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Abstract: A new modification of the isolation forest called the attention-based isolation forest (ABIFor-
est) is proposed for solving the anomaly detection problem. It incorporates an attention mechanism
in the form of Nadaraya–Watson regression into the isolation forest to improve the solution of the
anomaly detection problem. The main idea underlying the modification is the assignment of atten-
tion weights to each path of trees with learnable parameters depending on the instances and trees
themselves. Huber’s contamination model is proposed to be used to define the attention weights
and their parameters. As a result, the attention weights are linearly dependent on learnable attention
parameters that are trained by solving a standard linear or quadratic optimization problem. ABIForest
can be viewed as the first modification of the isolation forest to incorporate an attention mechanism
in a simple way without applying gradient-based algorithms. Numerical experiments with synthetic
and real datasets illustrate that the results of ABIForest outperform those of other methods. The code
of the proposed algorithms has been made available.

Keywords: anomaly detection; attention mechanism; isolation forest; Nadaraya–Watson regression;
quadratic programming; contamination model

1. Introduction

One of the most important machine learning problems is the novelty or anomaly
detection problem, which aims to detect abnormal or anomalous instances. This problem
can be regarded as a challenging task because there is not a strong definition of anomalous
instances, and anomalies themselves depend on certain applications. Another difficulty
that defines the challenge of the problem is that anomalies usually appear only seldomly,
and this fact leads to highly imbalanced training sets. Moreover, it is difficult to define
a boundary between normal and anomalous observations [1]. Due to the importance of
the anomaly detection problem in many applications, a huge number of papers covering
anomaly detection tasks and studying various aspects of anomaly detection have been
published in recent decades. Many approaches to solving the anomaly detection problem
have been analyzed in comprehensive survey papers [1–11].

According to [1,12], anomalies—also referred to as abnormalities, deviants, or outliers—
can be viewed as data points that are located further away from the bulk of data points,
which are referred to as normal data.

The various approaches to solving the anomaly detection problem can be divided into
several groups [10]. The first group consists of probabilistic and density estimation models.
These include the classic density estimation models, energy-based models, and neural gen-
erative models [10]. The second largest group deals with one-class classification models.
This group includes the well-known one-class classification SVMs [13–15]. The third group
includes reconstruction-based models, which detect anomalies by reconstructing data
instances. The well-known models from this group are autoencoders that incorrectly recon-
struct anomalous instances such that the distance between an instance and its reconstruction
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is larger than a predefined threshold, which is usually regarded as a hyperparameter of
the model.

The next group contains distance-based anomaly detection models. One of the most
popular and effective models from this group is the isolation forest (iForest) [16,17], which
is a model for detecting anomalous points relative to a certain data distribution. According
to iForest, anomalies are detected by using isolation which measures how far an instance is
from the rest of the instances. iForest can be regarded as a tool for implementing isolation.
It has linear time complexity and works well with large amounts of data. The core idea
behind iForest is the tendency for anomalous instances in a dataset to be more easily
separated from the rest of the sample (isolated) compared to normal instances. To isolate
a data point, the algorithm recursively creates sample partitions by randomly choosing an
attribute and then randomly choosing a split value for the attribute between the minimum
and maximum values allowed for that attribute. The recursive partition can be represented
by a tree structure called an isolation tree, while the number of partitions needed to isolate
a point can be interpreted as the length of the path within the tree to the end node, starting
from the root. Anomalous instances are those with a shorter path length in the tree [16,17].

iForest is a powerful tool for solving the anomaly detection problem. However, it may
not take into account that some trees are built in such a way that they do not properly
detect anomalous instances because of the random selection of instances for training each
tree, the randomized splitting procedure, etc. It is supposed in iForest that all isolation
trees behave in a similar way. However, the ranges between the trees’ abilities to isolate
anomalous instances may be large. Moreover, one anomalous instance can be accurately
detected by a tree, whereas another anomalous instance may be undetectable by the
same tree. In order to improve iForest, we propose modifying it by using an attention
mechanism that can automatically distinguish the relative importance of instances and
weigh it to improve the overall accuracy. The attention mechanism allows us to take
different capabilities of isolation trees conditioned on instances into account by assigning
attention weights to trees and instances depending on their properties. This allows us
to compensate for some of the impact of “bad” trees, which are “bad” only for certain
instances and can be accurate for other instances.

Attention mechanisms have been successfully applied in many applications, including
natural language processing models, the computer vision area, etc. Comprehensive surveys
of properties and forms of attention mechanisms and transformers can be found in [18–22].

The idea of applying an attention mechanism to iForest stems from the attention-
based random forest (ABRF) models proposed in [23], where attention was implemented
in the form of the Nadaraya–Watson regression [24,25] by assigning attention weights
to the leaves of trees in a specific way such that the weights depended on the trees and
instances. The learnable attention parameters in ABRF were trained by solving a standard
quadratic optimization problem with linear constraints. It turned out that this idea of
considering a random forest as Nadaraya–Watson regression [24,25] could be extended
to iForest by taking the peculiarities of iForest that cause it to differ from the random
forest into account. According to the original iForest, the isolation measure is estimated
as the mean value of the path lengths over all trees in the forest. However, we can
replace the averaging of the path lengths with Nadaraya–Watson regression, where the
path length of an instance in each tree can be regarded as a prediction in the regression
(the valuein terms of the attention mechanism [26]), and weights (the attention weights)
depend on the corresponding tree and the instance (the query in terms of the attention
mechanism [26]). In other words, the final prediction of the expected path length in
accordance with Nadaraya–Watson regression is a weighted sum of the path lengths over
all trees. The weights of path lengths have learnable parameters (learnable attention
parameters) that can be computed by minimizing a loss function of a specific form. We
aim to reduce the optimization problem to a quadratic programming problem or linear
programming problem for which there are many algorithms for solving. In order to
achieve this aim, Huber’s ε-contamination model [27] is proposed to be used to compute
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the learnable attention parameters. The contamination model allows us to represent
attention weights in the form of a linear combination of the softmax operation and learnable
parameters with the contamination parameter ε, which can be viewed as probabilities.
As a result, the loss function for computing learnable parameters is linear with linear
constraints on the parameters as probabilities. After adding the L2 regularization term,
the optimization problem for computing attention weights becomes a quadratic one.

Our contributions can be summarized as follows:

1. A new modification of iForest called the attention-based isolation forest (ABIForest),
which incorporates an attention mechanism in the form of the Nadaraya–Watson
regression to improve the solution of the anomaly detection problem, is proposed.

2. The algorithm of computing attention weights is reduced to solving linear or quadratic
programming problems due to the application of Huber’s ε-contamination model.
Moreover, we propose the use of the hinge-loss function to simplify the optimization
problem. The contamination parameter ε is regarded as a tuning hyperparameter.

3. Numerical experiments with synthetic and real datasets were performed to study
ABIForest. They demonstrated outstanding results for most datasets. The code of the
proposed algorithms can be found at https://github.com/AndreyAgeev/Attention-
based-isolation-forest (accessed on 1 November 2022).

This paper is organized as follows. Related work can be found in Section 2. Brief
introductions to the attention mechanism, Nadaraya–Watson regression, and iForest are
given in Section 3. The proposed ABIForest model is considered in Section 4. Numerical
experiments with synthetic and real datasets that illustrate the peculiarities of ABIForest
and its comparison with iForest are provided in Section 5. Concluding remarks discussing
the advantages and disadvantages of ABIForest can be found in Section 6.

2. Related Work

Attention mechanism. An attention mechanism can be viewed as an effective method
for improving the performance of a large variety of machine learning models. Therefore,
there are many different types of attention mechanisms depending on their applications
and the models in which attention mechanisms are incorporated. The term “attention” was
introduced by Bahdanau et al. [26]. Since the publication of this paper, a huge number
of models based on attention mechanisms have been found in the literature. There are
also several types of attention mechanisms [28], including soft and hard attention mech-
anisms [29], local and global attention [30], self-attention [31], multi-head attention [31],
and hierarchical attention [32]. It is difficult to consider all papers devoted to attention
mechanisms and their applications. Comprehensive surveys [18–22,33] have covered
a large part of the available models and modifications of attention mechanisms.

Most attention models are implemented as parts of neural networks. In order to extend
a set of attention models, several random forest models in which attention mechanisms
were incorporated were proposed in [23,34,35]. A gradient boosting machine to which an
attention mechanism was added was presented in [36].

Anomaly detection with attention. A wide set of machine learning tasks include
anomaly detection problems. Therefore, many methods and models have been developed
to address them [1–11].One of the tools for solving anomaly detection problems is an
attention mechanism. Monotonic attention-based autoencoders were proposed in [37] as an
unsupervised learning technique for detecting false data injection attacks. An anomaly de-
tection method based on a Siamese network with an attention mechanism for dealing with
small datasets was proposed in [38]. A so-called residual attention network that employed
an attention mechanism and residual learning to improve classification efficiency and
accuracy was presented in [39]. A graph anomaly detection algorithm based on attention-
based deep learning for assisting the audit process was provided in [40]. Madan et al. [41]
presented a novel self-supervised masked convolutional transformer block that comprised
a reconstruction-based functionality. The integration of reconstruction-based functionality
into a novel self-supervised predictive architectural building block was considered in [42].

https://github.com/AndreyAgeev/Attention-based-isolation-forest
https://github.com/AndreyAgeev/Attention-based-isolation-forest
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Huang et al. [43] improved the efficiency and effectiveness of anomaly detection and
localization during inference by using a progressive mask refinement approach that pro-
gressively uncovered the normal regions and, finally, located anomalous regions. A novel
self-supervised framework for multivariate time-series anomaly detection via a graph
attention network was proposed in [44]. It can be seen from the above works that the idea
of applying attention in models for solving the anomaly detection problem was successfully
implemented. However, attention was used in the form of components of neural networks.
There are no forest-based anomaly detection models that use an attention mechanism.

iForest. iForest [16,17] can be viewed as one of the most important and effective meth-
ods for solving novelty and anomaly detection problems. Therefore, many modifications
of the method have been developed [5] to improve it. A weighted iForest and Siamese
gated recurrent unit algorithm architecture that provided a more accurate and efficient
method for outlier detection of data was considered in [45]. Hariri et al. [46] proposed an
extension of iForest called the extended isolation forest, which resolved issues with the
assignment of anomaly scores to given data points. A theoretical framework that described
the effectiveness of isolation-based approaches from a distributional viewpoint was studied
in [47]. Lesouple et al. [48] presented a generalized isolation forest algorithm that gener-
ated trees without any empty branches, which significantly improved the execution times.
The k-means-based iForest was developed by Karczmarek et al. [49]. This modification
of iForest allowed one to build a search tree based on many branches, in contrast to the
two considered in the original method. Another modification called the fuzzy set-based
isolation forest was proposed in [50]. A probabilistic generalization of iForest was proposed
in [51], which was based on the nonlinear dependence of a segment-cumulated probability
on the length of the segment. A robust anomaly detection method called the similarity-
measured isolation forest was developed by Li et al. [52] to detect abnormal segments in
monitoring data. A novel hyperspectral anomaly detection method with a kernel isolation
forest was proposed in [53]. The method was based on an assumption that anomalies,
rather than the background, could be more susceptible to isolation in the kernel space.
An improved computational framework that allows one to effectively seek the most sepa-
rable attributes and spots corresponding to optimized split points was presented in [54].
Staerman et al. [55] introduced the so-called functional isolation forest, which generalized
iForest to the infinite-dimensional context, i.e., the model dealt with functional random
variables that took their values in a space of functions. Xu et al. [56] proposed the deep iso-
lation forest, which was based on an isolation method with an arbitrary (linear/nonlinear)
partitioning of data implemented by using neural networks.

The above works are only a some of the many extensions and modifications of iForest
that have been developed due to the excellent properties of the method. However, to the
best of our knowledge, there are no works considering approaches to incorporating an
attention mechanism into iForest.

3. Preliminaries
3.1. Attention Mechanism as Nadaraya–Watson Regression

If we consider an attention mechanism as a method for enhancing the accuracy of
iForest for the solution of the anomaly detection problem, this allows us to automatically
distinguish the relative importance of features, instances, and isolation trees. According
to [18,57], the original idea of attention can be understood from the statistical point of view
by applying the Nadaraya–Watson kernel regression model [24,25].

Given n instances D = {(x1, y1), . . . , (xn, yn)}, in which xi = (xi1, . . . , xid) ∈ Rd is
a feature vector involving m features and yi ∈ R represents the regression outputs, the task
of regression is to construct a regressor f : Rm → R that can predict the output value ỹ
of a new observation x by using available data S. A similar task can be formulated for
classification problems.

The original idea behind the attention mechanism is to replace the simple average of
outputs ỹ = n−1 ∑n

i=1 yi for estimating the regression output y, corresponding to a new
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input feature vector x, with the weighted average in the form of the Nadaraya–Watson
regression model [24,25]:

ỹ =
n

∑
i=1

α(x, xi)yi, (1)

where the weight α(x, xi) conforms with the relevance of the i-th instance to the vector x,
i.e., it is defined in agreement with the location of the corresponding input xi relative to the
input variable x (the closer an input xi is to the given variable x, the greater α(x, xi) will be).

In terms of the attention mechanism [26], the vectors x, xi and outputs yi are called the
query, keys, and values, respectively. The weight α(x, xi) is called the attention weight.

The attention weights α(x, xi) can be defined by a normalized kernel K as:

α(x, xi) =
K(x, xi)

∑n
j=1 K(x, xj)

. (2)

For a Gaussian kernel with the parameter ω, the attention weights are represented
through the softmax operation as:

α(x, xi) = σ

(
−‖x− xi‖2

ω

)
. (3)

In order to enhance the attention capabilities, weights are added by trainable pa-
rameters. Several definitions of attention weights and attention mechanisms have been
proposed. The most popular definitions are additive attention [26], multiplicative attention,
and dot-product attention [30,31].

3.2. Isolation Forest

In this subsection, the main definitions of iForest are provided in accordance with the
results given in [16,17]. Suppose that there is a dataset D = {x1, . . . , xn} consisting of n
instances, where xi = (xi1, . . . , xid) ∈ Rd is a feature vector. The isolation tree is built by
using a randomly generated subset D∗ of the dataset D. The dataset D∗ splits into two
subsets to define a random node as follows. A feature is randomly selected by generating
a random value q from the set {1, . . . , d}. Then, a split value p is randomly selected from the
interval [mini=1,...,n xiq, maxi=1,...,n xiq]. With p and q, the subset D∗ is recursively divided
into two parts at each node by using the feature number q and the split value p—the left
branch corresponds to the set with xiq ≤ p, and the right branch corresponds to the set with
xiq > p. Thus, the generated values q and p determine whether the data points at a node
are sent down the left or the right branch. The above conditions determine the subsequent
child nodes for a split node. The division stops in accordance with a rule—for example,
when a branch contains a single point or when some limited depth of the tree is reached.
The process of building the isolation tree begins again with a new random subsample to
build another randomized tree. After building a forest consisting of T trees, the training
process is complete.

In the k-th isolation tree, an instance x is isolated on one of the outer nodes. A path
of length hk(x) associated with this instance is defined as the number of nodes for which
x goes from the root node to the leaf. Anomalous instances are those with a shorter path
length in the tree. This conclusion is motivated by the fact that normal instances are more
concentrated than anomalies and, thus, require more nodes to be isolated. By having the T
trained trees, i.e., the isolated forest, we can estimate the isolation measure as the expected
path length E[h(x)], which is computed as the mean value of the path lengths over all trees
in the forest. By having the expected path length E[h(x)], an anomaly score is defined as

s(x, n) = 2−
E(h(x))

c(n) , (4)
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where c(n) is the normalizing factor, which is defined as the average value of h(x) for
a dataset of size n, which is computed as

c(n) = 2H(n− 1)− 2(n− 1)
n

. (5)

Here, H(n) is the n-th harmonic number estimated from H(n) = ln(n)+δ, where
δ ≈ 0.577216 is the Euler–Mascheroni constant. If n = 2, then c(n) = 1.

The higher the value of s(x, n) is (closer to 1), the more likely it is for the instance
x to be anomalous. If we introduce a threshold τ ∈ [0.1], then the condition s(x, n) > τ
indicates that the instance x is detected as an anomaly. If the condition s(x, n) ≤ τ is valid,
then the instance x is likely to be normal. The threshold τ in the original iForest is taken
as 0.5.

4. Attention-Based Isolation Forest

It should be noted that the expected path length E[h(x)] in the original iForest is
computed as the mean value of the path lengths hk(x) of the trees:

E[h(x)] =
1
T

T

∑
k=1

hk(x). (6)

This method of computing the expected path length does not take into account the
possible relationship between an instance and each isolation tree or the possible differences
between trees. The ideas behind the attention-based RF [23] can also be applied to iForest.
Therefore, our next task is to incorporate an attention mechanism into iForest.

4.1. Keys, Values, and Queries in iForests

First, we can point out that the outcome of each isolation tree is the path length hk(x),
k = 1, . . . , n. This implies that this outcome can be regarded as the value in the attention
mechanism. Second, we define the queries and keys in iForest. Suppose that the feature
vector x falls into the i-th leaf of the k-th tree. Let J (k)

i be a set of indices of n(k)
i training

instances xj that also fall into the same leaf. The distance between the vector x and all

vectors xj, j ∈ J (k)
i , shows how the vector x is in agreement with the corresponding vectors

xj and how close it is to the vectors xj from the same leaf. If the distance is small, then we
can conclude that the vector x is well performed by the k-th tree. The distance between the
vector x and all vectors xj, j ∈ J (k)

i , can be represented as a distance between the vector

x and the mean values of all vectors xj with indices j ∈ J (k)
i . The mean vector of xj with

indices j ∈ J (k)
i can be viewed as a characteristic of the corresponding path, i.e., this vector

characterizes a group of instances that fall into the corresponding leaf. Hence, the mean
vector shows how the vector x is in agreement with this group. If we denote the mean
value of xj, j ∈ J (k)

i as Ak(x), then it holds that

Ak(x) =
1

n(k)
i

∑
j∈J (k)

i

xj. (7)

We omit the index j in Ak(x) because the instance x can fall only into one leaf of
each tree.

The vectors Ak(x) and x can be regarded as the key and the query, respectively. Then,
(6) can be rewritten by using the attention weights α(x, Ak(x), w) as follows:

E[h(x)] =
T

∑
k=1

α(x, Ak(x), w) · hk(x), (8)
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where α(x, Ak(x), w) conforms with the relevance of the “mean instance” Ak(x) for the
vector x and satisfies the following condition:

T

∑
k=1

α(x, Ak(x), w) = 1, α(x, Ak(x), w) ≥ 0, k = 1, . . . , T. (9)

We replaced the expected path length (6) with the weighted sum of path lengths (8)
such that the weights α depend on x, the mean vector Ak(x), and the vector of parameters
w. The vector w in the attention weights represents the trainable attention parameters.
Their values depend on the dataset and on the isolation tree’s properties. If we return to
the Nadaraya–Watson kernel regression model, then the expected path length E[h(x)] can
be viewed as the regression output, and the path lengths hk(x) of all trees for query x are
predictions (values in terms of the attention mechanism [26]).

Suppose that the trainable parameters w belong to a setW . Then, they can be found
by solving the following optimization problem:

wopt = arg min
w∈W

n

∑
s=1

L(E[h(xs)], xs, w). (10)

Here, L(E[h(xs)], xs, w) is the loss function, whose definition, as well as the definition
of α(x, Ak(x), w), is the next task.

A general scheme of ABIForest is shown in Figure 1. The red branches show the paths
of an anomalous instance x that falls into the corresponding red leaves. For these leaves,
the keys A1(x), . . . , AT(x), values h1(x), . . . , hT(x), and attention weights α(x, Ak(x), w),
k = 1, . . . , T, are computed. The products α(x, Ak(x), w) · hk(x) are summed in accor-
dance with Nadaraya–Watson regression to obtain the expected path length E[h(x)], which
is compared with the threshold γ to make a decision on whether instance x is normal
or anomalous.

Figure 1. A general scheme of ABIForest, which illustrates how iForest is modified by incorporating
an attention mechanism.

4.2. Loss Function and Attention Weights

First, we reformulate the decision rule (s(x, n) > τ) for determining anomalous in-
stances by establishing a similar condition for E[h(x)]. Suppose that γ is a threshold such
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that the condition E[h(x)] ≤ γ indicates that instance x is detected as an anomaly. Then, it
follows from (4) that γ can be expressed through the threshold τ as:

γ = −c(n) · log2(τ). (11)

Hence, we can write the decision rule about the anomaly as follows:

decision =

{
anomalous, if E[h(x)]− γ ≤ 0,
normal, otherwise.

(12)

We also introduce the instance label ys, which is 1 if the training instance xs is anoma-
lous and −1 if it is normal. If labels are not known, then prior values of labels can be
determined by using the original iForest.

We propose the following loss function:

L(h(xs), xs, w) = max(0, ys(E[h(xs)]− γ)). (13)

It can be seen from (13) that the loss function is 0 if E[h(xs)]− γ and ys have differ-
ent signs, i.e., if the decision about an anomalous (normal) instance coincides with the
corresponding label. Substituting (8) into (13), we rewrite the optimization problem (10) as:

wopt = arg min
w∈W

[
n

∑
s=1

max

(
0, ys

(
T

∑
k=1

α(x, Ak(x), w) · hk(x)− γ

))]
. (14)

An important question is that of how to simplify the above problem to get a unique
solution and how to define the attention weights α(x, Ak(x), w) depending on the trainable
parameters w. This can be done by using Huber’s ε-contamination model.

4.3. Huber’s Contamination Model

We propose the use of a simple representation of attention weights presented in [23],
which is based on applying Huber’s ε-contamination model [27]. The model is represented
as a set of discrete probability distributions F of the form:

F = (1− ε) · P + ε · R, (15)

where P = (p1, . . . , pT) is a discrete probability distribution contaminated by another
probability distribution, which is denoted as R = (r1, . . . , rT), under condition that the
probability distribution R can be arbitrary; the contamination parameter ε ∈ [0, 1] controls
the degree of the contamination.

The contaminating distribution R is a point in the unit simplex with T vertices, which
are denoted as S(1, T). The distribution F is a point in a small simplex that belongs to the
unit simplex. The size of the small simplex depends on the hyperparameter ε. If ε = 1,
then the small simplex coincides with the unit simplex. If ε = 0, then the small simplex is
reduced to a single distribution P.

We propose the consideration of every element of P as a result of the softmax operation

pk = σ

(
−‖x−Ak(x)‖2

ω

)
, (16)

that is,

P =

(
σ

(
−‖x−A1(x)‖2

ω

)
, . . . , σ

(
−‖x−AT(x)‖2

ω

))
.

Moreover, we propose the consideration of the distribution R as the vector of trainable
parameters w, that is,

R = w = (w1, . . . , wT).
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Hence, the attention weight α(x, Ak(x), w) can be represented for every k = 1, . . . , T
as follows:

α(x, Ak(x), w) = (1− ε) · σ
(
−‖x−Ak(x)‖2

ω

)
+ ε · wk. (17)

An important property of the above representation is that the attention weight linearly
depends on the trainable parameters, and the softmax operation depends only on the
hyperparameter ω. The trainable parameters w =(w1, . . . , wT) are restricted by the unit
simplex S(1, T) and, therefore, W = S(1, T). This implies that the constraints for w are
linear (wi ≥ 0 and w1 + · · ·+ wT = 1).

4.4. Loss Function with the Contamination Model

Let us substitute the obtained expression (17) for the attention weight α(x, Ak(x), w)
into the objective function (14). After simplification, we get

min
w∈S(1,T)

n

∑
s=1

max

(
0, Ds(ε, ω) + ysε

T

∑
k=1

hk(xs)wk

)
(18)

where

Ds(ε, ω) = ys(1− ε)
T

∑
k=1

σ

(
−‖xs −Ak(xs)‖2

ω

)
− γT. (19)

Let us introduce the new variables

vs = max

(
0, Ds(ε, ω) + ysε

T

∑
k=1

hk(xs)wk

)
. (20)

Then, the problem (18) can be rewritten as follows:

min
n

∑
s=1

vs, (21)

subject to

vs ≥ Ds(ε, ω) + ysε
T

∑
k=1

hk(xs)wk, (22)

vs ≥ 0, s = 1, . . . , n, (23)

w1 + · · ·+ wT = 1, wk ≥ 0, k = 1, . . . , T. (24)

This is a linear optimization problem with the optimization variables w1, . . . , wT and
v1, . . . , vn.

The optimization problem can be improved by adding a regularization term ‖w‖2

with the hyperparameter λ, which controls the strength of the regularization. In this case,
the optimization problem becomes

min
n

∑
s=1

vs + λ‖w‖2, (25)

subject to (22)–(24).
We obtain a standard quadratic programming problem whose solution does not meet

any difficulties.

5. Numerical Experiments

The proposed attention-based iForest was studied by using synthetic and real data
and was compared with the original iForest. A brief introduction to these datasets is given
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in Table 1, where d is the number of features and nnorm and nanom are numbers of normal
and anomalous instances, respectively.

Different values for hyperparameters, including the threshold τ, the number of trees
in the forest, the contamination parameter ε, and the kernel parameter ω, were tested,
and those leading to the best results were chosen. In particular, the hyperparameter
ε in ABIForest took values of 0, 0.25, 0.5, 0.75, and 1; the hyperparameter γ changed
from 0.5 to 0.7; the hyperparameter ω took values of 0.1, 10, 20, 30, and 40. The F1-
score was used as a measure of the anomaly detection accuracy. It was used because the
number of anomalous instances was significantly less than the number of normal instances,
i.e., because the normal and anomalous instances were imbalanced. To evaluate the F1-
score, a cross-validation with 100 repetitions was performed, where in each run, 66.7% of
the data were randomly selected for training (2n/3) and 33.3% were randomly selected for
testing (n/3). The numerical results are presented in the tables, and the best results are
shown in bold.

Table 1. A brief introduction to the datasets.

Dataset nnorm nanom d

Circle (synthetic) 1000 200 2

Normal dataset (synthetic) 1000 50 2

Credit 1500 400 30

Ionosphere 225 126 33

Arrhythmia 386 66 18

Mulcross 1800 400 4

Http 500 50 3

Pima 500 268 8

5.1. Synthetic Datasets

The first synthetic dataset used for the numerical experiments was the Circle dataset.
Its points were divided into two parts concentrated around small and large circles, as shown
in Figure 2, where the training and testing sets are depicted in the left and right pictures,
respectively. In order to optimize the model parameters in the numerical experiments, we
performed cross-validation. Gaussian noise with a standard deviation of 0.1 was added to
the data for all experiments.

Figure 2. Points from the Circle dataset.

The second synthetic dataset (the Normal dataset) contained points generated from
normal distributions with two expectations: (−2,−2) and (2, 2). Anomalies were generated
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from a uniform distribution in the interval [−1, 1]. The training and testing sets are depicted
in Figure 3.

Figure 3. Points from the Normal dataset.

First, we studied the Circle dataset. The F1-score measures obtained for ABIForest are
shown in Table 2, where the F1-score is presented as a function of the hyperparameters ε
and τ with the number of trees in the isolation forest of T = 150. It is interesting to note that
ABIForest was sensitive to changes in τ, whereas ε did not significantly impact the results.
For comparison purposes, the F1-score measures of the original iForest as a function of
the number of trees T and the hyperparameter τ are shown in Table 3. It can be seen from
Table 3 that the largest value of the F1-score was achieved with 150 trees in the forest and
with τ = 0.5. One can also see from Tables 2 and 3 that ABIForest provided results that
outperformed the same results of the original iForest.

Table 2. F1-scores of ABIForest consisting of T = 150 trees as a function of the hyperparameters τ

and ε for the Circle dataset with ω = 20.

ε τ

0.5 0.6 0.7

0.0 0.276 0.973 0.236

0.25 0.2749 0.975 0.162

0.5 0.273 0.978 0.100

0.75 0.273 0.975 0.062

1.0 0.271 0.973 0.037

Table 3. F1-scores of the original iForest as a function of the number of trees T and the hyperparameter
τ for the Circle dataset.

τ T

5 15 25 50 150

0.3 0.270 0.270 0.270 0.270 0.270

0.4 0.286 0.273 0.271 0.270 0.270

0.5 0.729 0.864 0.899 0.906 0.920

0.6 0.639 0.603 0.598 0.603 0.606

Similar numerical experiments with the Normal dataset are presented in Tables 4 and 5.
We can see again that ABIForest outperformed iForest, namely, the best value of the F1-score
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provided by iForest was 0.252, whereas the best value of the F1-score for ABIForest was
0.413, and this result was obtained with ω = 20.

Table 4. F1-scores of ABIForest consisting of T = 150 trees as a function of the hyperparameters τ

and ε for the Normal dataset with ω = 20.

ε τ

0.5 0.6 0.7

0.0 0.099 0.410 0.0

0.25 0.147 0.410 0.162

0.5 0.177 0.413 0.0

0.75 0.176 0.412 0.0

1.0 0.178 0.408 0.0

Table 5. F1-scores of the original iForest as a function of the number of trees T and the hyperparameter
τ for the Normal dataset.

τ T

5 15 25 50 150

0.3 0.082 0.082 0.082 0.082 0.082

0.4 0.088 0.083 0.083 0.082 0.082

0.5 0.220 0.248 0.249 0.250 0.252

0.6 0.191 0.141 0.091 0.040 0.021

Figure 4 illustrates how the F1-score depended on the hyperparameter τ for the Circle
dataset. The corresponding functions are depicted for different contamination parameters
ε, and they were obtained for the case of T = 150 trees in iForest. It can be seen from
Figure 4 that the largest value of the F1-score was achieved with ω = 20 and ε = 0.5. It
can also be seen from the results in Figure 4 that the F1-score significantly depended on
the hyperparameter ω, especially for small values of ε. The F1-score measures as functions
of the contamination parameter ε for different numbers of trees in iForest T for the Circle
dataset obtained with the hyperparameters γ = 0.6 and ω = 20 are depicted in Figure 5.

Figure 4. F1-score measures as functions of the softmax hyperparameter ω for different contamination
parameters ε for the Circle dataset.
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Figure 5. F1-score measures as functions of the contamination parameter ε for different numbers of
trees in iForest T for the Circle dataset.

Figure 6 illustrates the results of a comparison between iForest and ABIForest on
the basis of the test set, which is depicted in the left panel of Figure 6. The predictions
obtained by iForest consisting of 150 trees with τ = 0.5 are depicted in the central panel.
The predictions obtained by ABIForest with ε = 0.5, τ = 0.6, and ω = 0.1 are shown
in the right panel. One can see in Figure 6 that some points in the central panel were
incorrectly identified as anomalous ones, whereas ABIForest correctly classified them as
normal instances. Figure 6 should not be considered as a single realization that defines the
F1-score. It is one of many cases corresponding to different generations of test sets; therefore,
the numbers of normal and anomalous instances can be different in each realization.

Figure 6. Comparison of the test set generated for the Circle dataset (the left panel), predictions
obtained by iForest (the central panel), and predictions obtained by ABIForest (the right panel).

Similar dependencies for the Normal dataset are shown in Figures 7 and 8. However,
it follows from Figure 7 that the largest values of the F1-score were achieved for ε =
0. This implies that the main contribution to the attention weights was caused by the
softmax operation. The F1-score measures shown in Figure 8 were obtained with the
hyperparameters γ = 0.6 and ω = 20.
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Figure 7. F1-score measures as functions of the softmax hyperparameter ω for different contamination
parameters ε and for the Normal dataset.

Figure 8. F1-score measures as functions of the contamination parameter ε for different numbers of
trees in iForest T for the Circle dataset.

The results of a comparison between iForest and ABIForest for the Normal dataset
are shown in Figure 9, where a realization of the test set and the predictions of iForest and
ABIForest are shown in the left, central, and right panels, respectively. The predictions
were obtained by means of iForest consisting of 150 trees with τ = 0.5 and by ABIForest
consisting of the same number of trees with ε = 0.5, τ = 0.6, and ω = 0.1.
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Figure 9. Comparison of the test set generated for the Normal dataset (the left panel), predictions
obtained by iForest (the central panel), and predictions obtained by ABIForest (the right panel).

Another interesting question is that of how the prediction accuracy of ABIForest
depends on the size of the training data. The corresponding results for the synthetic
datasets are shown in Figure 10, where the solid and dashed lines correspond to the F1-
scores of iForest and ABIForest, respectively. The numbers of trees in all experiments
were taken as T = 150. The same results are also given in numerical form in Table 6.
It can be seen in Figure 10 for the Circle dataset that the F1-score of iForest decreased
with the increase in the number of training data after n = 200. This was because the
number of trees (T = 150) was fixed, and the trees could not be improved. This effect was
discussed in [17], where the problems of swamping and masking were studied. The authors
of [17] considered subsampling to overcome these problems. One can see in Figure 10 that
ABIForest coped with this difficulty. Another behavior of ABIForest could be observed for
the Normal dataset, which was characterized by two clusters of normal points. In this case,
the F1-score decreased as n increased, and then increased with n.

Figure 10. Illustration how the F1-score measures of iForest and ABIForest depend on the number of
training data for the Circle dataset (the left panel) and the Normal dataset (the right panel).
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Table 6. F1-score measures of the original iForest and ABIForest as functions of the training data
number n for the Circle and Normal datasets.

The Circle Dataset

n 50 200 800 1200

iForest 0.867 0.977 0.945 0.920

ABIForest 0.916 0.975 0.986 0.978

The Normal dataset

n 50 150 350 550

iForest 0.266 0.506 0.450 0.253

ABIForest 0.264 0.512 0.326 0.413

5.2. Real Datasets

The first real dataset that was used in the numerical experiments is called the Credit
dataset (https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud, (accessed on 1 Novem-
ber 2022). According to the dataset’s description, it contains transactions made by credit
cards in September 2013 by European cardholders, with 492 fraud cases out of 284, 807
transactions. We used only 1500 normal instances and 400 anomalous ones, which were
randomly selected from the whole Credit dataset. The second dataset, called the Iono-
sphere dataset (https://www.kaggle.com/datasets/prashant111/ionosphere, (accessed on
1 November 2022)) is a collection of radar returns from the ionosphere. The next dataset
is called the Arrhythmia dataset (https://www.kaggle.com/code/medahmedkrichen/
arrhythmia-classification, (accessed on 1 November 2022)).The smallest classes with num-
bers of 3, 4, 5, 7, 8, 9, 14, and 15 were combined to form outliers in the Arrhythmia
dataset. The Mulcross dataset (https://github.com/dple/Datasets, (accessed on 1 Novem-
ber 2022)) was generated from a multivariate normal distribution with two dense anomaly
clusters. We used 1800 normal and 400 anomalous instances. The Http dataset (https:
//github.com/dple/Datasets, (accessed on 1 November 2022)) was used in [17] to study
iForest. The Pima dataset (https://github.com/dple/Datasets, (accessed on 1 November
2022)) aims to predict whether or not a patient has diabetes. The Credit, Mulcross, and Http
datasets were reduced to simplify the experiments.

The numerical results are shown in Table 7. ABIForest is presented in Table 7 with
the hyperparameters ε, τ, and ω, as well as the F1-score. iForest is presented with the
hyperparameter τ and the corresponding F1-score. The hyperparameters leading to the
largest F1-score are presented in Table 7. It can be seen from Table 7 that ABIForest provided
outstanding results for five of the six datasets. It is also interesting to point out that the
optimal values of the hyperparameter ε for the Ionosphere and Mullcross datasets were
equal to 0. This implies that the attention weights were entirely determined by the softmax
operation (see (17)). A contrary case was when εopt = 1. In this case, the softmax operations
and their parameter ω were not used, and the attention weights were entirely determined
by the parameters w, which could be regarded as the weights of trees.

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/prashant111/ionosphere
https://www.kaggle.com/code/medahmedkrichen/arrhythmia-classification
https://www.kaggle.com/code/medahmedkrichen/arrhythmia-classification
https://github.com/dple/Datasets
https://github.com/dple/Datasets
https://github.com/dple/Datasets
https://github.com/dple/Datasets
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Table 7. F1-score measures of ABIForest consisting of T = 150 trees for different real datasets with
the optimal values of τ, ε, and ω and the F1-score measures of iForest with the optimal values of τ.

ABIForest iForest

Dataset εopt τopt ωopt F1 τopt F1

Credit 0.25 0.55 0.1 0.911 0.4 0.836

Ionosphere 0.0 0.4 0.1 0.693 0.45 0.684

Arrhythmia 1.0 0.45 − 0.481 0.4 0.479

Mullcross 0.0 0.6 0.1 0.507 0.5 0.516

Http 0.75 0.55 0.1 0.843 0.5 0.720

Pima 0.75 0.45 30 0.553 0.4 0.540

It is interesting to study how the hyperparameter τ impacts the performance of
ABIForest and iForest. The corresponding dependencies are depicted in Figures 11–13.
The results of comparisons were obtained under the conditions of the optimal values of ε
and ω given in Table 7. One can see in Figure 11 that τ differently impacted the performance
of ABIForest and iForest for the Credit dataset, whereas the corresponding dependencies
scarcely differed for the Ionosphere dataset. This peculiarity was caused by the optimal
values of the contamination parameter ε. It can be seen from Table 7 that τopt = 0 for
the Ionosphere dataset. This implies that the attention weights were determined only by
the softmax operations, which weakly impacted the model performance, and their values
were close to 1/T. Moreover, the Ionosphere dataset was one of the smallest datasets,
with a large number of anomalous instances (see Table 1). Therefore, additional learnable
parameters may lead to overfitting. This is a reason for why the optimal hyperparameter ε
did not impact the model performance. It is also interesting to note that the optimal value
of the contamination parameter for the Mullcross dataset was 0 (see Table 7). However,
one can see quite different dependencies in the right panel of Figure 12. This was caused
by the large impact of the softmax operations, whose values were far from 1/T, and they
provided results that were different from those of iForest.

Generally, one can see in Figures 11–13 that the models strongly depended on the
hyperparameters τ and ε. Most of the dependencies illustrated that there was an optimal
value of τ for each case that was close to 0.5 for iForest and for ABIForest. The same can be
said about the contamination parameter ε.

Figure 11. Comparison of iForest and ABIForest with different thresholds τ and with different
contamination parameters ε for the Credit (the left panel) and Ionosphere (the right panel) datasets.
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Figure 12. Comparison of iForest and ABIForest with different thresholds τ and with different con-
tamination parameters ε for the Arrhythmia (the left panel) and Mullcross (the right panel) datasets.

Figure 13. Comparison of iForest and ABIForest with different thresholds τ and with different
contamination parameters ε for the Http (the left panel) and Pima (the right panel) datasets.

In order to study how ABIForest performed in comparison with iForest by changing
the number of instances, we considered the Ionosphere dataset. Table 8 shows the F1-
score measures obtained by iForest and ABIForest for different numbers of instances that
were randomly selected from the dataset under the condition that the ratio of normal
and anomalous instances was not changed. It can be seen from Table 8 that ABIForest
provided better results in comparison with those of iForest. Moreover, the difference
between the F1-score measures increased as n decreased. It is also interesting to note that
iForest outperformed ABIForest by n = 80. This can be explained by the overfitting of
ABIForest due to the training parameters (vector w). Another question is that of how the
number of anomalous instances impacts the performance of ABIForest under the condition
that the number of normal instances is not changed. The corresponding numerical results
are shown in Table 9. It is important to point out that ABIForest outperformed iForest
for all numbers of anomalous instances. Moreover, the difference between the F1-score
measures for ABIForest and iForest increased as nanom decreased.
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Table 8. F1-score measures of the original iForest and ABIForest as functions of the number of
instances n in the Ionosphere dataset under the condition that the ratio of normal and anomalous
instances was not changed.

The Ionosphere Dataset

n 80 100 200 300

iForest 0.488 0.492 0.588 0.677

ABIForest 0.459 0.602 0.674 0.690

Table 9. F1-score measures of the original iForest and ABIForest as functions of the number of
anomalous instances nanom in the Ionosphere dataset under the condition that the number nnorm of
normal instances was not changed.

The Ionosphere Dataset

nanom 10 20 40 50 60

iForest 0.655 0.690 0.694 0.687 0.681

ABIForest 0.692 0.709 0.711 0.695 0.687

6. Concluding Remarks

A new modification of iForest by using an attention mechanism has been proposed.
Let us focus on the advantages and disadvantages of the modification.

Advantages:

1. ABIForest is very simple from the point of view of computation because, in contrast to
an attention-based neural network, the attention weights in ABIForest are trained by
solving a standard quadratic optimization problem. This modification avoids the use
of gradient-based algorithms to compute the optimal learnable attention parameters.

2. ABIForest is a flexible model that can be simply modified. There are several compo-
nents of ABIForest that can be changed to improve the model’s performance. First,
different kernels can be used instead of the Gaussian kernel considered above. Second,
there are statistical models [58] that are different from Huber’s ε-contamination model
that can also be used in ABIForest. Third, the attention weights can be associated
with some subsets of trees, including intersecting subsets. In this case, the number of
trainable parameters can be reduced to avoid overfitting. Fourth, the paths in trees
can be also attended, for example, by assigning attention weights to each branch in
every path. Fifth, multi-head attention can be applied to iForest in order to improve
the model—for example, by changing the hyperparameter ω of the softmax. Sixth,
the distance between the instance x and all instances that fall in the same leaf as x can
be differently defined. The above improvements can be regarded as directions for
further research.

3. The attention model is trained after building the forest. This implies that we do
not need to rebuild iForest to achieve higher accuracy. The hyperparameters are
tuned without rebuilding iForest. Moreover, we can apply various modifications and
extensions of iForest and incorporate the attention mechanism in the same way as in
the original iForest.

4. ABIForest allows us to obtain an interpretation that answers the question of why an
instance is anomalous. This can be done by analyzing the isolation trees with the
largest attention weights.

5. ABIForest deals perfectly with tabular data.
6. It follows from the numerical experiments that ABIForest improves the performance

of iForest for many datasets.
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Disadvantages:

1. The main disadvantage is that ABIForest has three additional hyperparameters: the
contamination parameter ε, the hyperparameter of the softmax operation ω, and the
regularization hyperparameter λ. We do not include the threshold τ, which is also
used in iForest. Additional hyperparameters lead to significant increases in the
validation time.

2. Some additional time is required to solve the optimization problem (14).
3. In contrast to iForest, ABIForest is a supervised model. It requires one to have labels

of data (normal or anomalous) in order to determine the criteria of optimization, that
is, to construct the optimization problem (14).

It is important to point out that small improvements were observed for many real
datasets. However, with these improvements, ABIForest was able to detect additional
anomalous instances that were not detected by the original iForest. Moreover, we applied
the simplest form of an attention mechanism that used a contamination model to simplify
computations. However, when anomalous instances are crucial for a certain application,
the attention mechanism can be significantly improved by introducing additional learn-
able parameters that make the whole algorithm more accurate. The proposed simple
attention-based model can be regarded as a first step in incorporating various forms of
attention mechanisms into iForest. This aims to illustrate that this incorporation can be
a prospective tool in the anomaly detection area of research. In spite of the disadvantages
considered above, ABIForest can be viewed as the first version for incorporating an atten-
tion mechanism into iForest, which showed results that outperformed those of the original.
Future modifications that resolve the above disadvantages are interesting directions for
further research.

We studied only the case of supervised learning. Prior labels provided by the isolation
forest can be used to apply ABIForest. However, this approach has an obstacle, namely, it is
not clear how to process instances that have been incorrectly labeled by the isolation forest.
These instances will contribute to incorrect results of ABIForest. There is another idea of
developing an unsupervised ABIForest. By using an attention mechanism, we can increase
the distance between the threshold for the path length and the real path length of each
instance in each tree. Then, attention weights will increase the distance for a new instance in
order to make a more robust decision about the instance. In this case, the attention weights
will make the anomaly detection procedure more robust. However, this is a task for further
research and for developing modifications of iForest based on an attention mechanism.
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