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Abstract: In recent years, the development of computer technology has promoted the informatization
and intelligentization of hospital management systems and thus produced a large amount of medical
data. These medical data are valuable resources for research. We can obtain inducers and unknown
symptoms that can help discover diseases and make earlier diagnoses. Hypertensive disorder in
pregnancy (HDP) is a common obstetric complication in pregnant women, which has severe adverse
effects on the life safety of pregnant women and fetuses. However, the early and mid-term symptoms
of HDP are not obvious, and there is no effective solution for it except for terminating the pregnancy.
Therefore, detecting and preventing HDP is of great importance. This study aims at the preprocessing
of pregnancy examination data, which serves as a part of HDP prediction. We found that the problem
of missing data has a large impact on HDP prediction. Unlike general data, pregnancy examination
data have high dimension and a high missing rate, are in a time series, and often have many non-
linear relations. Current methods are not able to process the data effectively. To this end, we propose
an improved bi-LSTM-based missing value imputation approach. It combines traditional machine
learning and bidirectional LSTM to deal with missing data of pregnancy examination data. Our
missing value imputation method obtains a good effect and improves the accuracy of the later
prediction of HDP using examination data.

Keywords: hypertensive disorder in pregnancy; female healthcare; machine learning; bi-LSTM;
disease prediction; data imputation; missing data filling

1. Introduction
1.1. Background

Hypertensive disorder in pregnancy (HDP) is a common kind of obstetric complication
that severely threatens the life safety of pregnant women [1,2] and has an adverse impact on
the growth and development of the fetus. Hence, it is of great significance to discover and
cure HDP in advance. Every pregnant woman will have multiple pregnancy examinations
during pregnancy, producing examination data capable of reflecting the dynamic changes
of health indicators of pregnant women during pregnancy. A huge number of current
prediction models make predictions on the basis of multi-source data [3,4], especially for
pregnancy examination data [5–7]. However, the pregnancy examination data in the real
world always contain different kinds of problems. One of the most common issues is
missing data. It exists in almost all kinds of data sets, and the size of the missing data can
significantly affect the research outcomes. As more and more studies on HDP are turning
into data-driven analysis, the missing data problem is becoming more and more critical in
this domain.

Algorithms 2023, 16, 12. https://doi.org/10.3390/a16010012 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16010012
https://doi.org/10.3390/a16010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-1652-3434
https://orcid.org/0000-0002-1705-9266
https://orcid.org/0000-0002-2143-4890
https://orcid.org/0000-0002-4431-113X
https://doi.org/10.3390/a16010012
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16010012?type=check_update&version=2


Algorithms 2023, 16, 12 2 of 16

1.2. Related Work

Nowadays, several scholars have realized the severity of the missing data problem
and explored many approaches to reduce the negative effects of missing data. There are
several methods now to process missing data. For instance, the most common method,
mean filling, uses the mean value of the sample and prior value filling to fill the missing
values with the support of medical experts. In addition, there exist some filling methods
that have advantages in effect and applicable scenes. For instance, regression filling [8]
develops a regression model on the basis of the relationship between the data of each
indicator and the pregnancy week to make interpolations to fill the data. KNN (K-nearest
neighbors) [9] filling selects K samples that are most similar to the sample to be filled based
on a specific kind of similarity measurement algorithm and fills the data with the weighted
mean of the full data of the K samples. The matrix completion algorithm [10] decomposes
the original data into two low-rank matrices and then uses the gradient descent method to
obtain an approximate value to fill missing data.

Although classical methods of statistics, such as interpolation-like techniques, can
be used to approximate the missing data in a time series, the recent developments in
deep learning (DL) have given impetus to innovative and much more accurate forecasting
techniques. Some researchers use a combination of LSTM and transfer learning to fill in
missing data values for water quality, air quality, and energy [11–13]. Zhou et al. proposed
LSTM-based missing data reconstruction for time-series Landsat images [14]. Sowmya et
al. combined LSTM with different activation functions to impute the missing data of a
diabetic, breast cancer, and wine quality data set [15]. Kostas Tzoumpas et al. combined a
CNN and bi-LSTM to fill the missing data of a sensor [16].

1.3. Contributions

All of the above research results are worthy of study. Pregnancy examination data is
of high dimension, has a high missing data rate, is in a time series, and often has many non-
linear relations, but the above research work has not enabled a richer and more complete
extraction of pregnancy examination data in the data pre-processing stage, which in turn
has led to poor results regarding missing value filling.

Therefore, we propose an improved bi-LSTM-based missing value imputation ap-
proach for pregnancy examination data. The combined model uses the random forest
(RF) model principal component analysis (PCA) and undersampling algorithm in the data
preprocessing stage, which can analyze the relationships of the features, balance the dataset
and filter out abnormal data. Then, bi-LSTM fills the processed data and significantly
improves the already good results from other models. This model, compared with the tra-
ditional LSTM model, has forward and backward factors to jointly determine the results of
filling missing data, which makes the accuracy of filling missing data effectively improved.

2. Materials and Methods
2.1. Data

The data used by this paper are provided by the Institute of Science and Technology
of the National Health Commission of PRC, which is the pregnancy examination data of
a hospital from 2008 to 2018 (10 years in total, desensitized). The data contained exami-
nation records of 120,396 pregnant women, 7518 of whom suffer from HDP, accounting
for about 6.24%. In addition, our data covered the pregnancy examination data of the
whole pregnancy cycle from early to late maternal pregnancy examination records. The
whole pregnancy cycle is the pregnancy examination data from the 1st week to the 70th
week, which is very beneficial to our prediction research on HDP and other diseases. Each
pregnant woman will take several examinations during the pregnancy of 70 weeks, with
each examination corresponding to a piece of data. Each examination does not include all
the examination items, and in different stages of pregnancy, the possibility of taking an ex-
amination is also different. Figure 1 shows the distribution of the numbers of examinations
taken during pregnancy:
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Figure 1. Distribution of physical examination times during 0-70 weeks of pregnancy.

The data mainly include 4 parts: pregnogram examination data, routine urine data,
routine blood data and biochemical D data. The pregnogram examination data contain the
results of 10 kinds of pregnancy examinations, including weight, fundal height, diastolic
pressure, fetal position, etc. Table 1 lists the name and examples of each indicator. Routine
blood data, routine urine data and biochemical D data contain the results of 141 examination
indicators, such as platelet count, white blood cell and hemoglobin. Table 1 lists each
category and indicator of the 3 examinations. Urine protein (++) means that the urine
protein is 1.0–2.0g/L, which is higher than the normal range.Edema ++ indicates a severity
level of 2 for edema. All examination indicator can be viewed in Table A1 in Appendix A.

Table 1. Indicators of pregnogram examination.

Name Type Example

Pregnogram_Fetal Position Text “Cephalic”/“Unclear”
Pregnogram_Fetal Heart Integer 140/150

Pregnogram_Urine Protein Text “++”
Pregnogram_Diastolic

Pressure Integer 90/100

Pregnogram_Systolic Pressure Integer 130/126
Pregnogram_Fundal Height Integer 31/18

Pregnogram_Abdominal
Circumference Integer 103/80

Pregnogram_Weight Integer 63/71
Pregnogram_Head-pelvic

Relationship Text “Floating in”/“Unclear”

Pregnogram_Edema Text “++”
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2.2. Methods

We propose a method that combines traditional machine learning and bidirectional LSTM
to deal with the missing data of pregnancy examination data. First, we use traditional machine
learning processing methods to remove redundant or unrelated feature data, analyze relation-
ships among the features, and select important features. Then, we use filling methods to fill
missing values. After trying different methods, this paper finally selects the bidirectional LSTM
(long short-term memory) method to fill a large number of missing data to optimize the dataset.
LSTM and its related variants perform very well in many other experiments [17] and in ours.
The data processing flow path is shown in Figure 2.

start

Relation analysis of the features

Outlier Detection

Data Filtering

Feature Extraction

Balancing the data set

Filling missing data

Model training

Figure 2. The data processing flow path.

2.3. Traditional Machine Learning
2.3.1. Relationship Analysis of the Features

The examination data in this paper are too large and complicated. After removing
redundant data, we used the random forest [18] method to analyze relationships among
the features.

The random forest (RF) model, developed on the basis of the decision regression tree
model, builds multiple classification trees by the bootstrap method. Then, it selects data
randomly to carry out training on each classification tree. Features selected for different
classification trees are also chosen at random. Finally, we compared the importance of
different features based on the training effect of each classification tree.

Tables 2 and 3 show the top 10 and bottom 10 in terms of importance. It is easy to find
that information related to pregnogram data is much more important than information
related to biochemical D data, which lays the foundation of our later strategy to fill in
missing values and work to reduce the dimension of the data.

Table 2. Top 10 features of importance.

Feature Relation Degree

Pregnogram_Weight 0.179742
Pregnogram_Diastolic Pressure 0.164976

Pregnogram_Abdominal Circumference 0.139653
Pregnogram_Systolic Pressure 0.138667
Pregnogram_Fundal Height 0.110129
Pregnogram_Fetal Position 0.042483

Pregnogram_Head-pelvic relationship 0.031845
Blood Routine_Platelet Count 0.013081

Blood Routine_Lymphocyte Percentage 0.011491
Blood Routine_White Blood Cell 0.010346
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Table 3. Bottom 10 features of importance.

Feature Relation Degree

Biochemical D_Total Protein 0.002450
Biochemical D_Total Bilirubin 0.002394

Biochemical D_Phosphorus 0.002390
Biochemical D_Calcium 0.002237

Biochemical D_Alanine Aminotransferase 0.002205
Biochemical D_Aspartate Aminotransferase 0.002165

Biochemical D_Alobulin 0.001950
Biochemical D_Albumin: Globulin 0.001868

Blood Routine_Basophil Absolute Value 0.001654
Pregnogram_Urine Protein 0.001415

2.3.2. Outlier Detection

Outliers are abnormal data that fall outside the cluster. Many fields in medical datasets
are manually input, so input errors occur easily. For example, some decimals may be
ignored, causing the value to increase 100 times, which obviously leads to abnormal
data and results in difficulty in data analysis. This kind of abnormal data will affect the
performance of our algorithm if we do not handle it. The concrete method to detect outliers
is described as follows.

Detection based on distance measurement [19]: First, we define the distance between
samples and then set a threshold distance. Outliers are defined as data points that are
far from the others. This method has the advantage of simplicity, which requires low
computation and storage costs, but the threshold value is hard to set, and its computation
complexity is too big, which is unacceptable for big datasets.

Detection based on clustering algorithms [20]: A clustering model is built, and outliers
are defined as data points that are far from all clusters or do not belong to any cluster
significantly. This method has an advantage in that there are clustering algorithms that
have been developed already, but the method is too sensitive to the selection of the number
of clusters.

Detection based on density [21]: The local density of outliers is significantly lower
than for neighboring points. The score of an outlier of a sample is the inverse of the
density of the area the sample is in. Different definitions of density correspond to different
detection methods.

Detection based on statistical methods: A statistical distribution method is built, and
outliers are defined as data points with low possibilities. This method has the advantage of
the solid foundation of statistics, but it is necessary to obtain the type of distribution of the
dataset first; otherwise, it may cause a heavy-tailed distribution.

As this dataset consists of examination indicators, which have relatively fixed ranges,
we selected methods based on statistics. For each indicator, we used Matlab to generate a
scatter diagram. As the number of outliers was too small, we detected them with a priori
knowledge and manually selected them to fix or propose.

2.3.3. Data Filtering

According to the missing mechanism, Rubin [22] divided missing data into 3 categories:
completely random missing, random missing and incompletely random missing data. This
dataset is of the category of incompletely random missing data. The missing nature of
the data depends on the pregnancy week. After analysis, the missing data rate of each
pregnancy week is shown in Figure 3. It can be found that data are mainly in the range
from week 11 to week 40 (with the ratio of data not missing over 5%), and the later the
weeks are, the more pregnancy examination records there are. Therefore, this paper selects
data from week 11 to week 40 to be processed and analyzed.

As some pregnant women have relatively few examinations, in the 30 weeks from
week 11 to week 40, about 10% of the samples have less than 5 examinations. To improve
the quality of the dataset, these data should be removed. However, to utilize the dataset as
much as possible, this paper uses the selection method described as follows. We consider
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the degree of the concentration of the pregnancy weeks of the sample with low examination
times. If the pregnancy weeks of the examinations are concentrated in the early or late
weeks, the sample is considered to be worthless and removable, but if the weeks are
scattered, the sample is considered to have the effect of “supporting” and should be kept.
Therefore, this paper calculates the ratio of the range between the pregnancy weeks of each
sample and the selected pregnancy week range and selects samples with a ratio greater
than 0.8.
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Figure 3. Ratio of data not missing by pregnancy weeks.

This dataset has a large number of complicated indicators, the total number of which
is 200. The missing status on each feature is shown in Figure 4. It is shown that that data of
most features are severely missing, with only about 10% left. The data of a small number
of features are in a good state. Considering the model’s performance and the difficulty of
training, we selected features with a missing rate lower than 30% to build the dataset.
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Figure 4. Missing data status on features
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2.3.4. Feature Extraction

In the previous relationship analysis of features, except for a few kinds of information
of pregnograms that are highly related with the disease state of pregnant women, the
relationship of a large amount of information of biochemical D, routine blood, and routine
urine data is relatively scattered, but they contain a lot of health information regarding the
pregnant women. Therefore, methods such as the missing rate ratio, low variance filtering,
high relation filtering, and even random forest are not suitable for feature extraction in
this paper. The reason is that these methods directly remove a large number of irrelevant
features in the dimension reduction process, which greatly damages the richness of the
dataset of HDP.

On the other hand, the dataset of HDP is large, containing nearly one million data
records. Therefore, the efficiency of feature extraction is also an important factor affecting
our decision. Table 4 is a comparison of common feature extraction methods. Reverse
feature removal and forward feature construction both need to pre-train the model to select
features. The size of the dataset of HDP greatly limits the speed of the model’s training,
causing the feature extraction work to consume too much, so they are also not feasible.

Table 4. Comparison of common feature extraction methods.

Common Dimension Reduction Methods Drawbacks

Missing rate ratio

Removing features directly, harming data richnessLow variance filtering
High relation filtering

Random forest

Reverse feature removal Consuming too much timeForward feature construction

After comprehensive consideration, this paper selected principal component analysis
(PCA) for the reduction of the dimensions of the data of the HDP dataset [23,24]. Consider-
ing the characteristics of the prediction model of HDP, the dataset of HDP after dimension
reduction has 32 feature items. Figure 5 shows the process of feature extraction.

start

Input:High-dimension feature matrix A, Target dimension number k

Sample matrix A decentralization

Calculate the covariance matrix U of A

Calculate eigenvalues of the covariance matrix and corresponding eigenvectors

Select the eigenvectors of the eigenvalues of the first k to form a new sample matrix B

Output:sample matrix B after dimension reduction

end

Figure 5. The process of feature extraction.

2.3.5. Balancing the Dataset

The positive and negative samples are extremely imbalanced in the original dataset,
the proportion of which is about 1:10. If original data are used for training directly, the
model will not be able to learn the characteristics of positive samples effectively. There
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are two common methods to balance a dataset: using an oversampling method, such as
SMOTE [25], and undersampling. Oversampling will copy or approximate the samples
with a small number to supplement the samples so as to balance the number of positive
and negative samples. However, such a method to copy or approximate samples will
increase the risk of over-fitting, especially in this case of an extreme imbalance of positive
and negative samples. Therefore, this paper used the method of random undersampling
of negative samples. Negative samples with a number equal to the positive samples were
randomly selected to construct the dataset. This method also reduces the difficulty and cost
of training effectively.

2.3.6. Processed Data

Table 5 shows the changes before and after data preprocessing. After traditional ma-
chine learning processing, redundant and useless data were eliminated. We only retained
feature data that were highly relevant to the HDP. The following experiments are based on
the processed data.

Table 5. Changes before and after data processing.

Data Original Data Preprocessed Data

Number of examination records 120,396 53,272

Number of features 141 36

2.4. Strategy to Fill Missing Values—Bi-LSTM

This dataset has severe missing data in the dimensions of time and features, so it is
of great significance to discuss the influence of missing data processing on the model’s
effect. There are three ways to analyze data with missing values: (1) analyze the data
with missing values directly; (2) select methods that are insensitive to missing data for
analysis; (3) analyze the missing data after interpolation and filling. Filling missing data
has always been a hot topic in various fields. Currently, several effective missing data
filling methods have been proposed by experts and scholars. For example, the commonly
used mean value interpolation method uses the mean value of sample variables to replace
the missing value [26]. Random interpolation, on the basis of the sample distribution,
extracts a substitution of missing values with a specific possibility from the population.
Regression interpolation uses the linear relationship between auxiliary variables and target
variables to predict missing values. Dempster proposed the EM (expectation maximization)
algorithm [27] in 1977, which is used to estimate unknown parameters under known
variables and can effectively carry out the task of the interpolation of missing data. These
methods have high accuracy when filling a small amount of missing data in a static situation
but are not satisfactory when processing missing data with a nonlinear relationship, time
series characteristics and multiple variables. Recently, with the rapid development of the
field of neural networks and the improvement of computing capabilities, neural networks
have been widely used in the processing and analysis of missing data, recurrent neural
networks (RNN) [28] especially. They are capable of finding long-term time dependences
and analyzing time series of variable length, thus playing a very important role in time
series analysis.

Figure 6 shows the distribution of the number of pregnancy examinations (i.e., the
length of time series) between week 11 and week 40. It can be seen from the figure that
the length of the series of most samples is about 11 times. In Figure 1, it can be seen that
the data are not uniformly distributed at different time points, and most of the data are
concentrated in the later weeks.



Algorithms 2023, 16, 12 9 of 16

0 2 4 6 8 10 12 14 16 18
0

5

10

15

The number of pregnancy examinations between week 11 and week 40

R
at

io
(%

)

Figure 6. Distribution of physical examination times during pregnancy after preprocessing

This paper selected data of a part of time as markers and selected other data as training
data. The filling effect was evaluated by the prediction results and symmetric mean absolute
percentage error (SMAPE) of markers. Considering the distribution of data at each time point,
markers should not be selected randomly in order to prevent losing the data of important
time points and severely affecting the results. This paper proposes a method described as
follows: let X = x1, x2, . . ., xi, . . ., xn represent the missing state of a series of data:

xi =

{
1, data of time point i exists
0, data of time point i are missing

(1)

For A = a1, a2, . . ., ai, . . ., an,

ai =
Σn

k=1xk · γ|k−i| − xk

Σai
(2)

ai represents the “ignorability” of the data of the time point in the series. The less missing
data near this value, the more “unimportant” the time point is, and it can be selected from
the training set as a marker, where γ is the decay rate. Table 6 is the result of calculating
the missing data state when the sequence length is 10 and the decay rate is 0.5.

Table 6. Calculation sample of “ignorability” of data in time series.

x 1 0 0 0 1 0 1 1 1 0
β 0.011 0.085 0.076 0.105 0.062 0.176 0.127 0.142 0.102 0.113

For B = b1, b2, . . ., bn,

bi =
Σxi
Σbi

(3)

bi represents the data storage rate of time point i in the whole data set. The higher it is,
the lower the missing data rate of the time point is, and the lower the possibility it needs
to be filled is. Thus, for each series, the possibility that each time point is selected to be a
marker pi = α ∗ ai + β ∗ bi, where α and β are the parameters that adds up to 1, which are
used to adjust the influence of the two parts of the possibility. We select data of a certain
number of time points in each series as markers to construct the data and markers of the
training set. According to distribution of the data, the final parameters used in this paper
are γ = 0.5, α = 0.8, β = 0.2, and the data at four time points are selected as markers.
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In this paper, we compare several methods of filling missing values, including tradi-
tional machine learning methods, such as cubic spline interpolation and KNN filling, and
deep learning methods, such as the LSTM model and bidirectional LSTM model.

1 Cubic spline interpolation

Cubic spline interpolation (spline interpolation) [29] is a process of obtaining the curve
function group by solving the three-moment equations through a series of value points on
the curve. First, we select an interval containing missing values of the dataset, construct a
cubic interpolation equation to represent the interval, and then conduct interpolation for
the missing values according to the equation.

2 KNN filling

The idea of the KNN method is to identify k spatially similar samples in the dataset.
We then use these “k” samples to estimate the value of the missing data points. The missing
value of each sample is interpolated using the mean value of the “k” neighborhood found
in the data set. In this case, as Figure 7 shows, the missing value is determined by its
neighbors. The green point’s neighbors are the orange points in the ellipse. Each pregnant
woman’s data are mapped to a vector in a high-dimensional space. To be spatially close
means to be physically similar.

x1

x2

3-nearest neighbors of the green data point

Figure 7. The theory of KNN algorithm.

3 ST-MVL

ST-MVL is a spatio-temporal multiview-based learning (ST-MVL) method [30] to
collectively fill missing readings in a collection of geosensory time series data considering
(1) the temporal correlation between readings at different timestamps in the same se-
ries and (2) the spatial correlation between different time series. The method combines
empirical statistic models, consisting of inverse distance weighting and simple exponen-
tial smoothing, with data-driven algorithms, comprised of user-based and item-based
collaborative filtering.

4 LSTM Model

The LSTM model is a special kind of recurrent neural network (RNN), which was
first proposed by Hochreiter and Schmidhuber [31] in 1997 and solved the problem of the
vanishing gradient and long-term dependence (i.e., the inability to integrate dependencies
of a series that are too long) of RNNs. As shown in Figure 8, an LSTM consists of a memory
unit c and three gates (an input gate i, output gate o, and forgetting gate f ).

The first step of the LSTM is to determine how much of the state of the previous
time point ct−1 will be retained to the current moment ct. This decision is made by the
“forgetting gate”. The forgetting gate uses the output ht−1 of the previous neural cell and
the input xt of the current cell to calculate a number between 0 and 1, representing how
much data from the previous cell was recorded. Here, 1 indicates complete recording, and
0 indicates complete forgetting. The equation is shown as follows, where W f is the weight
matrix of the forgetting gate, b f is the bias term of the forgetting gate, and σ is the sigmoid
activation function:



Algorithms 2023, 16, 12 11 of 16

Figure 8. Unidirectional LSTM unit structure.

ft = σ(W f · [ht−1, xt] + b f ) (4)

The second step of LSTM is to determine what information is to be stored in the
current unit state, which is divided into two parts. First, an input gate determines which
values to update, and then a new candidate vector C∼t is created through the tanh layer
and added to the state. The current state of the unit is calculated as follows. First, we forget
the data that need to be forgotten by multiplying the state of the last time point by ft. Then,
we add it ∗ C∼t to obtain the value of the current unit:

it = σ(Wi · [ht−1, xt] + bi) (5)

C∼t = tanh(Wc · [ht−1, xt] + bc) (6)

Ct = ft ∗ Ct−1 + it ∗ C∼t (7)

The third step of the LSTM is to determine the output of the unit. The output is based
on the state of previous calculating unit, first through the sigmoid layer to determine which
parts of the unit to output, then through tanh to reset the system state (setting the value to
between −1 and 1). Then, we multiply it by a sigmoid gate to determine the final output:

t = σ(Wo · [ht−1, xt] + bo) (8)

ht = ot ∗ tanh(Ct) (9)

5 Bidirectional LSTM Model

The bidirectional LSTM model consists of a forward LSTM structure and a reverse
LSTM structure, as is shown in Figure 9. They have the same structure and are independent
of each other and only accept input of different word orders. The bidirectional LSTM deep
learning network has great advantages, a clear structure, a clear output meaning of the
middle layer, and it is easier to find optimization methods for it. The bidirectional LSTM
model takes the influence of forward and reverse word order of sentences into account,
which can better extract the semantic information of sentence structures. In this task,
compared with unidirectional LSTM, the effect of filling missing data with bidirectional
LSTM is better.
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Figure 9. Bidirectional LSTM structure.

3. Results and Analysis
3.1. LSTM Model Hyperparameters

The hyperparameters of model training are shown in Table 7.

Table 7. Hyperparameter Settings.

Optimizer Adam method

Loss function
Cross-entropy and L2 regulation =

∑N
i=1[yi logŷi + (1− yi)log(1− ŷi)] + λ||w||22

Parameter initialization Set value to zero.
Dimension of word vectors 32

Dimension of position vectors 5
Batch 128

Adam learning rate 1.00× 10−3

3.2. Analysis of Experimental Results

In this paper, we propose an improved bi-LSTM-based missing value imputation ap-
proach for pregnancy examination data. This model, compared with the traditional LSTM
model, has forward and backward factors to jointly determine the results of filling miss data,
which makes the accuracy of filling missing data effectively improved. This paper selects the
results on the validation set after training on 70% of the preprocessed data as the training set.
Table 8 shows the comparison of different filling methods. This paper uses SMAPE to evaluate
the missing values. It is shown that the bidirectional LSTM model interpolation method has
the best filling effect regarding missing data compared with other methods. The experiment
found that ST-MVL is not good for filling data columns with serious missing data, so we used
data with a missing rate of less than 50% for ST-MVL experiments.

Table 8. Comparison of different filling methods.

Filling Methods Cubic Spline
Interpolation KNN Filling LSTM Model ST-MVL Improved Bidirectional

LSTM Model

SMAPE(%) 8.745 6.746 8.796 6.734 6.569

In addition, the lightgBM disease prediction algorithm [32] was used to compare
the training model before and after data filling. As is shown in Figure 10, the blue curve
represents the training results using the complete data of pregnancy weeks filled by LSTM,
and the orange curve represents the training results using unfilled pregnancy week data. It
can be seen that the accuracy of the prediction results after filling is higher. In addition, it can
be seen that the prediction accuracy is positively correlated with the number of pregnancy
weeks. From the figure above, it can be seen that the model has a good prediction effect
at just 25–26 pregnancy weeks, and the AUC of the HDP prediction effect can reach more
than 0.75. From 25 weeks on, forecasts continuously improve. Data from week 25 to week
40 are more important to model predictions than data before week 25.
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Figure 10. Prediction effect of different pregnancy weeks.

4. Conclusions and Future Work

HDP is a common obstetric complication that severely threatens the life of pregnant
women. Therefore, it is of great significance to detect and prevent HDP in advance. However,
pregnancy examination data have the characteristics of high dimensions, large amounts, being
in a time series and having a high missing rate, so a good data processing method plays
an extremely important role in predicting and preventing HDP. This paper first introduces
pregnancy examination data in detail and then proposes a series of data processing strategies,
including basic data processing methods such as feature relation analysis, data filtering,
feature extraction, balancing the dataset, etc. This paper also puts forward a method of
missing value filling based on a bidirectional LSTM model and makes a comparison with
cubic spline interpolation, KNN filling and an LSTM model, the results of which show that
the bidirectional LSTM model achieves good results in filling missing data. Although this
paper has made some progress in data processing, especially in filling missing data, there is
still much work to be further studied and explored, including the following aspects:

• In data processing, there are still some factors that are not considered, such as region,
age, etc.

• The method of filling missing valuesis relatively simple at present, and the future
research direction is to combine multiple algorithms to deal with different features.

• At present, the data preprocessing process is basically manual processing, so it can
save a lot of time and stamina to standardize the processing process and build ETL
(extract-transform-load) tools automatically.

• After prediction, screening proper drug treatment programs [33] is also important for
doctors and patients. Building a complete intelligent medical system is very meaningful.

• At present, the amount of research data in the medical field is very large, but these
data are often chaotic. The format of diagnostic data in different medical institutions
is not uniform, so it is difficult to use it directly for research. Constructing a complete
standardized medical research database is of great significance for disease prevention,
drug development, and other research.
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Appendix A

Each category and indicator of the examinations is shown in Table A1.

Table A1. Indicators of routine blood, routine urine and biochemical D data.

Routine Urine (UR) Biochemical D Routine Blood

UR_White Blood Cell(centrifuged) Biochemical D_Calcium Blood Routine_Lymphocyte Percentage
UR_Red Blood Cell(centrifuged) Biochemical D_Globulin Blood Routine_Eosinophil Absolute Value
UR_Epithelial Cell(centrifuged) Biochemical D_Albumin: Globulin Blood Routine_Platlet Count

UR_Average RBC Hemoglobin Amount Biochemical D_Total Bilirubin Blood Routine_RBC Distribution Width
UR_Average Platelet Volume Biochemical D_Alanine Aminotransferase Blood Routine_Monocyte Percentage

UR_Fungus Biochemical D_Iron Blood Routine_Red Blood Cell
UR_Granular Cast Biochemical D_Direct Bilirubin Blood Routine_Eosinophil Percentage
UR_Mucus Strand Biochemical D_Total Bile Acid Blood Routine_Monocyte Absolute Value

UR_Abnormal RBC Biochemical D_Phosphorus Blood Routine_ Average RBC Hemoglobin
Amount

UR_Red Blood Cell Biochemical D_Aspartate Aminotransferase Blood Routine_White Blood Cell
UR_Hyaline Cast Biochemical D_Total Protein Blood Routine_Basophil Percentage
UR_Urate Crystal Biochemical D_Glutamic-pyruvic Aminotransferase Blood Routine_Average RBC Volume

UR_Sulfa Crystal Biochemical D_Glutamic-pyruvic:Glutamic-oxalacetic Blood Routine_RBC Distribution
Width-SD

UR_Crystal Biochemical D_Glutamic-oxalacetic Aminotransferase Blood Routine_Large Platelet Ratio

UR_Epithelial Cell Biochemical D_Indirect Bilirubin Blood Routine_Average RBC Hemoglobin
Concentration

UR_RBC Cast Biochemical D_Total Cholesterol RBC Distribution Width-CV
UR_Normal RBC Biochemical D_Lactic Dehydrogenase Glycosylated Hemoglobin

UR_Phosphate Crystal Biochemical D_Kalium Blood Routine_Large Platelet Count
UR_Pyocyte Biochemical D_Carbon Dioxide Concentration Blood Routine_Urobilinogen

UR_Trichomonad Biochemical D_Triglyceride Blood Routine_PH
UR_Inorganic Salt Crystal Biochemical D_Sodium Blood Routine_Specific Gravity

UR_WBC Cast Biochemical D_Creatine Kinase Blood Routine_Irregular Antibody
Screening(3 cells)

UR_Cast Biochemical D_Creatinine Blood Routine_Fibrinogen
UR_Waxy Cast Biochemical D_Uric Acid Blood Routine_Thrombin Time

UR_Oxalate Crystal Biochemical D_Chlorine Blood Routine_Prothrombin Time

UR_Average RBC Volume Biochemical D_γ-glutamyl Transpeptidase Blood Routine_Activated Partial
Thromboplastin Time

UR_Progesterone Biochemical D_Alkaline Phosphatase Blood Routine_PT International
Standardized Ratio

UR_RBC Distribution Width-SD Biochemical D_Magnesium Blood Routine_Sugar Shaker
UR_Hemoglobin Biochemical D_Aspartate:Alanine Blood Routine_Platelet Distribution Width

UR_Lymphocyte Absolute Value Biochemical D_Creatinine(enzymic method) Blood Routine_Hematokrit
UR_Neutrophil Percentage Biochemical D_Serum Phosphorus Blood Routine_Basophil Absolute Value

UR_Hematokrit Biochemical D_Glycated Albumin Ratio Blood Routine_Average Platelet Volume

UR_Lymphocyte Percentage Biochemical D_PH Blood Routine_Lymphocyte Absolute
Value

UR_Average RBC hemoglobin
Concentration Biochemical D_Specific Gravity

UR_Intermediate Cell Percentage Biochemical D_Serum Thyrotropin
UR_Intermediate Cell Absolute Value Biochemical D_Low Density Lipoprotein Cholesterin

UR_Large Platelet Ratio Biochemical D_High Density Lipoprotein Cholesterin
UR_Platelet Count Biochemical D_Serum Free T4

UR_Platelet Distribution Width Biochemical D_Thyroid Peroxidase Antibody
UR_Neutrophil Absolute Value Biochemical D_Creatine Kinase Isoenzyme

Biochemical D_Lipoprotein(a)
Biochemical D_Apolipoprotein B
Biochemical D_Apolipoprotein A
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