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Abstract: In this paper, we present a novel unsupervised feature selection method termed robust ma-
trix factorization with robust adaptive structure learning (RMFRASL), which can select discriminative
features from a large amount of multimedia data to improve the performance of classification and
clustering tasks. RMFRASL integrates three models (robust matrix factorization, adaptive structure
learning, and structure regularization) into a unified framework. More specifically, a robust matrix
factorization-based feature selection (RMFFS) model is proposed by introducing an indicator matrix
to measure the importance of features, and the L21-norm is adopted as a metric to enhance the
robustness of feature selection. Furthermore, a robust adaptive structure learning (RASL) model
based on the self-representation capability of the samples is designed to discover the geometric
structure relationships of original data. Lastly, a structure regularization (SR) term is designed on
the learned graph structure, which constrains the selected features to preserve the structure infor-
mation in the selected feature space. To solve the objective function of our proposed RMFRASL, an
iterative optimization algorithm is proposed. By comparing our method with some state-of-the-art
unsupervised feature selection approaches on several publicly available databases, the advantage of
the proposed RMFRASL is demonstrated.

Keywords: feature selection; matrix factorization; adaptive structure learning; structure regularization

1. Introduction

In recent years, with the rapid development of the Internet and the popularization
of mobile devices, it has become more and more convenient to analyze, search, transmit,
and process large amounts of data, which can also promote the development of society
and the sharing of resources. However, with the continuous advancement of information
technology, mobile Internet data are becoming enormous [1], inevitably increasing the
amount of data needing to be processed in real life. Although these high-dimensional
data can bring us helpful information, they also cause problems such as data redundancy
and noisy data [2–4]. Dimensionality reduction technology can not only avoid the “curse
of dimensionality” by removing redundant and irrelevant features, but also reduce the
time-consuming nature of data processing and the storage space of data [5]. Therefore, it is
widely used to process large quantities of Internet mobile data [6]. The most commonly
used dimensionality reduction techniques are feature extraction and feature selection.
Feature extraction projects the original high-dimensional data into a low-dimensional
subspace [7–9]. Unlike feature extraction, feature selection selects an optimal subset from
the original feature set. Since feature selection can preserve the semantics of original
features, it is more explicable and physical; thus, it has been widely used in many fields,
e.g., intrusion detection of industrial Internet [10], simulated attack of Internet of things [11],
and computer vision [12].

According to the presence or absence of labels, feature selection methods can be
divided into supervised, semi-supervised, and unsupervised methods. Among them,
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unsupervised feature selection is a significant challenge research because few labeled
data are available in real life [13]. Unsupervised feature selection can be divided into
three categories: (1) filtering methods, (2) wrapping methods, and (3) embedding-based
methods. The filtering method involves performing feature selection on the original dataset
in advance and then training a learner. In other words, the procedure of feature selection is
independent of the learner training [14]. The wrapping method continuously selects feature
subsets from the initial dataset and trains the learner until the optimal feature subset is
selected [15,16]. Embedding automatically performs feature selection during the learning
process. Compared with the filtering and wrapping methods, embedded methods can
significantly reduce the computational cost and achieve good results [17,18].

He et al. [19] proposed an unsupervised feature selection method named Laplacian
score (LS), which selects optimal feature subsets to preserve the local manifold structure
of the original data. However, the LS method ignores the correlation between features.
In order to overcome this disadvantage, Liu et al. [20] proposed an unsupervised feature
selection method with robust neighborhood embedding (RNEFS). RNEFS adopts the
local linear embedding (LLE) algorithm to compute the feature weight matrix. Then, the
L1-norm-based reconstructing error was utilized to suppress the influence of noise and
outliers. Subsequently, Wang et al. [21] proposed an efficient soft label feature selection
(SLFS) method, which first performed soft label learning and then selected features on
the basis of the learned soft labels. However, weight matrices of the above methods were
defined in advance by considering the similarity of features, which may have affected their
performances due to the quality of weight matrices. Therefore, Yuan et al. [22] proposed
an adaptive graph convex non-negative matrix analysis method for unsupervised feature
selection (CNAFS) which embedded self-expression and pseudo-label information into
a joint model. CNAFS can select the most representative features by computing top-
ranked features. Shang et al. [23] proposed a non-negative matrix factorization adaptive
constraint-based feature selection (NNSAFS) method, which introduced a feature map into
matrix factorization to combine manifold learning and feature selection. By combining
feature transformation with adaptive constraints, NNSAFS can significantly improve the
accuracy of feature selection. However, the above methods take Euclidean distance as
the metric. Euclidean distance is sensitive to noise and redundant data, which may cause
the performance to be unstable and not robust. To address this issue, Zhao et al. [24]
proposed a joint adaptive and discriminative unsupervised feature selection method,
which adaptively learns similar graphs while employing irrelevance constraints to enhance
the discriminability of the selected features. Zhu et al. [25] proposed a regularized self-
representation (RSR) model, which efficiently performs feature selection by using the
self-representation ability of features with the L21-norm error to guarantee robustness. Shi
et al. [26] proposed a robust spectral learning framework, which utilized graph embedding
and spectral regression to deal with noise during unsupervised feature selection. Du
et al. [27] proposed a robust unsupervised feature selection based on the matrix factorization
(RUFSM) method, which adopted the L21-norm to improve robustness and preserve the
local manifold structure, so that an optimal feature subset could be found to retain the
manifold structure information. Miao et al. [28] proposed an unsupervised feature selection
method named graph-regularized local linear embedding (GRLLE), which combined linear
embedding and graph regularization into a unified framework while maintaining local
spatial structure. However, the correlation between the selected features was still ignored
in the above methods.

This paper proposes an unsupervised feature selection method called robust matrix
factorization with robust adaptive structure learning (RMFRASL) to solve the above prob-
lems. First, this paper presents a robust matrix factorization-based feature selection model
(RMFFS), which introduces a feature indicator matrix into matrix factorization with an
L21-norm-based error metric. Next, a robust adaptive structure learning (RASL) model
based on self-representation capability is proposed to better describe the local geometry of
the samples, which can reduce redundant and noisy features to learn a more discriminative
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graph structure. Then, to preserve the geometric structure information during the feature
selection, a structure regularization (SR) term is constructed. Finally, the above three mod-
els are combined into a unified framework and shown in Figure 1. In summary, the main
contributions of this paper are as follows:
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Figure 1. The structure flowchart of the proposed RMFRASL method.

(1) In order to overcome the shortcoming of existing methods in that they neglect
the correlation of features, we introduce an indicator matrix into matrix factorization and
design a robust matrix factorization-based feature selection (RMFFS).

(2) To consider the structure information during the process of feature selection, a
structure regularization term is integrated into the RMFFS model.

(3) To solve the disadvantages of the existing methods needing to predefine a graph
structure, a robust adaptive structure learning model based on the self-representation
capability of the sample is proposed, which adopts L21-norm as an error metric rather than
L2-norm to reduce the influence of noise or outliers.

(4) To further improve the performance of feature selection methods, an unfiled
framework is proposed by combining the process of the feature selection and structure
learning.

(5) An iterative optimization algorithm is designed to solve the objective function, and
the convergence of the optimization algorithm is verified from mathematical theory and
numerical experiments.

This paper is organized as follows: Section 2 briefly reviews the related work. The
proposed RMFRASL model is introduced in Section 3. The convergence analysis is provided
in Section 4. The experimental results and analysis are provided in Section 5. Section 6
gives the conclusions and future research works.

2. Related Work
2.1. Notations

Assume that Z = [z1; z2; . . . ; zj . . . ; zn] ∈ Rn×d is a matrix with the size of n × d to
represent high-dimensional original data, where n and d denote the number of data and
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features, and zj = [zj1, zj2, . . . , zjd] ∈ R1×d is a row vector with the size of d to denote the
j-th data of Z. L1-norm, L2-norm, and L21-norm of the matrix Z can be defined as follows:

||Z||1 =
n

∑
i=1

d

∑
j=1
|zij|, (1)

||Z||2 =

√
∑n

i=1 ∑d
j=1 z2

ij, (2)

||Z||2,1 = ∑n
i=1 ||zi||2 = ∑n

i=1

√
∑d

j=1 z2
ij. (3)

According to the above definitions and matrix correlation operations [29], we can
obtain that ||Z||2,1 = tr(ZTUZ), where U ∈ Rn×n denotes the diagonal matrix whose
diagonal elements are uii = 1/(||zi||2). For ease of reading, a description of the commonly
used symbols is listed in Table 1.

Table 1. Description of commonly used symbols.

Symbol Description Symbol Description

Z ∈ Rn×d Sample matrix d Dimension of sample
S ∈ Rd×k Indicator matrix n Number of samples

A ∈ Rk×d Low-dimensional
feature matrix k Number of selected

features
W ∈ Rn×n Weight matrix || · ||1 L1-norm
I ∈ Rk×k Identity matrix || · ||2 L2-norm

U ∈ Rn×n Diagonal matrix || · ||2,1 L21-norm

C ∈ Rd×d Diagonal matrix tr(·) Matrix trace
operation

2.2. Introduction of Indicator Matrix

The indicator matrix S = [S1, S2, . . . , Sk] ∈ Rd×k is a binary matrix, where Si denotes a
column vector with only one element value equal to 1. To understand the indicator matrix
S for feature selection more clearly, we establish an example. First, we assume that the data
matrix contains four samples, and that each sample has five features; the data matrix can
be described as follows:

f1 f2 f3 f4 f5

X =

x1
x2
x3
x4


0.9 0.1 0.7 1.0 0.2
0.7 0.4 0.5 0.3 0.4
0.3 0.8 0.4 0.6 0.1
1.0 0.6 0.6 0.8 1.0

 . (4)

Then, supposing that three features are selected (i.e., f 1, f 4 and f 5), we can obtain the
selected feature subset as follows:

f1 f4 f5

X′ =

x1
x2
x3
x4


0.9 1.0 0.2
0.7 0.3 0.4
0.3 0.6 0.1
1.0 0.8 1.0

 . (5)
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Meanwhile, the indicator matrix S can be assumed as follows:

1 4 5

S =

1
2
3
4
5


1 0 0
0 0 0
0 0 0
0 1 0
0 0 1

 . (6)

Thus, we can obtain

X S = X′
0.9 0.1 0.7 1.0 0.2
0.7 0.4 0.5 0.3 0.4
0.3 0.8 0.4 0.6 0.1
1.0 0.6 0.6 0.8 1.0




1 0 0
0 0 0
0 0 0
0 1 0
0 0 1

 =


0.9 1.0 0.2
0.7 0.3 0.4
0.3 0.6 0.1
1.0 0.8 1.0

 . (7)

Equation (7) can describe the process of feature selection using the indicator matrix S.
Finally, we can also obtain STS = I3×3 as follows:

ST S = I 1 0 0 0 0
0 0 0 1 0
0 0 0 0 1




1 0 0
0 0 0
0 0 0
0 1 0
0 0 1

 =

 1 0 0
0 1 0
0 0 1

 . (8)

3. Robust Matrix Factorization with Robust Adaptive Structure Learning

In this section, a robust matrix factorization with robust adaptive structure learning
(RMFRASL) model for unsupervised feature selection is developed to deal with multimedia
data collected from Internet of things. Then, an iterative optimization method is designed
to solve the objective function of the proposed method. Lastly, a description and the time
complexity of the proposed algorithm are provided.

3.1. The Proposed RMFRASL Model

The RMFRASL effectively integrates three models, i.e., robust matrix factorization-
based feature selection (RMFFS), robust adaptive structure learning (RASL), and structure
regularization (SR), into a unified framework.

3.1.1. RMFFS Model

In order to take the correlation of features into consideration, the self-representation
of data or features is widely used for feature representation learning [30]. Therefore, a new
feature selection model named robust matrix factorization-based feature selection (RMFFS)
is proposed. In the proposed RMFFS model, we first utilize an indicator matrix to find
a suitable subset of features for capturing the most critical information to represent the
original features approximately. Then, unlike the previous methods, the L21-norm metric is
imposed on the reconstruction errors to improve the effectiveness and enhance robustness
of feature selection. As a result, the objective function of the RMFFS model is defined
as follows:

minφ(Z, A, S) = ||Z− ZSA||2,1
s.t. S ≥ 0, A ≥ 0, STS = Ik×k

, (9)

where Ik×k is an identity matrix with the size of k, A ∈ Rk×d is a coefficient matrix which
maps the original features from high-dimensional space into a new low-dimensional space,
S = [s1, s2, . . . , sk] ∈ Rd×k is defined as a feature weight matrix, and k is the number of
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selected features. The constraint conditions of STS = Ik×k and S ≥ 0 are to force each
element of matrix S to be either one or zero and at most a nonzero element in any row or
column during the iterative update process. Thus, the matrix S can be considered as an
indicator matrix for the selected features under these constraint conditions.

3.1.2. RASL Model

Although the proposed RMFFS model can implement feature selection, it does not
sufficiently consider the local structure relationships among original data, which may lead
to unsatisfactory performance. Therefore, a robust structure learning method based on the
self-representation capability of the original data is proposed, which can learn non-negative
representation coefficients to indicate the structural relationships among original data.
In order to learn more discriminative non-negative representation coefficients, an error
metric function with L21-norm is imposed. Hence, the objective function of RASL is defined
as follows:

min ∂(Z, W) = ||ZT − ZTW||2,1
s.t. W ≥ 0

, (10)

where W = [w1, w2, . . . , wn] ∈ Rn×n denotes the non-negative representation coefficient
matrix. The element of matrix W with a larger value means that the correlation between
two data is more remarkable.

3.1.3. SR Model

Preserving the structure of selected feature space is very important for feature learn-
ing [31]. Thus, a structure regularization (SR) term is designed, which can be defined
as follows:

minε(Z, S, W) = ∑n
i,j=1 ||yi − yj||22wij = tr(YDYT)− tr(YWYT)

= tr(YLYT) = tr(STZT LZS)
s.t. S ≥ 0, W ≥ 0

, (11)

where yi = STzT
i denotes the selected feature of sample zi, L is a Laplacian matrix defined

by L = D−W [32], and D is a diagonal matrix with elements of dii = ∑n
j=1 wij.

3.1.4. The Framework of RMFRASL

The three modules (feature selection, robust structure learning, and structure regu-
larization) are integrated into a unified framework to obtain the final objective function of
RMFRASL as follows:

minψ(Z, S, A, W) = φ(Z, A, S) + α ε(Z, S, W) + β ∂(Z, W)
= ||Z− ZSA||2,1 + α tr(STZT LZS) + β||ZT − ZTW||2,1
s.t. S ≥ 0, A ≥ 0, W ≥ 0, STS = Ik×k

, (12)

where α > 0 and β > 0 are tradeoff parameters that adjust the importance of each term in
the model.

3.2. Model Optimization

The proposed model has three variables (S, A, and W) to be solved. The objective
function of Equation (12) is not a convex optimization problem for all variables [32].
Therefore, we cannot obtain the globally optimal solution for the objective function. In
order to solve the above problem, we need to design an iterative optimization algorithm.
Specifically, we can optimize one of the variables while fixing the remainder, with alternate
iterative updates until the objective function converges.
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3.2.1. Fix A and W; Update S

For Equation (12), removing the irrelevant term with S yields the following objec-
tive function:

ϕ(S) = ||Z− ZSA||2,1 + α tr(STZT LZS)
s.t. S ≥ 0, STS = Ik×k

. (13)

However, the constraint conditions in Equation (13) make it difficult to optimize;
hence, we can alleviate the constraint condition STS = Ik×k to ||STS− Ik×k||22 as a penalty
term. Thus, Equation (13) is transformed into the following objective function:

ϕ(S) = ||Z− ZSA||2,1 + α tr(STZT LZS) + λ||STS− I||22
s.t. S ≥ 0

, (14)

where the parameter λ > 0 is used to constrain the orthogonality of vector S.
Let M = ZT LZ; according to the above definitions and matrix correlation opera-

tions [29], Equation (14) can be simplified to Equation (15) through a series of algebraic
operations:

ϕ(S) = ||Z− ZSA||2,1 + α tr(ST MS) + λtr((STS− I)(STS− I)T
)

= tr((Z− ZSA)TU(Z− ZSA)) + α tr(ST MS) + λtr((STS− I)(STS− I))
= tr((ZT − ATSTZT)U(Z− ZSA)) + α tr(ST MS) + λtr(STSSTS− 2STS)
= tr(ZTUZ− 2ATSTZTUZ + ATSTZTUZSA + αST MS + λSTSSTS− 2λSTS)
s .t. S ≥ 0

, (15)

where U ∈ Rn×n denotes the diagonal matrix defined as follows:

Uii =
1

||(Z− ZSA)i||2 + ε
, (16)

where ε is a small constant.
To solve Equation (15), a Lagrange multiplier Λ with non-negative constraint S ≥ 0 is

introduced, and the Lagrangian function ϕ(S, Λ) can be defined as follows:

ϕ
(
S, Λ) =tr(ZTUZ− 2ATSTZTUZ + ATSTZTUZSA + αST MS)

+λtr(STSSTS− 2STS) + tr(ΛS)
s .t. S ≥ 0

. (17)

The partial derivative of Equation (17) with respect to matrix S can be obtained
as follows:

∂ϕ(S, Λ)

∂S
= −2ZTUZAT + 2ZTUZSAAT + 2αMS + 4λSSTS− 4λS + Λ. (18)

Equation (19) can be obtained according to the KKT condition (ΛijSij = 0) [33].

(−2ZTUZAT + 2ZTUZSAAT + 2αMS + 4λSSTS− 4λS + Λ)Sij ij = 0. (19)

The update formula of the matrix S is as follows:

S = S� ZTUZAT + αM−S + 2λS
ZTUZSAAT + αM+S + 2λSSTS

, (20)

where M = M+ −M−, M+ = |M|+M
2 , and M− = |M|−M

2 .
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3.2.2. Fix S and W; Update A

For Equation (12), removing the irrelevant term with A yields the following objective
function:

ϕ(A) = ||Z− ZSA||2,1
s .t. A ≥ 0

. (21)

Through a series of algebraic formulas [29], Equation (21) can be simplified as

ϕ
(

A) =||Z− ZSA||2,1 = tr((Z− ZSA)TU(Z− ZSA))

= tr(ZTUZ− 2ATSTZTUZ + ATSTZTUZSA)
s .t. A ≥ 0

. (22)

Likewise, the Lagrangian multiplier v with a non-negative constraint A ≥ 0 is in-
troduced to solve Equation (22), and the Lagrangian function ϕ(A, v) can be expressed
as follows:

ϕ
(

A, v) =tr(ZTUZ− 2ATSTZTUZ + ATSTZTUZSA) + tr(vA). (23)

The partial derivative of Equation (23) with respect to A is defined as follows:

∂ϕ(A, v)

∂A
= −2STZTUZ + 2STZTUZSA + v = 0. (24)

As the complementary relaxation of the KKT condition leads to vij Aij = 0, we can get
Equation (25).

(−2STZTUZ + 2STZTUZSA + v)Aij ij = 0. (25)

According to Equation (25), the update rule of the matrix A is as follows:

A = A� STZTUZ
STZTUZSA

. (26)

3.2.3. Fix S and A; Update W

For Equation (12), the following objective function can be obtained by removing the
irrelevant term with W:

ϕ(W) = β||ZT − ZTW||2,1 + α∑n
i,j=1 ||yi − yj||22wij

= β||ZT − ZTW||2,1 + α∑n
i,j=1 DistYijwij

, (27)

where DistY = [DistYij] ∈ Rn×n, and DistYij = ||yi − yj||22.
Through a series of algebraic formulas [29], Equation (27) can be simplified as

ϕ(W) = ||ZT − ZTW||2,1 + µ∑n
i,j=1 DistYijwij

= tr((ZT − ZTW)
TC(ZT − ZTW)) + µ tr(DistYW)

= tr(ZCZT − 2WTZCZT + WTZCZTW + µDistYW)
s .t. W ≥ 0

, (28)

where µ = α/β (β 6= 0) and C ∈ Rd×d is a diagonal matrix defined as follows:

Cii =
1

||(ZT − ZTW)
i||2 + ε

. (29)

To solve Equation (28), a Lagrange multiplier τ for the non-negative constraint W ≥ 0
is introduced, and the Lagrangian function ϕ(W, τ) is defined as follows:

ϕ
(

W, τ) =tr(ZCZT − 2WTZCZT + WTZCZTW + µDistYW) + tr(τW). (30)
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The partial derivative Equation (30) with respect to W can be shown as follows:

∂ϕ(W, τ)

∂W
= −2ZCZT + 2ZCZTW + µDistY + τ = 0. (31)

As the complementary relaxation of the KKT condition leads to τijWij = 0, we can
obtain Equation (32).

(−2ZCZT + 2ZCZTW + µDistY + τ)Wij ij = 0. (32)

The update formula for the matrix W is as follows:

W = W � 2ZCZT

2ZCZTW + µDistY
. (33)

3.3. Algorithm Description

The pseudo code of RMFRASL is listed in Algorithm 1, and a flowchart of the proposed
method is shown Figure 2. Moreover, the termination condition of the algorithm is that
the change in objective function values between two successive iterations is less than a
threshold or has reached the predefined maximum number of iterations in our work.

Algorithm 1 RMFRASL algorithm

Input: The matrix of sample dataset Z = [z1; z2; . . . ; zn] ∈ Rn×d, parameters α > 0, β > 0, λ > 0
1: Initialization: matrices S0, A0, and W0 are initial nonnegative matrices, t = 0
2: Calculate matrices Ut, and Ct according to Equations (16) and (29),
3: Repeat
4: Update St according to Equation (20)
5: Update At according to Equation (26)
6: Update Wt according to Equation (33)
7: Update Ut and Ct according to Equations (16) and (29)
8: Update t = t + 1
9: Until the objective function is convergent.

Output: Index matrix S, coefficient matrix A, and weight matrix W
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algorithm is that the change in objective function values between two successive 
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Algorithm 1 RMFRASL algorithm 

Input: The matrix of sample dataset 
1 2

[ ; ; ...; ] n d

n
Z z z z R   , parameters α > 0, β > 0, 

λ > 0 

1: Initialization: matrices S0, A0, and W0 are initial nonnegative matrices, t = 0 

2: Calculate matrices Ut, and Ct according to Equations (16) and (29),  

3: Repeat 

4:   Update St according to Equation (20)  

5:   Update At according to Equation (26)  

6:   Update Wt according to Equation (33)  

7:   Update Ut and Ct according to Equations (16) and (29) 

8:   Update t = t + 1 

9: Until the objective function is convergent. 

Output: Index matrix S, coefficient matrix A, and weight matrix W 

 

Figure 2. The flowchart of the proposed RMFRASL method. 

Input training sample Z 
and parameters

Initialize matrices S, A, W
and t=1

Compute matrices U and C 

Update matrices S, A and W

Convergence

Output matrices S, A and W

t=t+1

Compute matrices U and C 

Figure 2. The flowchart of the proposed RMFRASL method.
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3.4. Computational Complexity Analysis

The computational complexity can be calculated in light of the above flowchart of
the proposed RMFRASL algorithm. First, the computational complexities of all variables
in one iteration are shown in Table 2, where d, n, and k represent the dimensions of the
original sample, the number of samples, and the number of selected features, respectively.
Since k << d and k << n, we only need to compare the size of d and n. (1) If d > n, S, A, and
W need O(nd2), O(kdn), and O(nd2), respectively. Then, the computational complexity of
the RMFRASL algorithm is O(t × nd2 ) where t is the number of iterations. (2) If n≥ d, S, A,
and W need O(dn2), O(kn2), and O(dn2), respectively. Then, the computational complexity
of the RMFRASL algorithm is O(t × dn2). Finally, we can conclude that the computational
complexity of the RMFRASL algorithm is O(t ×max (dn2, nd2) + dn2).

Table 2. Computational complexity of each variable.

Matrix Complexity Matrix Complexity

S O(max (dn2, nd2)) U O(dn2)
A O(max (kn2, kdn)) C O(kn2)
W O(max (nd2, dn2))

Meanwhile, the running time of the proposed RMFRASL and other compared feature
selection methods was also tested when the number of experimental iterations was set
to 10. From the experimental results listed in Table 3, the running time of the proposed
method was lower than that of the other compared methods.

Table 3. Running time (s) of each method on different databases.

Method AR CMU PIE Extended YaleB ORL COIL20

RNEFS [20] 11.57 15.43 13.89 1.698 4.187
USFS [21] 36.12 30.09 18.27 18.29 8.524

CNAFS [22] 11.81 14.19 11.48 4.292 5.382
NNSAFS [23] 34.83 52.95 43.70 4.261 8.775

RSR [25] 3.607 4.920 4.377 1.553 1.805
SPNFSR [34] 15.21 18.24 16.24 7.291 8.924
RMFRASL 2.250 2.687 2.493 1.190 1.504

4. Convergence Analysis

In order to analyze the convergence of the proposed RMFRASL method, we firstly
establish some theorems and definitions below.

Theorem 1. For variables S, A, and W, the value of Equation (12) is nonincreasing under the
update rules of Equations (20), (26) and (33).

We can refer to the convergence analysis of NMF to solve the above theorem. Therefore,
some auxiliary functions are introduced below.

Definition 1. φ(m, m′)is an auxiliary function of ϕ(m) if φ(m, m′) and ϕ(m) satisfy the follow-
ing conditions [35]:

φ(m, m′) ≥ ϕ(m)
φ(m, m) = ϕ(m)

. (34)

Lemma 1. If φ(m, m′) is an auxiliary function of ϕ(m), then it is nonincreasing under the
following conditions:

mt+1 = argmin
m

φ(m, mt). (35)
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Proof.
ϕ(mt+1) ≤ φ(mt+1, mt) ≤ φ(mt, mt) = ϕ(mt). (36)

In order to apply Lemma 1 to prove Theorem 1, we need to find suitable auxiliary functions
for the variables S, A, and W. Therefore, the functions, first-order derivatives, and second-
order derivatives of the three variables are specified. �

ϕij(Sij) = [ZTUZ− 2ATSTZTUZ + ATSTZTUZSA + αSTZT LZS + λSTSSTS− 2λSTS]ij, (37)

ϕ′ ij(Sij) = 2[−ZTUZAT + ZTUZSAAT + αZT LZS + 2λSSTS− 2λS]ij, (38)

ϕ′′ ij(Sij) = 2[ZTUZ]ii[AAT ]jj + 2α[M]ij + 4λ[SST ]ij, (39)

ϕij(Aij) = [ZTUZ− 2ATSTZTUZ + ATSTZTUZSA]ij, (40)

ϕ′ ij(Aij) = 2[−STZTUZ + STZTUZSA]ij, (41)

ϕ′′ ij(Aij) = 2[STZTUZST ]ii, (42)

ϕij(Wij) = [ZCZT − 2WTZCZT + WTZCZTW + µDistYW]ij, (43)

ϕ′ ij(Wij) = [−2ZCZT + 2ZCZTW + µDistY]ij, (44)

ϕ′′ ij(Wij) = 2[ZCZT ]ii, (45)

where ϕ′ ij(·) and ϕ′′ ij(·) denote the first-order and second-order derivatives, respectively.
Then, we can obtain the three lemmas described below.

Lemma 2. The function

φ(Sij, S(t)
ij ) = ϕij(Sij, S(t)

ij ) + ϕ′ ij(Sij)(Sij − S(t)
ij )

+
[ZTUZSAAT+αM+S+2λSSTS]ij

S(t)
ij

(Sij − S(t)
ij )

2 (46)

is an auxiliary function of ϕ(Sij).

Lemma 3. The function

φ(Aij, A(t)
ij ) = ϕij(Aij, A(t)

ij ) + ϕ′ ij(Aij)(Aij − A(t)
ij ) +

[STZTUZSA]ij

A(t)
ij

(Aij − A(t)
ij )

2
(47)

is an auxiliary function of ϕ(Aij).

Lemma 4. The function

φ(Wij, W(t)
ij ) = ϕij(Wij, W(t)

ij ) + ϕ′ ij(Wij)(Wij −W(t)
ij )

+
[2ZCZTW+µDistY]ij

W(t)
ij

(Wij −W(t)
ij )

2 (48)

is an auxiliary function of ϕ(Wij).

Next, we can prove Lemma 2 using the steps below.

Proof the Lemma 2. The Taylor series expansion of ϕ(Sij) can be given as follows:
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ϕij(Sij) = ϕij(S
(t)
ij ) + ϕ′ ij(Sij)(Sij − S(t)

ij ) + 1
2 ϕ′′ ij(Sij)(Sij − S(t)

ij )
2

= ϕij(S
(t)
ij ) + ϕ′ ij(Sij)(Sij − S(t)

ij ) + (2[ZTUZ]ii[AAT ]jj + 2α[M]ij + 4λ[SST ]ij)(Sij − S(t)
ij )

2 . (49)

�

We can obtain the following inequalities through a series of calculations of the matrix:

[ZTUZSAAT ]ij =
k
∑

l=1
[ZTUZSt]il [AAT ]l j ≥ [ZTUZSt]ij[AAT ]jj

≥
(

d
∑

l=1
[ZTUZ]ilS

t
l j

)
[AAT ]jj ≥ [ZTUZ]iiS

t
ij[AAT ]jj = [ZTUZ]ii[AAT ]jjS

t
ij

, (50)

[M+S]ij =
d

∑
l=1

[M+]ilS
t
l j ≥ M+

ij St
ij ≥ [M+

ij −M−ij ]S
t
ij = [M]ijS

t
ij, (51)

[SSTS]ij =
k

∑
l=1

[SST ]ilS
t
l j ≥ [SST ]iiS

t
ij. (52)

To sum up, we can obtain the inequality

[ZTUZSAAT + αM+S + 2λSSTS]ij

S(t)
ij

≥ [ZTUZSt]ij[AAT ]jj + α[M]ij + 2λ[SST ]ii. (53)

Therefore, we can obtain Equation (54).

φ(Sij, S(t)
ij ) ≥ ϕij(Sij). (54)

Similarly, we can prove Lemma 3 and Lemma 4. Finally, according to Lemma 1, we
can obtain the update scheme of variables S, A, and W as follows:

St+1
ij = argmin

Sij

φ(Sij, St
ij)

= St
ij − St

ij
ϕ′(Sij)

2[ZTUZSAAT+αM+S+2λSSTS]ij
= St

ij
[ZTUZAT+αM−S+2λS]ij

[ZTUZSAAT+αM+S+2λSSTS]ij

, (55)

At+1
ij = argmin

Aij

ϕ(Aij, At
ij) = At

ij − At
ij

ϕ′ ij(Aij)

2[STZTUZSA]ij
= At

ij

[STZTUZ]ij
[STZTUZSA]ij

, (56)

Wt+1
ij = argmin

Wij

ϕ(Wij, Wt
ij) = Wt

ij −Wt
ij

ϕ′ ij(Wij)

2[2ZCZTW + µDistY]ij
= Wt

ij

[2ZCZT ]ij

[2ZCZTW + µDistY]ij
. (57)

In summary, Theorem 1 is proven.
Next, the convergence of the proposed iterative procedure in Algorithm 1 is proven.
For any nonzero vectors p ∈ Rm and q ∈ Rm, the following inequality can be obtained:

||p||2 −
||p||22
2||q||2

≤ ||q||2 −
||q||22

2||q||2
. (58)

More detailed proof of Equation (58) is similar to that in [36].

Theorem 2. According to the iterative update approach depicted in Algorithm 1, the objective
function value in Equation (12) monotonically decreases in each iteration until it converges to the
global optimum [36].
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Proof. First, matrices Ut and Ct are denoted as the t-th iteration of matrices U and C.
Then, when fixing Ut and Ct, matrices St+1, At+1, and Wt+1 can be updated by solving the
following inequality:

Φ(St+1, At+1, Wt+1, Ut, Ct) ≤ Φ(St, At, Wt, Ut, Ct). (59)

�

The above inequality can be changed to{
tr((Z− ZS(t+1)A(t+1))

T
U(t)(Z− ZS(t+1)A(t+1))) + α tr(S(t+1)T

ZT LZS(t+1))

+βtr((ZT − ZTW(t+1))
T

C(t)(ZT − ZTW(t+1)))

≤
{

tr((Z− ZS(t)A(t))
T

U(t)(Z− ZS(t)A(t))) + α tr(S(t)T
ZT LZS(t))

+βtr((ZT − ZTW(t))
T

C(t)(ZT − ZTW(t)))

. (60)

On the basis of the definitions of matrices Ut and Ct, the following inequalities can be
obtained:{

∑
i

||(Z−ZS(t+1)A(t+1))
i ||22

2||(Z−ZS(t)A(t))
i ||2

+ αtr(S(t+1)T
ZT LZS(t+1)) + β∑

i

||(ZT−ZTW(t+1))
i ||22

2||(ZT−ZTW(t))
i ||2

≤
{

∑
i

||(Z−ZS(t)A(t))
i ||22

2||(Z−ZS(t)A(t))
i ||2

+ αtr(S(t)T
ZT LZS(t)) + β∑

i

||(ZT−ZTW(t))
i ||22

2||(ZT−ZTW(t))
i ||2

, (61)


∑
i
||(Z− ZS(t+1)A(t+1))

i||2 − (∑
i
||(Z− ZS(t+1)A(t+1))

i||2 −∑
i

||(Z−ZS(t+1)A(t+1))
i ||22

2||(Z−ZS(t)A(t))
i ||2

)

+αtr(S(t+1)T
ZT LZS(t+1))

+β∑
i
||(ZT − ZTW(t+1))

i||2 − β(∑
i
||(ZT − ZTW(t+1))

i||2 −∑
i

||(ZT−ZTW(t+1))
i ||22

2||(ZT−ZTW(t))
i ||2

)

≤


∑
i
||(Z− ZS(t)A(t))

i||2 − (∑
i
||(Z− ZS(t)A(t))

i||2 −∑
i

||(Z−ZS(t)A(t))
i ||22

2||(Z−ZS(t)A(t))
i ||2

)

+αtr(S(t)T
ZT LZS(t))

+β∑
i
||(ZT − ZTW(t))

i||2 − β(∑
i
||(ZT − ZTW(t))

i||2 −∑
i

||(ZT−ZTW(t))
i ||22

2||(ZT−ZTW(t))
i ||2

)

. (62)

According to Equation (58), the following inequalities can be obtained:

∑
i
||(Z− ZS(t+1)A(t+1))

i||2 −∑
i

||(Z−ZS(t+1)A(t+1))
i ||22

2||(Z−ZS(t)A(t))
i ||2

≤ ∑
i
||(Z− ZS(t)A(t))

i||2 −∑
i

||(Z−ZS(t)A(t))
i ||22

2||(Z−ZS(t)A(t))
i ||2

, (63)

∑
i
||(ZT − ZTW(t+1))

i||2 −∑
i

||(ZT−ZTW(t+1))
i ||22

2||(ZT−ZTW(t))
i ||2

≤ ∑
i
||(ZT − ZTW(t))

i||2 −∑
i

||(ZT−ZTW(t))
i ||22

2||(ZT−ZTW(t))
i ||2

. (64)

Combining Equation (61) to Equation (64), the following inequality can be obtained:{
∑
i
||(Z− ZS(t+1)A(t+1))

i||2 + αtr(S(t+1)T
ZT LZS(t+1)) + β∑

i
||(ZT − ZTW(t+1))

i||2

≤
{

∑
i
||(Z− ZS(t)A(t))

i||2 + αtr(S(t)T
ZT LZS(t)) + β∑

i
||(ZT − ZTW(t))

i||2
. (65)

From Equation (65), we can clearly see that Equation (12) is monotonically decreasing
during iterations and has a lower bound. Therefore, the proposed iterative optimization
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algorithm will converge. Moreover, numerical experiments verified that the objective
function values of our proposed method tend to converge.

5. Experiments and Analysis

In this section, we compare the proposed RMFRASL method with some advanced
unsupervised feature selection methods in recent years for classification and clustering
tasks, mainly consisting of LSFS [19], RNEFS [20], USFS [21], CNAFS [22], NNSAFS [23],
RSR [25], and SPNFSR [34].

5.1. Description of Compared Methods

RNEFS [20] is a robust neighborhood embedding unsupervised feature selection
method that employs the locally linear embedding (LLE) to compute the feature weight
matrix and minimizes the reconstruction error using the L1-norm. USFS [21] guides feature
selection by combining the feature selection matrix with soft labels learned in the low-
dimensional subspace. CNAFS [22] combines adaptive graph learning with pseudo-label
matrices and constructs two different manifold regularizations with pseudo-label and
projection matrices. NNSAFS [23] uses residual terms from sparse regression and introduces
feature graphs and maximum entropy theory to construct the manifold structure. RSR [25]
uses a linear combination to represent the correlation among each feature. Meanwhile, it
also imposes an L21-norm on the loss function and weight matrix to select representative
features. SPNFSR [34] constructs a low-rank graph to maintain the global and local structure
of data and employs the L21-norm to constrain the representation coefficients for feature
selection. The summarization of the methods is shown in Table 4.

Table 4. The summarization of compared methods in this paper.

Method Objective Function L21-Norm

LSFS [19]
(2005)

∑ij (zri−zri)
2Wij

Var(zr)
No

RNEFS [20]
(2020) ||(In − AT)ZS||1 + α

4 ||S
TS− Im||22 + tr(βST) No

USFS [21]
(2021)

∑n
i=1 ∑c

j=1 ||WTzi − oj||22yij + α||ZS−Y||2F + γ||S||2,1 +

β||Y||22
No

CNAFS [22]
(2020)

{
||Z− ZSA||22 + ||Cn(ZTW −Yp)||22 + λ||W||2,1 + αtr(YT

P LYp)

+β∑ij gij log gij + γtr(ALAT) + εtr(ATQA)
No

NNSAFS [23]
(2022)

{
||ZTW −Y||22 + α1||W||1 + α2Tr(WT LWW)
+2λ((Tr(YT LSY) + β∑ij gij log gij)

No

RSR [24]
(2015) ||Z− ZS||2,1 + λ||S||2,1 Yes

SPNFSR [34]
(2017) ||Z− ZS||2,1 + αtr(ST MS) + β||S||2,1 Yes

RMFRASL
(2022) ||Z− ZSA||2,1 + α tr(ST ZT LZS) + β||ZT − ZTW||2,1 Yes

5.2. Description of Experimental Data

In this experiment, we performed classification and clustering tasks [37] on five
publicly available datasets, including four publicly available face datasets (AR, CMU PIE,
Extended YaleB, and ORL) and one object dataset (COIL20). The specific details of the five
datasets are shown in Table 5, where Tr and Te represent the number of training samples
and testing samples selected from each class.
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Table 5. Details of five databases.

Database Image Size Number of Classes Each Class Size Tr Te

AR 32 × 32 100 14 7 7
CMU PIE 32 × 32 68 24 12 12

Extended YaleB 32 × 32 38 64 20 44
ORL 32 × 32 40 10 7 3

COIL20 32 × 32 20 72 20 52

The AR [38] database consists of 4000 images corresponding to face images of 70 males
and 56 females. The photos have different facial expressions, lighting conditions, and
occlusions. There are 26 images for each object. Some examples of the AR database are
shown in Figure 3a.

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 25 
 

CMU PIE 32 × 32 68 24 12 12 

Extended YaleB 32 × 32 38 64 20 44 

ORL 32 × 32 40 10 7 3 

COIL20 32 × 32 20 72 20 52 

The AR [38] database consists of 4000 images corresponding to face images of 70 

males and 56 females. The photos have different facial expressions, lighting conditions, 

and occlusions. There are 26 images for each object. Some examples of the AR database 

are shown in Figure 3a. 

The CMU PIE [39] database consists of 41,368 multi-pose, illumination, and 

expression face images, including face images with different pose conditions, 

illumination conditions, and expressions for each object. Some instances of the CMU PIE 

database are shown in Figure 3b. 

The Extended YaleB [40] database consists of 2414 images containing 38 objects 

with 64 photographs taken for each object, with strict control over pose, lighting, and the 

shooting angle. Some face images of the Extended YaleB database are shown in Figure 

3c. 

The ORL [41] dataset consists of 400 face images containing 40 subjects taken at 

different times of day, under different lighting, and with different facial expressions. 

Some examples of the ORL dataset are shown in Figure 3d. 

The COIL20 [42] dataset contains 1440 images, taken from 20 objects at different 

angles, with 72 images per object. Some images the COIL20 dataset are shown in Figure 

3e. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3. Selected images from the five databases: (a) AR; (b) CMU PIE; (c) Extended YaleB; (d) 

ORL; (e) COIL20. 

5.3. Experimental Evaluation 

For the classification task, the nearest neighbor classifier (NNC) [43] was employed 

to classify the selected features of each method, and the classification accuracy rate was 

used to evaluate the performance, which is defined as 

100%cor

tor

Accuracy rate
N

N
  , (66) 

Figure 3. Selected images from the five databases: (a) AR; (b) CMU PIE; (c) Extended YaleB; (d) ORL;
(e) COIL20.

The CMU PIE [39] database consists of 41,368 multi-pose, illumination, and expression
face images, including face images with different pose conditions, illumination conditions,
and expressions for each object. Some instances of the CMU PIE database are shown in
Figure 3b.

The Extended YaleB [40] database consists of 2414 images containing 38 objects with 64
photographs taken for each object, with strict control over pose, lighting, and the shooting
angle. Some face images of the Extended YaleB database are shown in Figure 3c.

The ORL [41] dataset consists of 400 face images containing 40 subjects taken at
different times of day, under different lighting, and with different facial expressions. Some
examples of the ORL dataset are shown in Figure 3d.

The COIL20 [42] dataset contains 1440 images, taken from 20 objects at different angles,
with 72 images per object. Some images the COIL20 dataset are shown in Figure 3e.

5.3. Experimental Evaluation

For the classification task, the nearest neighbor classifier (NNC) [43] was employed to
classify the selected features of each method, and the classification accuracy rate was used
to evaluate the performance, which is defined as
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Accuracyrate =
Ncor

Ntor
× 100%, (66)

where Ncor and Ntol denote the number of the samples that are accurately classified and the
number of all samples for classification, respectively.

For the clustering task, we applied the k-means clustering to cluster the selected fea-
tures of different methods, and we adopted clustering accuracy (ACC) [44–46] to evaluate
their performances. The ACC is defined as follows:

ACC =
1
n

n

∑
k=1

ϑ(lk, map(ck)), (67)

where n is total number of the test samples, lk and ck denote the ground truth and the
corresponding clustering result of the test sample xk, respectively, and ϑ(·, ·) is a function
which is defined as follows:

ϑ(x, y) =
{

1, i f x = y
0 i f x 6= y

. (68)

map(·) is a mapping function that projects each clustering label ck to its corresponding truth
label lk using the Kuhn–Munkres algorithm. Moreover, normalized mutual information
(NMI) [46] was also used to test the clustering performance, which is defined as follows:

NMI(U, V) =
I(U, V)√

H(U)H(V)
, (69)

where U and V denotes two arbitrary variables, H(U) and H(V) are defined as the entropies
of U and V, and I(U, V) is defined as the mutual information of variables U and V.

5.4. Experimental Setting

In the experiments of this paper, we randomly selected T sample data from each
database as the training sample set and the remaining C sample data as the test samples.
All experiments were repeated 10 times, and the average of their classification accuracy
was calculated. In order to find the best parameters for the proposed method, a grid search
method [47] was used. For the three balance parameters α, β, and λ, the values of α and
β were set in the range {0, 0.01, 0.1, 1, 10, 100, 1000, and 10,000}, and λ was set as large as
possible (i.e., 100,000) in this work. For the feature dimensions, we set the range from 60 to
560 with intervals of every 100 dimensions.

5.5. Analysis of Experimental Results
5.5.1. Classification Performance Analysis

In the first experiment, we tested the influence of parameter values on the classification
performance of the proposed method. First, we analyzed the impact of each balance
parameter (i.e., α and β) on the accuracy of the RMFRASL method. From the experimental
results shown in Figure 4, we can observe that (1) when the value of parameters is set to
0, the performance of the proposed RMFRASL method is relatively low. Thus, adding
these two terms is necessary for feature selection. (2) With the parameter value increasing,
the performance of the method also improves, which indicates that introducing the two
terms can enhance the discriminatory capability of the selected features. (3) When the
performance of the proposed method reaches the optimal value, it decreases or remains
stable as the value of the parameter increases. This phenomenon may be due to the
parameters being set as larger values such that the importance of the second and third
terms of the objective function is overemphasized, while the first term is neglected. As
a result, the proposed method is unable to extract the discriminatory features. Then, we
evaluated the impact of the number of iterations on the performance of the proposed
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method. Figure 5 shows the classification accuracy of RMFRASL with different numbers
of iterations on five datasets, where the number of iterations was set to {20, 100, 200, 300,
400, and 500}. The experimental results show that the accuracy rate increased with the
number of iterations between 20 and 100 and then stabilized or decreased slightly. The best
combination of parameters for the classification task is listed in Table 6.
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Table 6. The optimal combination of parameters and dimension on the classification task.

Databases Accuracy Rate Parameter {α, β} Dimension r

AR 69.77 ± 0.79 {0.1, 0.01} 260
CMU PIE 89.17 ± 0.80 {0.1, 1} 360

Extended YaleB 64.98 ± 0.75 {0.1, 0.01} 360
ORL 93.92 ± 1.56 {10000, 0.01} 460

COIL20 95.93 ± 1.17 {1000, 0.1} 160

In the second experiment, we compared the performance of different feature selection
methods. The classification accuracies of each unsupervised feature selection method on
the five databases are given in Table 7. From the experimental results, we can find that, due
to the LSFS computing the feature scores without considering the correlation of the selected
feature, its performance was the worst. The RNEFS considers the feature self-representation
capability; hence, its performance was better than LSFS. The performance of USFS was
superior to RNEFS and LSFS since it incorporates soft label learning and constructs the
regression relationships between the soft label matrix and features to guides feature selec-
tion. CNAFS and NNSAFS combine the geometric structure of the data or features and can
select more discriminatory features to obtain slightly higher classification accuracy than
RNEFS and USFS. Since RSR and SPNFSR exploit the feature self-representation capability
and define the reconstruction error with L21-norm to significantly improve robustness to
noise, their performances are better than other compared methods. However, SPNFSR
outperforms RSR due to it considering the geometric structure of features. By fully con-
sidering the feature self-representation, geometric structure, adaptive graph learning, and
robustness together, our proposed RMFRASL achieved the best results among all compared
methods. The classification accuracy rate curves of different feature selection methods with
different numbers of selected features are shown in Figure 6. First, with the increase in
the number of selected features, the classification accuracy rates of all methods improved.
Then, the classification accuracy rates of most methods began to stabilize after achieving
their best performances.

Table 7. The best accuracy rate and STD of different algorithms on the five databases.

Method AR CMU PIE Extended YaleB ORL COIL20

LSFS 61.90 ± 2.35
(560)

83.69 ± 1.36
(560)

61.21 ± 1.56
(560)

91.42 ± 3.07
(560)

90.34 ± 1.48
(560)

RNEFS 63.56 ± 1.48
(460)

85.54 ± 1.29
(560)

62.95 ± 0.75
(260)

92.33 ± 2.00
(460)

91.68 ± 0.93
(560)

USFS 63.71 ± 2.71
(460)

86.90 ± 1.17
(560)

63.57 ± 1.38
(560)

92.67 ± 1.93
(560)

92.66 ± 1.39
(60)

CNAFS 63.83 ± 1.66
(560)

83.95 ± 1.56
(560)

63.92 ± 1.12
(560)

93.13 ± 1.85
(560)

94.29 ± 1.22
(160)

NNSAFS 64.90 ± 2.12
(460)

87.29 ± 0.64
(560)

63.58 ± 1.39
(360)

92.17 ± 1.81
(560)

93.56 ± 1.32
(160)

RSR 67.79 ± 2.03
(260)

88.45 ± 0.90
(360)

64.28 ± 1.10
(360)

93.33 ± 1.47
(560)

94.88 ± 1.15
(560)

SPNFSR 68.50 ± 0.91
(260)

88.22 ± 1.02
(360)

64.02 ± 1.95
(360)

92.83 ± 1.81
(560)

94.21 ± 1.42
(460)

RMFRASL 69.77 ± 0.97
(260)

89.17 ± 0.80
(360)

64.98 ± 0.75
(360)

93.92 ± 1.56
(460)

95.93 ± 1.17
(160)
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5.5.2. Clustering Performance Analysis

In this subsection, the k-means method was used for the clustering task. To reduce
the randomness of initialization in k-means, we report the mean of 10 experiments. First,
the effect of different parameters on the performance of the proposed method was tested.
The experimental results of each balance parameter (i.e., α and β) on the clustering of
the RMFRASL method are shown in Figure 7. The results show that the influences of
the balance parameters on the performance of our method were similar to those for the
classification experiments. Then, after setting the optimal parameter settings for RMFRASL
in Table 8, the clustering results on ACC and NMI were as shown in Tables 9 and 10,
consistent with the classification experiments.
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Method AR CMU PIE Extended YaleB ORL COIL20

LSFS 29.89 ± 1.37 26.88 ± 0.94 32.82 ± 0.93 55.57 ± 2.65 53.42 ± 2.77
RNEFS 30.37 ± 1.34 28.13 ± 0.59 33.99 ± 0.60 59.79 ± 2.22 55.67 ± 1.99
USFS 31.00 ± 1.17 28.50 ± 1.59 33.39 ± 0.90 57.79 ± 2.15 58.73 ± 3.66

CNAFS 31.10 ± 1.67 30.38 ± 1.38 34.33 ± 0.77 57.53 ± 0.00 58.27 ± 3.67
NNSAFS 31.10 ± 1.70 31.32 ± 1.43 33.76 ± 0.62 57.79 ± 5.01 58.55 ± 3.25

RSR 32.91 ± 1.22 32.17 ± 1.42 33.52 ± 0.80 58.79 ± 3.52 55.77 ± 1.65
SPNFSR 33.13 ± 0.80 32.07 ± 1.01 33.57 ± 0.91 59.57 ± 2.85 57.10 ± 3.46
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Table 10. The best NMI% and STD of different algorithms on the five databases.

Method AR CMU PIE Extended YaleB ORL COIL20

LSFS 63.00 ± 0.75 52.81 ± 0.51 55.13 ± 1.40 75.96 ± 1.18 64.92 ± 1.71
RNEFS 62.87 ± 0.77 53.64 ± 0.55 55.51 ± 0.82 78.13 ± 0.82 65.55 ± 1.42
USFS 63.04 ± 1.14 54.01 ± 1.10 56.10 ± 0.91 76.71 ± 1.61 67.92 ± 1.69

CNAFS 63.03 ± 1.01 54.63 ± 0.82 56.34 ± 1.37 75.90 ± 0.00 68.66 ± 2.15
NNSAFS 63.99 ± 1.17 53.78 ± 1.25 56.26 ± 1.38 72.26 ± 2.43 69.19 ± 2.38

RSR 63.53 ± 0.91 54.98 ± 1.06 56.66 ± 1.69 76.09 ± 1.47 66.60 ± 1.91
SPNFSR 64.68 ± 0.66 55.18 ± 0.86 57.18 ± 1.05 78.68 ± 1.41 70.89 ± 1.53

RMFRASL 65.56 ± 1.04 56.66 ± 0.97 57.26 ± 1.87 78.78 ± 1.24 72.56 ± 1.07

5.5.3. Convergence Analysis

In this subsection, we set the parameters to their respective optimal combinations in
each of the five databases; then, iterative convergence analysis was performed. Figure 8
shows that RMFRASL achieved convergence with a small number of iterations on each
database. Moreover, we provide the number of iterations needed by the compared methods
to achieve convergence in Table 11. According to this table, the number of iterations of the
proposed RMFRASL method was lower than that of the other methods in most cases.
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6. Discussion and Future Work

Feature selection is an effective dimensionality reduction technique, and previous
methods did not consider the performance of adaptive graph learning and robustness
simultaneously. To solve the above problems, this paper proposed a robust adaptive
structure learning-based matrix factorization (RMFRASL) method, which integrates feature
selection and adaptive graph learning into a unified framework. A large number of
experiments showed that RMFRASL could achieve better performance than previous
methods. Deep learning and transfer learning show excellent promise in feature learning
tasks. In future work, it may be possible to introduce deep learning and transfer learning
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