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Abstract: This paper presents a general recursive formula to estimate the number of labeled graphs
as well as details to evaluate the formula for the following graph properties: number of edges (graph
density), degree sequence, degree distribution, classification mixing, and degree mixing, i.e., the
formula estimates the number of labeled graphs that have given values for graph properties. The
proposed approach can be extended to additional graph properties (e.g., number of triangles) as well
as properties of bipartite graphs. For special settings in which formulas exist from previous research,
simulation studies demonstrate the validity of the proposed approach. In addition, we demonstrate
how our approach can be used to quantify the level of variability in values of a graph property in the
subset of graphs that hold a specified value of a different graph property (or properties) constant.
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1. Introduction

Graph enumeration is a well-established area of combinatorics for counting graphs with
particular features. Examples of such enumeration include determining how many graphs
exist with a given number of vertices or edges, or a given degree sequence. Approaches
for counting graphs fall into two categories based on whether their vertices are labeled or
unlabeled. In the former case, vertices of a graph are labeled in a way that makes them
distinguishable from one another. In the latter, all permutations of vertices are considered to
form the same graph [1]. In social network analysis—our area of interest—vertices are most
often distinguishable from each other; hence, we focus on labeled graph enumeration.

Recently, Iniquez et al. discussed bridging the gap between graph theory and social
network analysis [2]. As they note, connecting these two disciplines may clarify the role of
randomness in modeling dynamical systems, such as those that govern spread of infectious
diseases within a population. Simulation studies that investigate such spread and the
impact of interventions on it often make use of agent-based models (ABMs) [3,4]. An
important component of ABMs is the formulation of interactions among the agents in the
model; these interactions can be represented as a graph. We refer to the collection of such
interactions as contact networks (in keeping with infectious disease transmission literature).
Often ABMs generate the contact network from a stochastic process. Graph enumeration
can aid in interpreting results of simulation studies of processes that operate on graphs (e.g.,
spread of infection) by permitting assessment of the contribution to variation in the results
(e.g., total number infected in unit time) that arises from variation in the generated contact
networks. Higher levels of the latter might be expected to lead to higher levels of the former.
We provide an application of our methods to demonstrate how graph enumeration can
help in quantifying variation in graphs.

Current solutions to graph enumeration problems are individually tailored to par-
ticular properties (such as degree sequence) [5]. These solutions are either closed-form
mathematical expressions or asymptotic formulas. Equations to calculate the number of
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labeled graphs with various characteristics have been reported; these include rooted graphs,
connected graphs, and directed graphs [1]. Considerable research has been devoted to
estimating the number of labeled graphs with a given degree sequence—a property impor-
tant in social network analysis [6–9]. However, there has been little research focusing on
other important properties in social network analysis, such as degree mixing and number
of triangles.

Below, we propose a general approach for counting labeled graphs that applies to
several graph properties, including degree sequence. Furthermore, our approach deviates
from the standard one of developing a closed-form or asymptotic formula. By contrast,
we propose an algorithmic method to the graph enumeration problem. The next section
provides terminology used in the paper. Section 3 presents a general recursive formula to
estimate the number of labeled graphs as well as details to evaluate the formula for the
following graph properties: number of edges (graph density), degree sequence, degree
distribution, classification mixing, and degree mixing. For settings in which formulas exist
from previous research, Section 4 presents simulation studies demonstrating the degree
of similarity between our proposed methods and those that are currently available. In
Section 5, we apply the proposed approach to estimate the number of labeled graphs
associated with different values of degree distribution and degree mixing that arise from
the Barabási–Albert model to investigate the variation across graphs generated with this
model [10]. The paper concludes with a discussion and further research.

2. Terminology

We represent a graph, G = (V, E), as an adjacency matrix with dimensions equal to
the size of set V. Therefore, G has dimensions |V| × |V|, where |V| denotes the size of set
V. Let n and m represent the number of vertices in G, i.e., n = |V| and number of edges,
i.e., m = |E|, respectively. Let {v1, . . . , vn} denote the vertices in set V, which are labeled
(arbitrarily) but enables them to be distinguishable from one another. Let (vi, vj) denote
an edge between vi and vj. Let G[i, j] = 1 indicate that there is an edge between vi and
vj, where vi, vj ∈ {v1, . . . , vn}, while G[i, j] = 0 indicates that there is no edge. Denote the
neighbors of vi as η(vi), i.e., η(vi) = {vj : G[i, j] = 1}. Let Gn be the set of all simple labeled
graphs with n vertices.

Let φ1 denoted an algebraic map from a graph G to its number of edges, i.e., φ1(G) = m.
The degree of vertex vi, denoted as di(G), is the number of edges the vertex has with other
vertices in V; therefore di(G) = ∑j G[i, j]. Let d(G) = (d1(G), . . . , dn(G)) represent the
vector of degrees for nodes in set V, commonly referred to as a degree sequence. The
degree distribution, denoted as D(G), is a vector representing the number of these degrees
over all vertices in set V; the kth entry represents the number of vertices with degree k, i.e.,
Dk(G) = ∑n

i=1 I{di(G)=k}. Let φ2 and φ2a denote the mapping from a graph to its degree
distribution, i.e., φ2(G) = D(G), and degree sequence, i.e., φ2a(G) = d(G), respectively.

Let mi(G) represent a discrete classification for vertex vi in graph G; we denote
the number of distinct classifications as q. Let m(G) = (m1(G), . . . , mn(G)) be a vector
containing the characteristics of all vertices. The classification distribution, denoted as
M(G), is a vector representing the number of individuals with these classification over all
vertices; the kth entry represents the number of vertices with classification k, i.e., Mk(G) =

∑n
i=1 I{mi(G)=k}. Let MM(G) be a q × q symmetric matrix representing the mixing by

classification of graph G; we refer to MM(G) as a classification mixing matrix. The entry
MMk,l(G) is the total number of edges between a vertex with classification k and vertex with
classification l. Let φ3 denote the mapping from a graph to its classification mixing matrix.
Let DMM(G) be a particular mixing matrix where the classification represents vertex
degrees. Therefore, the entry DMMk,l(G) is the total number of edges between vertices of
degree k and l. Let φ4 denote the mapping from a graph to its degree mixing matrix.

Denote the inverse images associated with a map φi as cφi (x) = {G : φi(G) = x, G ∈
Gn}. These inverse images of singleton sets have been referred to as fibers in algebraic
statistics literature [11]. The graph enumeration problem is calculating the size of a fiber,
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denoted as |cφi (x)|, which represents the number of graphs where the graph property
associated with φi equals x; this quantity has been referred to as a volume factor [12]. We
refer to x as a graphical value associated with φi if |cφi (x)| ≥ 1.

3. Methods

This section first presents a general recursive formula to estimate the number of labeled
graphs; details for specific graph properties, e.g., degree distribution, follow afterwards.
Equation (1) provides a recursive formula to estimate the number of graphs, |cφi (xk)|, with
specific value(s), xk, for particular graph properties associated with φi:

|cφi (xk)| = rφi (xk, xk−1) ∗ |cφi (xk−1)|, (1)

where rφi (xk, xk−1) is the ratio between the sizes of fibers cφi (xk) and cφi (xk−1), i.e.,

rφi (xk, xk−1) =
|cφi (xk)|
|cφi (xk−1)|

. (2)

Goyal et al. [13] provides equations to calculate rφ(xi, xi−1) for a range of graph
properties including number of edges, classification mixing, degree distribution, degree
mixing, and number of triangles (controlling for degree mixing) when xi and xi+1 are
specified such that there exists graphs Gi and Gi−1 where:

s1. Gi and Gi−1 differ by the presence or absence of a single edge;
s2. φi(Gi) = xi; and
s3. φi(Gi−1) = xi−1.

To make use of the recursive formula and previous work by Goyal et al. [13], it is
necessary to specify a sequence of values {x0, . . . , xk} such that there exists graphs {G0,. . . ,
Gk} where each consecutive pair satisfies s1− s3. In addition, we need to be able to calculate
|cφi (x0)|. Although there is no constraint on x0, it is often useful to set x0 equal to the specific
value of the graph properties associated with the empty graph; hence, typically, |cφ(x0)| = 1.
Throughout this paper, we follow this approach. In the sections below, we provide details for
calculating |cφi (x)| for when φi and x are associated with a given number of edges, degree
distribution, degree sequence, classification mixing matrix, and degree mixing matrix.

3.1. Graph Enumeration Problem: Calculate the Number of Labeled Graphs of Size n with m Edges

In this section, we calculate |cφ1(m)|. To address this graph enumeration problem, we
specify the following sequence of number of edges for the recursive procedure: x0, . . . , xk =
m where xi = i. Theorem 1 proves that there exists a collection of graphs that is consistent
with this specification of number of edges, i.e., there exists a collection of graphs G0, . . . , Gk
where each consecutive pair satisfies s1− s3 for φ1.

Theorem 1. For a sequence of number of edges: x0, . . . , xk where xi = i and k ≤ (n
2), there exists

a collection of graphs G0, . . . , Gk where each consecutive pair satisfies s1− s3 for φ1 and Gi ∈ Gn
for all i ∈ {0, . . . , k}.

Proof. Let E = {e1, . . . , ek} be a set of distinct edges among vertices {1, . . . , n}; this is
possible because k ≤ (n

2). Let Gi denote the graph formed with the first i edges from
E, i.e., Gi contains edges {e1, . . . , ei}. Based on the definition of Gi, φ1(Gi) = xi = i,
φ1(Gi−1) = xi−1 = i− 1, and Gi and Gi−1 differ by a single edge.

Since x0, . . . , xk satisfies s1− s3, we can use results from Goyal et al. [13] to calculate
rφ1(xi, xi−1) as shown below:

rφ1(xi, xi−1) =
(n

2)− xi−1

xi
. (3)



Algorithms 2023, 16, 16 4 of 14

Using Equation (3) along with the specification of x0, . . . , xk = m as xi = i and
|cφ1(x0)| = 1, it is possible to calculate |cφ1(m)|. Section 4.1.1 provides a numerical example
for calculating |cφ1(m)| when m = 10, while Section 4.1.2 provides a comparison between
the recursive formula and a previously established formula.

3.2. Graph Enumeration Problem: Calculate the Number of Labeled Graphs of Size n with Degree
Distribution D

To calculate |cφ2(D)|, the number of labeled graphs with degree distribution D, using
the recursive formula, we need to specify a sequence of degree distributions, x0, . . . , xk = D.
We specify such a sequence by leveraging the Havel–Hakimi algorithm [14,15]. Let d be
any degree sequence that is consistent with degree distribution D. The Havel–Hakimi
algorithm permits identification of a set of edges, denoted as E, that can be used to construct
a graph with degree sequence d. Algorithm 1 provides a procedure to identify E.

Algorithm 1: Degree distribution

Input: Degree distribution x;
Part 1: Generate degree sequence;
S← ∅;
for j← 0 to n do

S← Union(S, Rep(j, xj));

Part 2: Generate edges;
E← ∅;
for i← 1 to n do

v← Index of maximum elt. in S;
l ← S[v];
S[v]← 0;
v1, . . . , vl ← Indices of the l maximum elts. in S;
for j← 1 to l do

S[vj]← S[vj]− 1;
E← Union(E, (v, vj));

return E;

Let Gi denote the graph formed with the first i edges from E, i.e., contains edges
{e1, . . . , ei}. Let xi denote the degree distribution associated with graph Gi, i.e., xi = D(Gi).
Theorem 2 states that x0, . . . , xk = D satisfies s1− s3.

Theorem 2. Let E denote the collection of edges outputted from Algorithm 1 with a graphical
degree distribution D as input. Let Gi denote the graph formed with the first i edges from E, i.e.,
contains edges {e1, . . . , ei}. Let xi = φ2(Gi). Each consecutive pair in the collection of graphs
G0, . . . , Gk satisfies s1− s3 for φ2.

Proof. The edges in E are distinct. Therefore, by design, the conditions are satisfied.

Let (vl , vj) be the single edge that differs between Gi and Gi−1. Based on results from
Goyal et al. [13]:

rφ(xi, xi−1) =
β1(Gi−1)− α1(Gi−1)

α1(Gi)
, (4)

where
α1(G) = E(DMMdl(G),dj(G)|D(G)); (5)

β1(G) =


Ddl(G)(G)Ddj(G)(G) if dl(G) 6= dj(G)(Ddl(G)(G)

2

)
else,

(6)
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and based on Newman [16],

E(DMMx,y|D) ≈
xDx × yDy

.5(∑z zDz)
×
(

1
2

)I{x=y}
. (7)

Using Equation (4) along with the specification of x0, . . . , xk = D as defined above and
|cφ2(x0)| = 1 (as only the empty graph has degree distribution x0), it is possible to calculate
|cφ2(D)|.

3.3. Graph Enumeration Problem: Calculate the Number of Labeled Graphs of Size n with Degree
Sequence d

The number of graphs with degree sequence d, |cφ2a(d)|, can be computed by dividing
the number of labeled graphs with the degree distribution consistent with d, denoted as
D(d), by the number of permutations of assigning vertices to degrees. Specifically,

|cφ2a(x)| =
|cφ2(D(d))|

∏n
j=0 (

n−∑
j−1
k=0 Dk(d)
Dj(d)

)

. (8)

Section 4.2.1 provides a numerical example for calculating |cφ2a(d)|, while Section 4.2.2
provides a comparison between the presented recursive formula and a formula by Liebe-
nau et al. [9].

3.4. Graph Enumeration Problem: Calculate the Number of Labeled Graphs of Size n with
Classification Mixing Matrix MM

To calculate the number of labeled graphs with mixing matrix MM, we assume
that the classification of all vertices, M, is known and MM is graphical. We specify
x0, . . . , xk = MM as the following for l ≤ m (xi is symmetric):

xil,m
=



0 if i ≤
l−1

∑
a=1

q

∑
b=a

xka,b
+

m−1

∑
b=l

xkl,b

xkl,m
else if i ≥

l−1

∑
a=1

q

∑
b=a

xka,b
+

m

∑
b=l

xkl,b

i−
l−1

∑
a=1

q

∑
b=a

xka,b
+

m−1

∑
b=l

xkl,b
else,

(9)

where q is the number of distinct classifications. Theorem 3 proves that there are graphs
consistent with {x0, . . . , xk} that satisfy s1− s3.

Theorem 3. For a sequence of mixing matrices {x0, . . . , xk} defined by Equation (9), there exists a
collection of graphs G0, . . . , Gk where each consecutive pair satisfies s1− s3 for φ3.

Proof. To show this, let E = {e1, . . . , ek} be a set of distinct edges where the first xk1,1
are

between vertices with classification 1, the next xk1,2
are between vertices with classification

1 and 2, and so on. Let Gi denote the graph formed with the first i edges from E, i.e., Gi
contains edges {e1, . . . , ei}. Based on the definition of Gi, φ3(Gi) = xi, φ3(Gi−1) = xi−1,
and Gi and Gi−1 differ by a single edge.

Let (vl , vj) be the single edge that differs between Gi and Gi−1. Given Theorem 3, rφ3(xi, xi−1)
is the following:

If ml 6= mj

rφ3(xi, xi−1) =
Mml
×Mmj

− xi−1l,j

xil,j

, (10)
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else,

rφ3(xi, xi−1) =
(

Mml
2
)− xi−1l,j

xil,j

, (11)

Using Equations (10) and (11) along with the specification of x0, . . . , xk = MM as
defined above and |cφ3(x0)| = 1, it is possible to calculate |cφ3(MM)|.

3.5. Graph Enumeration Problem: Calculate the Number of Graphs of Size n with Degree Mixing
Matrix DMM

To calculate the number of labeled graphs with degree mixing DMM, we follow a
similar approach as that for degree distribution. Specifically, we use a constructive proof
for assessing whether a degree mixing matrix is graphical to specify a set of edges, E, that
can be used to construct a graph with degree mixing DMM [13]; Algorithm 2 provides a
procedure to construct E.

Algorithm 2: Degree Mixing

Part 1: Generate degree distribution;
for j← 0 to n− 1 do

Dj ← (∑i=0 DMMi,j + DMMj,j)/j;

Part 2: Generate degree sequences;
Sc ← Rep(0, n);
S f ← ∅;
for j← 0 to n do

S f ← Union(S f ,Rep(j,Dj));

Part 3: Edges between vertices with same final degree;
E← ∅;
for j← 0 to n do

P← 0, . . . , 2 ∗ DMMj,j − 1 modulo Dj;

T ← Table(P);
Sj ← ∅;
for i← 0 to n do

if i = j then
Sj ← Union(Sj,T);

else
Sj ← Union(Sj,Rep(0,Di));

Sc ← Sc + Sj;
Ej ← Use degree distribution algorithm with Sj;
E← Union(E,Ej);

Part 4: Edges between vertices with different final degrees;
for j← 1 to n− 1 do

for i← j + 1 to n do
P← 0, . . . , DMMi,j − 1 modulo Dj;

T ← Table(P);
for k← 1 to Dj do

v← Index of min. elt. in Sc s.t. S f = j;
w1, . . . , wTk ← Indices of Tk min. elts. in Sc s.t. S f = i;
for m← 1 to Tk do

Sc[v]← Sc[v] + 1;
Sc[wm]← Sc[wm] + 1;
E← Union(E, (v, wm));

return E;
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Theorem 4. Let E denote the collection of edges output from Algorithm 2 with a graphical degree
mixing matrix DMM as input. Let Gi denote the graph formed with the first i edges from E, i.e.,
contains edges {e1, . . . , ei}. Let xi = φ4(Gi). Each consecutive pair in the collection of graphs
G0, . . . , Gx satisfies s1− s3 for φ4.

Proof. The edges in E are distinct. Therefore, by design, the conditions are satisfied.

Based on the definition of x0 in Theorem 4, |cφ4(x0)| = 1. Let (vl , vj) be the single edge
that differs between Gi and Gi−1. Based on results from Goyal et al. [13]:

rφ4(xi, xi−1) =
[γ1(Gi−1)− α2(Gi−1)]× β0

(l,j)(Gi−1)

DMMdl(Gi),dj(Gi)
(Gi)× β1

(l,j)(Gi)
, (12)

where
α2(G) = DMMdl(G),dj(G)(G); (13)

γ1(G) =


Ddi(G)(G)Ddj(G)(G) if di(G) 6= dj(G)(Ddi(G)(G)

2

)
else;

(14)

and based on concepts from Newman [16], if di(z) 6= dj(z),

βs
(l,j)(G) ≈

Πz(
DMM

′
dl (G),z(G)−I{dj(G)=z} ·s

nz
l−I{dj(G)=z} ·s

)

(
∑z DMM′dl (G),z(G)−I{dj(G)=z} ·s

dl(G)−s
)

×
Πz(

DMM
′
z,dj(G)(G)−I{dl (G)=z} ·s

nz
j−I{dl (G)=z} ·s

)

(
∑z DMM′z,dj(G)(G)−I{dl (G)=z} ·s

dj(G)−s
)

(15)

else,

βs
(l,j)(G) ≈

Πz(
DMM

′
dl (G),z(G)−I{dj(G)=z} ·s

nz
l +nz

j−2I{dj(G)=z} ·s
)

(
∑z DMM′dl (G),z(G)−I{dj(G)=z} ·s

dl(G)+dj(G)−2s
)

. (16)

where DMM
′
a,b(G) = DMMa,b(G) if a 6= b and DMM

′
a,b(G) = 2 ∗ DMMa,b(G) if a = b

and nz
l and nz

j denote the number of vertices that are neighbors of i and j and equal to z.
Using Equation (12) along with the specification of x0, . . . , xk = DMM as defined

above and |cφ4(x0)| = 1, it is possible to calculate |cφ4(DMM)|.

3.6. Additional Graph Properties and Bipartite Graphs

The recursive formula and associated framework we propose can be used to calcu-
late the number of labeled graphs for many additional graph properties. In particular,
Goyal et al. [13] provide equations for rφ(xk, xk−1) for number of triangles (controlling
for degree mixing) as well as jointly specifying classification mixing matrix and degree
distribution. In addition, Goyal et al. [17] enables extending the calculation of rφ(xk, xk−1)
to the setting of bipartite graphs.

4. Results

In this section, we present numerical examples—including validation results for
estimating the number of labeled graphs—for two graph properties: number of edges
(Section 4.1) and degree sequence (Section 4.2). To the author’s knowledge, our paper is the
first to provide formulas for estimating the number of labeled graphs consistent with values
for several graph properties (e.g., degree mixing matrix) described in Section 3; hence, for
these properties, we are not able to compare our approach to any existing approach. In
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the application section (Section 5), we present results for the number of labeled graphs
associated with particular degree distributions and degree mixing matrices using our
presented approach.

4.1. Number of Edges

Although there is a closed-form expression for calculating the number of labeled
graphs of size n with m number of edges, we use Equation (1) for calculation of this graph
property to illustrate our recursive approach for graph enumeration.

4.1.1. Example

To illustrate the use of the recursive formula, we provide a numerical example where
we estimate the number of graphs of size n = 1000 with exactly m = 10 edges; that is, we
calculate |cφ1(m = 10)|. As discussed in Section 3.1, we set x0 = 0, x1 = 1, . . . , xk = 10.
Therefore, based on Equation (1):

|cφ1(xk = 10)| = rφ1(xk = 10, xk−1 = 9) · |cφ1(xk−1 = 9)|. (17)

Based on Equation (3),

rφ1(xk = 10, xk−1 = 9) =
(1000

2 )− 9
10

= 49949.1. (18)

Therefore,
|cφ1(xk = 10)| = 49949.1 · |cφ1(xk−1 = 9)|. (19)

The next step in the procedure is the calculation of |cφ1(xk−1 = 9)| using the following:

|cφ1(xk−1 = 9)| = rφ1(xk−1 = 9, xk−2 = 8) · |cφ1(xk−2 = 8)|. (20)

The procedure ends at x0 = 0. Therefore,

log(|cφ1(xk = 10)|) =
i=10

∑
i=1

log(rφ1(xi, xi−1)) + log(|cφ1(x0 = 0)|). (21)

Table 1 provides the log values for r(xi, xi−1) for i = 1 to 10. Based on these values and
noting that |cφ1(x0 = 0)| = 1, we calculate log(|cφ1(xk = 10)|) = 116.11.

Table 1. Comparison of methods to calculate number of edges.

x log(r(x, x− 1)) log(|cφ1(x)|) log(|cφ1(x)|)
[Equation (1)] [Equation (22)]

0 − 0 0
1 13.12 13.12 13.12
2 12.42 25.55 25.55
3 12.02 37.57 37.57
4 11.74 49.31 49.31
5 11.51 60.82 60.82
6 11.33 72.15 72.15
7 11.18 83.32 83.32
8 11.04 94.37 94.37
9 10.92 105.29 105.29
10 10.82 116.11 116.11
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4.1.2. Comparison

To illustrate the validity of the recursive formula in this setting, we compare the
estimates of the number of graphs of size n with m edges, |cφ1(m = x)|, based on the
proposed recursive formula to those based on the following existing formula [1]:

|cφ1(x)| =
(
(n

2)

x

)
. (22)

Our comparison considers values of x ranging from {1, . . . , 10} for graphs of size n = 1000.
For each value of x ∈ {1, . . . , 10}, Table 1 provides the log values for r(x, x − 1)

and |cφ1(x)| based on Equations (1) and (22). The estimates obtained from the proposed
recursive formula and the known formula are identical—an expected finding given that a
closed-form equation for rφ1(x, x− 1) exists.

Regarding complexity, computing the recursive formula for |cφ1(x)| requires comput-
ing (n

2) as well as x number of subtractions and divisions. Therefore, the complexity of the
recursive formula is O(x) where subtractions and divisions are O(1).

4.2. Degree Sequence

This section illustrates the use of Equation (1) to estimate the number of graphs with a
fixed degree sequence.

4.2.1. Example

To illustrate the use of the recursive formula, we provide a numerical example wherein
we estimate the number of graphs with n = 1000 and fixed degree sequence. In particular,
we estimate the number of 2-regular graphs of size n = 1000; a δ-regular graph is one in
which each vertex has exactly degree δ. Therefore, the degree sequence for a δ-regular
graph is d = {δ, . . . , δ}.

As the number of distinct degree sequences for a degree distribution associated with a
δ-regular graph is one, Equation (8) simplifies to:

|cφ2a(d)| = |cφ2(D(d))|. (23)

Using Algorithm 1, we generate a sequence of edges E, where E specifies a 2-regular
graph of size n. The edge list E contains 1000 edges. A partial list of the edges in E,
denoted as a pair consisting of Vertex 1 and Vertex 2 ∈ {1, . . . , 1000}, are shown in Table 2.
Using the edge list E, we generate a series of graphs, G0, . . . , G1000, where Gi is the graph
that contains the first i edges in E. Next, we generate a series of degree distributions
{x0, . . . , x1000}, where xi = φ2(Gi). Table 3 shows a partial list of the degree distribution
sequences, i.e., xi. For each consecutive entry in the degree distribution sequences, we
can use Equations (4)–(7) to estimate rφ(xi, xi−1). As x0 is only consistent with the empty
graph, |cφ2(x0)| = 1. We estimate the log number of 2-regular graphs as 5907.899; as we
see in the next section an existing formula by Liebenau et al. [9] estimates this as 5907.352.

Table 2. A partial list of the edges in E, denoted as a pair consisting of Vertex 1 and Vertex 2.

Vertex 1 Vertex 2

v1 v2
v1 v3
v4 v5
v4 v6
. . . . . .
v14 v15
v11 v12
v8 v9
v5 v6
v2 v3
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Table 3. A partial list of the degree distribution sequences.

Degree 0 Degree 1 Degree 2 Degree 3

x0 1000 0 0 0
x1 998 2 0 0
x2 997 2 1 0
x3 995 4 1 0
x4 994 4 2 0
. . . . . . . . . . . . . . .

x996 0 8 992 0
x997 0 6 994 0
x998 0 4 996 0
x999 0 2 998 0
x1000 0 0 1000 0

4.2.2. Comparison

As in the previous section, we illustrate the validity of the recursive formula in this
setting by comparing the estimates of |cφ2a(d)| based on the proposed recursive formula to
those that result from an existing formula. In particular, we compare results of the proposed
recursive approach to those resulting from the available formula for estimating the number
of δ-regular graphs of size n = 1000.

Liebenau et al. [9] proved the validity of a general asymptotic formula—conjectured
in 1990—for the number of graphs with given degree sequence. They also provide a
formula that converges to the number of δ-regular graphs as n→ ∞. This formula allows
comparison of |cφ2a(d)|, where d is the degree sequence d = {δ, . . . , δ}, obtained from this
asymptotic formula to those from the proposed recursive formula.

Figure 1 shows log estimates for the number of δ-regular graphs for δ from 1 to 10
for the two approaches. The red bars depict estimates based on the recursive formula
introduced in this paper; the blue bars are estimates based on Liebenau et al. [9]. Each plot
in Figure 1 shows log estimates for graphs of size 1000, 5000, and 10,000. The log estimates
differ by less than 0.01%. To calculate the number of graphs with a given degree sequence
based on the recursive formula, we first make use of the Havel–Hakimi algorithm, which
has a complexity of O(n2) [18]. Next, the ratio presented in Equation (4) must be computed
(∑n

i=1 d)/2 times, where each calculation of the ratio is O(1). Finally, we calculate the
number of degree sequences that are associated with a degree distribution, which has
complexity O(n). Therefore, the complexity of the recursive formula for calculating the
number of graphs of size n with a degree sequence d is O(n2) + O((∑n

i=1 d)/2).
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Figure 1. Comparison: Log estimates the number of δ-regular graphs for degrees from 1 to 10. The
red bars depict estimates based on the recursive formula introduced in this paper; the blue bars are
estimates based on Liebenau et al. [9]. Each plot shows log estimates for graphs of size 1000, 5000,
and 10,000.

5. Application

In this section, we estimate the variation in degree mixing matrices consistent with
degree distributions formed by the Barabási–Albert (BA) model [10]. The BA model can
be initiated with a small seed graph that grows by the addition of new vertices one at a
time. Each new vertex forms a new edge with an existing vertex based on preferential
attachment rules. Vertices and edges, once introduced, are never deleted. The BA model
fixes the number of (undirected) edges connected to each new vertex. The BA model
provides a mechanism to generate graphs with a fat-tailed degree distribution—specifically
a power-law degree distribution—wherein the probability, P(k), that a vertex in the graph
has degree k, decays as a power-law P(k) ∼ k−γ.
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To calculate the variation in degree mixing matrices consistent with degree distri-
butions formed by the BA model, we first estimate the number graphs consistent with a
degree distribution associated with the BA. Second, we estimate the number of graphs
consistent with a degree mixing matrix associated with a degree distribution from the BA
model. Third, we estimate the number of distinct degree mixing matrices associated with a
degree distribution generated from the BA model, which provides a metric for the variation
of graphs generated by the BA model.

For the first step, we generate 100 graphs using the BA model (n = 5000), denoted as
{GBA

1 , . . . , GBA
100}. Figure 2 shows density plots for the log estimates for |cφ2(φ2(GBA

i ))| in
the first panel. The average number of labeled graphs associated with a degree distribution
generated from the BA model was estimated as 1.26e16988 (exponential of the mean of
the first panel in Figure 2). Second, for each graph, we estimate |cφ4(φ4(GBA

i ))|. Figure 2
(second panel) shows density plots for the log estimates for |cφ4(φ4(GBA

i ))|. Figure 2
(third panel) shows a density plot for the log estimates for the number of distinct degree
mixing matrices associated with a degree distribution generated from the BA model. The
exponential of the mean gives an estimate of 4.16e634 distinct degree mixing matrices
associated with a degree distribution generated from the BA model.

Degree Distribution Degree Mixing Unique Mixing Matrices
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Figure 2. Barabási–Albert (BA) model: Density plots for the log estimates for |cφ2 (φ2(GBA
i ))| (first

panel) [degree distribution], |cφ4 (φj(GBA
i ))| (second panel) [degree mixing], and number of distinct

degree mixing matrices associated with a degree distribution generated from the BA model.

6. Discussion

This paper presents a general recursive formula to estimate the number of labeled
graphs with specific values for graph properties of interest. We consider those with par-
ticular relevance for social network analysis: number of edges (graph density), degree
sequence, degree distribution, classification mixing, and degree mixing. The proposed
method can easily be extended to additional graph properties, including number of tri-
angles (controlling for degree mixing), as well as to bipartite graphs; the formulas for
Equation (2) are currently available. The proposed recursive formula differs from other
available approaches for graph enumeration both in its overall approach and in the breadth
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of graph properties that can be considered; it may be profitable to investigate the theoretical
connections between the proposed method and other approaches. Furthermore, graph enu-
meration has the potential to play an important role in statistical network analysis, because
formulating the likelihood of observing a real-world graph with particular properties is
necessary for making principled inferences.

One current area of research addresses the question of how to make use of results
obtained from a study in one population setting to predict what results of a similar study
would have been in a different setting. Causal methodologists refer to such research as
the study of transportability. This notion is related to the idea of generalizability of results
to populations different from the one under study, but true generalizability requires that
two populations be similar in all factors that impact study results in important ways. For
example, if characteristics such as age or sex of recipients of interventions impacted their
efficacy, then generalizability would require that the two populations be similar in these
characteristics. Transportability analyses attempt to adjust for differences in populations
in prediction of quantities such as intervention effects in new populations. In the settings
we consider, adjustment would be required not only for individual characteristics, but
also potentially for graph features that impact intervention effects. For example, if degree
assortativity—a summary measure of the degree mixing matrix—impacts the spread of
disease or the effectiveness of interventions, then this factor would need to be taken into
account when predicting spread or effectiveness in a population different from the one
that was studied. The methods we describe would aid in investigation of transportability
in such settings by facilitating development of ABM-based simulation studies in which
graph properties can be chosen to reflect knowledge about those properties (including their
uncertainty) in the setting of interest. Of course, in many settings detailed information about
potentially important properties may be unavailable. This issue can be addressed using
the methods described above to assess the extent to which the unknown properties might
impact intervention effectiveness (or other quantities of interest) in the new population [19].
Ideally it would be safe to exclude these properties from the graph model; but if not,
an investigator could use the proposed methods to consider plausible ranges of these
properties. Doing so would appropriately increase the uncertainty of the prediction of
intervention effectiveness in the new population.
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