:

∂(k ∂p
∂x )

∂x
+

∂(k ∂p
∂y )

∂y
= 0 (5)

To solve PDEs, Boundary Conditions (BCs) and Initial Conditions (ICs) need to be
specified as additional constraints on the system. The main types of BCs applied are those
defined by: (i) Dirichlet (the first kind), (ii) Neumann (the second kind), and (iii) Robin
or Dankwerts (the mixed or third kind). In the first type, values are assigned to the
certain dependent variable(s) (e.g., pressure) while the derivatives of the certain dependent
variable(s) are known in Neumann’s condition. Robin’s BC is a weighted combination of
the first two BCs. An IC refers to a value (or a correlation) of a parameter at time t = 0.

For the system analyzed here, the computational domain was defined as
Ω = [0,1] × [0,1], representing a square 2D domain. Dirichlet’s condition was applied
on two sides: p = 100 (left-side boundary) and p = 0 (right-side boundary). Neumann’s
condition was applied to the other two sides: ∂p = 0 (top and bottom sides).

The grid selected to define each square system consisted of a 30 × 30 uniform mesh
with the option to incorporate (or not) horizontal and/or vertical fractures. The permeability
is defined as the ability of a rock to permit fluids to pass through it. The permeability in
fractures is generally much higher than that of the matrix. In this research, the permeability
of the matrix (Km) and fracture (Kf) were assigned fixed values of 1 and 1000 millidarcy
(md), respectively. The number of fractures (Nf) available in a porous medium was set
to 5, and fractures are allowed to intersect with each other. The length of individual
fractures was randomly distributed. A total of 1400 sample grids were generated in MatLab
software to constitute the training dataset, and a further 300 sample grids were generated to
constitute the testing dataset. The testing data, therefore, made up 17.65% of the generated
grids and the training data 82.35%. Permeability fields were randomly assigned to each
generated grid using the Karhunen–Loeve expansion [25], and duplicate fields were not
allowed to exist in the training and/or testing datasets. Only two of the generated grids
were removed during pre-processing to avoid intruding bias to specific permeability fields.
Although the grid shape of each sample is small, the number of elements it covers in
1698 samples is large (1698 × 30 × 30), which makes the dataset too large to be handled by
ML/DL methods.
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3. Methodology
3.1. FNO Architecture

While conducting research on heat propagation, Joseph Fourier introduced the idea of
a harmonic series, later called the Fourier series, which can represent any periodic function
as an infinite sum of sine and cosine waves [26]. Assuming f (x) defined over the interval
(−T, T) and outside this space f (x + 2T) = f (x), the Fourier series of this periodic function
is written as follows [26]:

f (x) =
a0

2
+

∞

∑
n=1

[ancos(
nπx

T
) + bnsin(

nπx
T

)] (6)

in which an and bn are the Fourier series coefficients expressed in the form of integral and
also a0 is the first term of an when n = 0.

Subsequently, the Fourier transform was developed to extend the Fourier series to non-
periodic functions [27]. The Fourier transform involves the decomposition of functions into
frequency components. Supposing that f (x) is the original function, ’i’ is the imaginary
number (

√
−1), and ’s’ is the angular frequency, then the mathematical definition of a

continuous FT is defined as [27]:

F(s) =
∫ ∞

−∞
f (x)e−2πisxdx (7)

It is appropriate to consider the inverse of the continuous FT as [27]:

f (x) =
∫ ∞

−∞
F(s)e2πisxds (8)

The Fourier neural operator is an operator for a neural network that performs convolu-
tions applying the Fourier transform. This causes the higher modes to be removed from the
Fourier space, leaving only the lower modes. In the following, a linear transform is applied
along with an inverse Fourier transform. This makes the training process independent of
the number of cells in a specific mesh.

At any location (x, y) within a mesh, the FNO algorithm first raises the input I(x, y)
to a higher-dimension channel space Z0(x, y), where Z0(x, y) = P(I(x, y)) (Figure 1). It
does this by locally applying the transform P: R→ Rdz , with a parametric procedure using
either a Fully Connected (FC) neural network or a simple linear layer. Z0 is defined on
the similar mesh to I and the values of Z0 can be displaced as an image with dz channels.
Then, four successive Fourier layers are applied to Z0. Subsequently, another transform
is applied locally Q : Rdz → R. This final transform projects Z4(x, y) to the output by
O(x, y) = Q(Z4(x, y)). Meantime, Z4 is the output of the fourth (final) Fourier layer and Q
is parameterized by a fully connected neural network.

Z(x, y) passes through two routes in the Fourier layers. In the top path, a Fourier
transform F, a linear transform R on the lower Fourier modes, and an inverse Fourier
transform F−1 are applied. Z(x, y) undergoes only a local linear transform W in the bottom
path. Outputs of each path are added together and then subjected to an activation function
σ (here ReLu).

To establish an optimum FNO architecture, PyTorch [28] was employed with Python
version 3.9.12. The models developed for the dataset applied batch size = 5, epochs = 500,
step size = 100, gamma = 0.9, and downsampling rate = 1 in this research. Additionally,
‘Adam’ [29] was used as the optimizer with a learning rate of 0.001 and a weight decay
of 0.0001. Adam uses a distinct learning rate for each scalar parameter and adapts these
rates during the whole training process considering the historical values of the partial
derivatives of each parameter. This gradient-based algorithm combines the ability of
(i) AdaGrad to handle sparse gradients and (ii) RMSProp to function in online and non-
stationary settings. The input and output shapes defined were 30 × 30 × 1 and 30 × 30,
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respectively. Moreover, fast Fourier transform [30] was used as a fast algorithm to compute
discrete Fourier transforms and their inverses.

Figure 1. (a) Architecture of the neural operator and (b) Architecture of a Fourier layer.

3.2. CNN Architecture

In preparing a CNN simulation involving a unit square, a 30 × 30 uniform mesh was
selected. On the other hand, the input/output values were defined as a 900 × 1 1D tensor
(vector). The input shape was then changed to 30 × 30 × 1 for processing through 2D
convolutional filters. Regarding to the output in CNN, there were two options: keeping the
initial shape or reshaping to a 2D tensor. While reshaping to 30 × 30, the accuracy achieved
by the CNN model became substantially impaired. On the other hand, many fewer errors
were generated by CNN models that retained the initial 900 × 1 shape. Therefore, the CNN
model was developed and its computational layers processed with the 900 × 1 shape and
only reshaped to the 30 × 30 output size for final visualization purposes (Figure 2).

An optimum CNN architecture was developed with five convolutional layers and
two FC layers (Figure 2). The kernel numbers in the convolutional layers (referred to as
CONV1 to CONV5) were 5, 45, 85, 125, and 165, respectively. Padding was set to ‘same’
only in CONV5 to prevent the size from changing. A 3 × 3 kernel size and 1 × 1 stride
were applied to all convolutional layers, providing those layers with sizes 28 × 28, 26 × 26,
24 × 24, 22 × 22, and 22 × 22, respectively. A batch normalization layer (referred to as BN1
to BN5) followed CONV1 to CONV5, without changing size. Normalization of the input
layer makes the CNN converge more quickly to outputs that collectively average nearly
zero with a standard deviation of nearly one. The layers FC1 and FC2 contain 1500 neurons.
The ReLu activation function was applied to CONV1 to CONV5, whereas the sigmoid
activation function was applied to FC1 and FC2, with a linear transformation applied to
generate the output layer.

The CNN model was coded using the Keras/TensorFlow packages [31] executed in
virtual environments in Python version 3.9.12. It was specifically configured with the Mean
Squared Error (MSE) as the loss (objective) function and ‘Adam’ [29] with the default values
as the optimizer. The CNN was trained to apply a batch size of 16 samples and run with
500 epochs.
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Figure 2. The structure of the CNN model used in this study.

4. Results

There are two main hyperparameters in FNO: the number of channels and modes.
The former defines the width of the FNO network, referring to the number of features
learned in each layer. The latter defines the number of lower Fourier modes retained when
truncating the Fourier series. The size of the grid space controls the maximum allowable
number of modes. In this research, five values were evaluated for the width: 20, 60, 100,
140, and 180, and four cases were evaluated for the mode: 5, 10, 15, and 20.

Figure 3a reveals that the FNO models generated very similar errors, based on MSE,
when calculated based on initial pressure values (actual non-normalized values) for the
training data when the number of modes is 10, 15, or 20. However, the errors increased
slightly for models configured with modes = 5. The coefficient of determination (R2) values
for the training data varied from 0.9945 to 0.9971, according to Figure 3b. As a general result,
all models were able to predict pressure with acceptable error levels for the training subset.

Figure 3c,d display the FNO results for the testing subset. The model with modes of
5 generated the poorest prediction performance, i.e., highest MSE and lowest R2. As width
increased (with modes held at 5), MSE decreased from 109.9231 to 86.3347 and R2 increased
from 0.7661 to 0.8163. When the number of modes was increased to 10, the FNO perfor-
mance improved. Additionally, an increase in width had a positive effect on accuracy when
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modes were held at 10. The model with modes = 15 performed better than models with
modes of 5 or 10, as it generated MSE and R2 displaying ranges of 42.1611–65.5664 and
0.8605–0.9103, respectively. In general, the prediction performance of the FNO model with
modes of 20 overlapped with that of modes of 15. Considering all twenty cases, the model
with modes = 15 and width = 100 generated the best performance with an MSE of 1.4087
and R2 of 0.997 for the training subset, and an MSE of 42.1611 and R2 of 0.9103 for the
testing subset. In addition to the graphical comparisons (Figure 3), the MSE and R2 values
achieved by all FNO cases evaluated are listed in Table 1.

Figure 3. Prediction error graphical analysis of the developed FNO models: (a) MSE for training data,
(b) R2 for training data, (c) MSE for testing data, and (d) R2 for testing data.
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Table 1. Performance of the developed FNO models with different modes and widths based on MSE
and R2.

Mode Width MSE
(Training) R2 (Training)

MSE
(Testing) R2 (Testing)

5 20 2.5543 0.9945 109.9231 0.7661
5 60 2.0832 0.9955 92.2014 0.8038
5 100 2.0605 0.9956 89.8219 0.8089
5 140 1.943 0.9958 93.8539 0.8003
5 180 1.878 0.996 86.3347 0.8163

10 20 1.8483 0.996 78.7648 0.8324
10 60 1.4814 0.9968 65.4587 0.8607
10 100 1.4196 0.9969 60.6803 0.8709
10 140 1.5745 0.9966 60.8775 0.8705
10 180 1.3643 0.9971 59.8904 0.8726

15 20 1.7253 0.9963 65.5664 0.8605
15 60 1.4007 0.997 51.0625 0.8914
15 100 1.4087 0.997 42.1611 0.9103
15 140 1.505 0.9968 53.6779 0.8858
15 180 1.4966 0.9968 47.783 0.8983

20 20 1.5206 0.9967 60.3367 0.8716
20 60 1.6387 0.9965 43.8621 0.9067
20 100 1.6409 0.9965 46.167 0.9018
20 140 1.5687 0.9966 44.5223 0.9053
20 180 1.7145 0.9963 46.8985 0.9002

To assess whether downsampling has a positive or negative impact on the FNO model
performance with respect to small-shape data (in the dataset modeled: 30 × 30), a down-
sampling rate was set to 2. By applying that rate, the data shape was reduced to 15 × 15,
which led to poor prediction results. For example, with modes = 10 and width = 100,
the FNO model achieved pressure predictions with MSE of 27.3128 and R2 of 0.9411 for the
training subset, and with MSE of 410.7709 and R2 of 0.1259 for the testing subset. As to be
expected, further downsampling of the initial case caused prediction accuracy to deteriorate
further. A likely explanation for this outcome is that the size of the grid space controls the
maximum allowable number of modes. This means that by downsampling, the allowable
number of FNO modes also decreases. Meantime, because CNN acts on discretized vectors,
downsampling with CNN is not reasonable.

In order to improve visualization of the pressure changes occurring over the defined
shapes, three examples are illustrated for selected training (Figure 4) and testing (Figure 5)
subsets. The plots in the left-side columns display the permeability fields, for representative
sample grids. The plots in the left-central columns display the pressure distribution
derived by FEM (considered to be true distribution). The plots in the right-central columns
display the predicted pressure distributions of the best-performing FNO model developed.
The plots in the right-side columns display the pressure difference between the FEM
and FNO outputs [p(FNO) − p(FEM)]. Generally, there was a very close match between
the true pressure distributions and those predicted by the FNO model, especially for the
training dataset.
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Figure 4. A comparison between the actual pressure distributions and those obtained by FNO for
three representative training subset samples. The pressure difference is based on a point-by-point
absolute error. Outputs are displayed as rectangles rather than squares due to a scaling issue.

The prediction performance of the CNN model is similar to that of the FNO model
in terms of R2 with regard to the training subset (Table 2). Indeed, the MSE generated by
the CNN model (0.3074) is slightly less than that generated by the FNO model (1.4087).
Nonetheless, the FNO model clearly provided superior results in terms of R2 and MSE
when the trained models were applied to the testing data subset. The results (Table 2)
suggest that whereas the trained FNO model is well-fitted to the dataset, the trained CNN
model is somewhat over-fitted to the same dataset.

Table 2. A comparison between the performance of the best-performing FNO model and the CNN
model in terms of MSE and R2.

Model MSE (Training) R2 (Training) MSE (Testing) R2 (Testing)

FNO
(mode = 15 and

width = 100)
1.4087 0.997 42.1611 0.9103

CNN 0.3074 0.9993 86.1818 0.8166
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Figure 5. A comparison between the actual pressure distributions and those obtained by FNO for
three representative testing subset samples. The pressure difference is based on a point-by-point
absolute error. Outputs are displayed as rectangles rather than squares due to a scaling issue.

5. Discussion

The FNO model is underpinned by a rigorous mathematical methodology, as described.
Furthermore, the statistical/graphical pressure prediction results associated with the small-
size grids simplistically simulating fluid flow in a subsurface reservoir indicate promising
prediction accuracy, which outperforms that of a CNN model. However, there is a drawback
associated with the FNO model applied to these small-size grids. As with other data-driven
ML/DL methods, FNO relies on the number of data samples it is provided with, and it
may require a large number of small-size grids to adequately train it to fully learn the full
range of possible variations in complex subsurface systems. For this reason, FNO was
applied to a relatively simple example dataset, i.e., based on relatively limited assumptions
of Km = 1 md, Kf = 1000 md, and Nf = 5. As opposed to data-driven neural networks
such as FNO, which rely exclusively on the provided data points, Physics-Informed Neural
Networks (PINNs) use the PDE itself as a data source. In PINNs, the PDEs are explicitly
encoded into the NN via automatic differentiation algorithms. The weighted summation of
the MSE of the PDE residuals, BCs, ICs, and possibly known solution points could then be
minimized as a loss function based on the NN parameters. Therefore, it could be beneficial
to combine PINN and FNO to find out how the performance changes compared to a
stand-alone FNO. In this sense, the model uses available data and/or physics constraints to
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learn the solution operator, conquering the limitations of purely data-driven and physics-
based techniques.

6. Conclusions

Classical NNs attempt to learn mappings between finite-dimensional Euclidean spaces,
making them confined to a particular discretization. On the other hand, the FNO, as a
mesh-independent algorithm, tries to learn function-to-function mappings. This makes
it possible for FNO to be trained on one mesh and subsequently assessed on another.
This study further extended the capabilities of FNO by applying it to a new simulated
dataset made up of small-shape samples. The generated dataset simulates single-phase
fluid flow in a porous reservoir assessed by 1700 2D grid samples, each constructed as
a unit square with a 30 × 30 uniform mesh. The models of FNO and CNN are trained
to predict the pressure distribution of each grid sample based on its permeability field.
The statistical-graphical results confirm the good ability of the FNO to predict the pressure
distribution based on the permeability field. The FNO model provided better prediction
performance than the CNN model when applied to the testing dataset. Analysis of the
results leads to three recommendations for future research. These are: (i) training the FNO
models for fluid flow in porous media with more data covering a wider range of matrix and
fracture permeabilities and a variable number of fractures in each small-shape grid sample,
(ii) applying FNO to solve other types of small-shape data problems, and (iii) designing
and testing novel more complex FNO architectures.
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Abbreviations
The following abbreviations are used in this manuscript:

a0 first term of an
an Fourier series coefficient
BC Boundary Condition
BN Batch Normalization
bn Fourier series coefficient
CNN Convolutional Neural Network
CONV convolutional layers
DL Deep Learning
∆p Laplace pressure
f source term
F Fourier transform
F−1 inverse Fourier transform
FC Fully Connected
FEM Finite Element Method
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FNO Fourier Neural Operator
i imaginary number (

√
−1)

IC Initial Condition
I(x, y) input layer
Kf permeability of the fracture
Km permeability of the matrix
LES Large Eddy Simulation
ML Machine Learning
Nf number of fractures
MSE Mean Squared Error
µ fluid viscosity

NN Neural Network
∇p gradient pressure (

∂p
∂x , ∂p

∂y )

∇.u divergence velocity ( ∂ux
∂x +

∂uy
∂y )

ODE Ordinary Differential Equation
O(x, y) output layer
PDE Partial Differential Equation
PINN Physics-Informed Neural Network
R linear transform
R2 coefficient of determination
s angular frequency
k permeability
u Darcy velocity
W local linear transform
Z0(x, y) higher-dimension channel space
Z4 output of the fourth (final) Fourier layer
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