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Abstract: Recent developments in commutative algebra, linear algebra, and graph theory allow us
to approach various issues in several fields. Circulant graphs now have a wider range of practical
uses, including as the foundation for optical networks, discrete cellular neural networks, small-world
networks, models of chemical reactions, supercomputing and multiprocessor systems. Herein, we are
concerned with the decompositions of the bipartite circulant graphs. We propose the Cartesian and
tensor product approaches as helping tools for the decompositions. The proposed approaches enable
us to decompose the bipartite circulant graphs into many categories of graphs. We consider the use
cases of applying the described theory of bipartite circulant graph decomposition to the problems
of finding new topologies and deadlock-free routing in them when building supercomputers and
networks-on-chip.

Keywords: Cartesian product; circulant graph; graph decomposition; network-on-chip; routing;
supercomputing; tensor product

1. Introduction

For the majority of their research work in recent years, scholars have relied more
and more on computers. Modern computers are now large networks of computing cores,
united by a single communication subsystem. This applies both to the macro level (su-
percomputers, computer networks) and the micro level (networks-on-chip (NoCs) and
systems-on-chip). Topology for such networks plays a very important role. On the other
hand, mathematicians have long been interested in graphs, which are applied in all areas of
science, and circular graphs occupy a special place in this. Researchers work intensively on
the bipartite graph, Eulerian graph, complete graph, etc. Following Leonhard Euler’s work,
Cauchy and L’Huilier had a significant impact on the topology as a powerful mathematical
field. Arthur Cayley was the first researcher to use tree analysis to forecast chemical com-
position in theoretical chemistry. Frank Harary produced a major book on graph theory in
1969 to unify chemists, mathematicians, engineers, social scientists, computer scientists,
and biologists. We can now comprehend the RNA-seq [1–3], microarrays, and yeast two-
hybrid problem [4], protein–protein interaction challenge [5–9], and significant discrete
mathematics problems in the shadow of fundamental graphs. Graph theory is a useful,
abundant, adaptable, and friendly tool when working with chemical reaction networks [10].
In a number of fields, including GPS, computation flow, communication networks [11,12],
computer science, computational devices, and others, it has unquestionably developed into
a vital academic area. Bipartite graphs can be used to solve challenging problems [13] and
aid in the advancement of database management, projective geometry [14], coding theory,
document/word problem, radar system, X-ray [15,16], astronomy, communication network
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addressing, missile guidance, and other complex problems that are difficult to describe in
today’s reality.

Chemical graph theory, a fascinating aspect of mathematics, is a brand-new area of
modern research. The chemical molecules are mathematically described as a molecular
graph. In a molecular graph, vertices stand for atoms and edges for chemical bonds. The
topological and structural characteristics of these molecular structures are investigated
using several techniques of graph theory. In order to mathematically forecast the persuasive
benefits of the associated chemical molecule, the topology of the molecular structure is
necessary [17]. One of the most recent research areas among scientists is the study of
chemical compounds using mathematical modeling [18,19]. Therefore, using mathematical
techniques to investigate chemical compounds, such as combinatorics and topology, is
crucial in practical research. In order to suit the needs of chemists, many topological
descriptors are introduced nowadays [20,21].

Let us introduce some notations. Edge set E and vertex set V are the two sets that
make up the graph G = (V, E). If there are only finitely many elements in both of these
sets, then G is the finite graph. Otherwise, it is an infinite graph. A simple graph is the one
that has no multiple edges and loops, and it is undirected if no directions are indicated by
the edges. If the adjacency matrix of a simple finite graph is circulant, researchers can refer
to the graph as being circulant. For instance, Möbius ladders and Paley graphs are circulant
graphs (Figure 1). Numerous applications, such as locating multiprocessor faults, intruding
in buildings and facilities, as well as environmental monitoring employing wireless sensor
networks, have drawn attention to location detection issues. In each of these scenarios,
the system or structure can be represented as a graph. Parallel networks are frequently
modeled using circulant graphs.
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Circulant graphs class is one of the most important classes of graphs [22–25]. Over
the past few decades, circulant graphs have received a lot of attention. The class of
circulant graphs includes complete graphs and traditional ring topologies. There are a lot of
papers handled the circulant graphs’ algebraic characteristics. Circulant graphs have been
proposed for numerous network applications, including local area computer networks,
parallel processing architectures, VLSI design, and distributed computing, from a more
practical standpoint. Some traditional distributed and parallel systems are built on circulant
graphs of varying degrees [26,27]. Circulant networks’ range of useful applications has
recently expanded. They are now used as the structural foundation for models of chemical
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reactions [28], small-world network models [29], multi-processor cluster systems [30],
optical networks [31], discrete cellular neural networks [32], and other models.

The current study fields still revolve around the characterization, analysis, and ap-
plications of circulant graphs. The decomposition of graphs into simpler graphs has been
the subject of various publications in the literature [33–35]. The scholars have introduced
valuable contributions to the decompositions of circulant graph. The question of whether
the Hamilton decomposition is possible for each Cayley graph over an abelian group was
raised in [36]. The circulant graphs are a special case of the Cayley graph. The decom-
position of the four-regular connected Cayley graphs into two Hamilton cycles has been
demonstrated [37]. For a particular recursive circulant graph, the Hamilton decompositions
have been demonstrated [38]. The circulant matrices that correspond to the circulant graph
are introduced by the author in [39], and excellent explanations of circulant matrices are
also given. For more details on the decompositions of bipartite circulant graphs, please
take a look at [40,41].

The purpose of this paper is to handle the Cartesian and tensor product approaches as
helping tools for the decompositions. The proposed approaches enable us to decompose
the bipartite circulant graphs into many categories of graphs. We consider the use cases of
applying the described theory of bipartite circulant graph decomposition to the problems of
finding new topologies and deadlock-free routing in them when building supercomputers
and NoCs. This area of science is relatively recent, and there are still a large number of
problems that can be solved using circulant graphs; this work is a mathematical justification
for the development of new algorithms and methods for supercomputers and NoCs, but
does not concentrate on them, formulating at the end only some ideas and concepts that
can be developed in the future.

The remaining sections of the paper are structured as follows. The preliminaries
are introduced in Section 2. The edge decomposition of bipartite circulant graphs based
on Cartesian products is shown in Section 3. Edge decomposition of bipartite circulant
graphs based on tensor products is handled in Section 4. Section 5 discusses some use
cases of applying the described theory of bipartite circulant graph decomposition. Section 6
concludes the paper.

2. Preliminaries

A graph is made up of a number of points and a number of connecting lines. The
graph’s vertices or nodes (as they are more often known) are represented by the points, and
its edges—by the lines (Figure 1). In the present paper, we use the following nomenclature:

• Km : Complete graph on m vertices.
• Km,n : Complete bipartite graph with partition sets of sizes m and n.
• Pm : Path graph on m vertices.
• Cm : Cycle graph on m vertices.
• G ∪ H : Disjoint union of graphs G and H.
• lH : l disjoint copies of a graph H.
• E(H) : Edge set of a graph H.
• V(H) : Vertex set of a graph H.

Herein, we are concerned with the bipartite circulant graphs C2n,n; n is the degree
of this graph. The vertices of C2n,n will be labeled by the set {0, 1, . . . , 2n− 1}, and the
edge set will be represented by {(a, n + b) : 0 ≤ a, b ≤ n− 1}. In the sequel, we use some
product techniques to construct the edge decompositions of C2nm,nm if there are any edge
decompositions of C2n,n and C2m,m.

3. Edge Decomposition of Bipartite Circulant Graphs C2nm,nm Based on
Cartesian Products

In this section, if graph G is represented by the vector v(G) = (a0, a1, a2, . . . , an−1)
and graph H is represented by the vector w(H) = (c0, c1, c2, . . . , cm−1), then v(G) ×
w(H) =

(
a0c0, a0c1, . . . , apcq, . . . , an−1cm−1

)
, where p ∈ Zn and q ∈ Zm. The edge set
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of graph C can be constructed based on
(
a0c0, a0c1, . . . , apcq, . . . , an−1cm−1

)
, as shown in

the following proposition.

Proposition 1. If there is an edge decomposition of C2n,n by the graph G and an edge decomposition
of C2m,m by the graph H, then there is an edge decomposition of C2nm,nm by the graph C.

Proof. Let i, ai, bi ∈ Zn = {0, 1, . . . , n− 1}. Make the following an ordered pair chain:
(a0, b0), (a1, b1), . . . , (an−1, bn−1), where the following condition

{bi − ai : i ∈ Zn} = Zn (1)

is satisfied, and the difference between bi and ai is calculated modulo n. Let j, cj, dj ∈ Zm =
{0, 1, . . . , m− 1}. Make the following an ordered pair chain: (c0, d0), (c1, d1), . . . , (cm−1, dm−1),
where the following condition {

dj − cj : j ∈ Zm
}
= Zm (2)

is satisfied, and the difference between dj and cj is calculated modulo m. The edge
set of the first graph G can be represented by (a0, b0 + n), (a1, b1 + n), . . . , (an−1, bn−1 + n)
and the edge set of the second graph H can be represented by
(c0, d0 + m), (c1, d1 + m), . . . , (cm−1, dm−1 + m).

Suppose that the first graph G is represented by the vector v(G) = (a0, a1, a2, . . . , an−1),
and the second graph H is represented by the vector w(H) = (c0, c1, c2, . . . , cm−1), then
v(G)×w(H) =

(
a0c0, a0c1, . . . , apcq, . . . , an−1cm−1

)
, where p ∈ Zn and q ∈ Zm. Then, con-

struct the ordered pairs (a0c0, b0d0), (a0c1, b0d1), . . . ,
(
apcq, bpdq

)
, . . . , (an−1cm−1, bn−1dm−1),

where p ∈ Zn and q ∈ Zm. Hence, from (1) and (2), we can conclude that{
(bi − ai)

(
dj − cj

)
: i ∈ Zn, j ∈ Zm

}
= Zn ×Zm. (3)

Then, let ϕ : Zn ×Zm → Znm be a one–one mapping defined by

ϕ
(
aicj
)
= emi+j = mai + cj, i ∈ Zn, j ∈ Zm, (4)

and ψ : Zn ×Zm → Znm be a one-one mapping defined by

ψ
(
bidj

)
= fmi+j = mbi + dj, i ∈ Zn, j ∈ Zm. (5)

Hence, we can obtain the following chain (e0, f0), (e1, f1), . . . , (enm−1, fnm−1). The transla-
tion for the previous chain is (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . , (enm−1 + σ, fnm−1 + σ), σ ∈
Znm, where the additions are calculated modulo nm. Let π : Znm → Z2nm ; it is a one–one
mapping defined by

π( fα,σ) = nm + fα,σ, fα,σ = fα + σ, α, σ ∈ Znm. (6)

We now find novel chains of ordered pairs that are defined by (e0 + σ, π( f0,σ)),
(e1 + σ, π( f1,σ)), . . . , (enm−1 + σ, π( fnm−1,σ)). These novel chains represent the edge de-
composition of C2nm,nm, i.e., E(Cσt) = { (e0 + σ, π( f0,σ)), (e1 + σ, π( f1,σ)), . . . ,
(enm−1 + σ, π( fnm−1,σ)) }, σ ∈ Znm and ∪σ ∈Znm E(Cσ) = E(C2nm,nm) that can be proved as
follows. Let λi = fi− ei, which is unique for every pair (ei, fi); i ∈ Znm. For u 6= v ∈ Znm, let
(ei + u, fi + u) ∈ E(Cu) and (ei + v, fi + v) ∈ E(Cv). Suppose that |E(Cu) ∩ E(Cv)| 6= 0
such that there is at least one edge (ei, fi) ∈ {E(Cu) ∩ E(Cv)}. From the translation
definition, we have (ei + u− u, fi + u− u) = (ei, fi), (ei + v− v, fi + v− v) = (ei, fi), and
λi = fi− ei is unique for every edge in C0. Hence, |E(Cu) ∩ E(Cv)| 6= 0. Then, the addition
of nm to the second component of the ordered pairs (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . ,
(enm−1 + σ, fnm−1 + σ), σ ∈ Znm constructs the edge decomposition of C2nm,nm. Hence,
∪σ ∈Znm E(Cσ) = E(C2nm,nm). �
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Theorem 1. There is an edge decomposition of C8n,4n by the graph nK2,2 and an edge decomposition
of C2m,m by the graph K1,m, then there is an edge decomposition of C8nm,4nm by the graph
C ∼= nK2,2m; m ≥ 1, gcd(n, 3) = 1.

Proof. The edge set of nK2,2 can be represented by (a0, b0 + 4n), (a1, b1 + 4n), . . . ,
(a4n−1, b4n−1 + 4n), where

ai =

{
i i f i < 2n

2n + i i f i ≥ 2n
,

bi = ai + i.
(7)

Hence, {bi − ai : i ∈ Z4n} = Z4n.
The edge set of the second graph K1,m can be represented by (c0, d0 + m), (c1, d1 + m),

. . . , (cm−1, dm−1 + m), where
ci = 0; i ∈ Zm,

di = ci + i.
(8)

Hence,
{

dj − cj : j ∈ Zm
}
= Zm.

Suppose that the first graph nK2,2 is represented by the vector v(nK2,2) = (a0, a1, a2, . . . ,
a4n−1), and the second graph K1,m is represented by the vector w(K1,m) = (c0, c1, c2, . . . ,
cm−1), then v(nK2,2)× w(K1,m) = (a0c0, a0c1, . . . , apcq, . . . , a4n−1cm−1, where p ∈ Z4n and
q ∈ Zm. Then, construct the ordered pairs (a0c0, b0d0), (a0c1, b0d1), . . . ,

(
apcq, bpdq

)
, . . . ,

(a4n−1cm−1, b4n−1dm−1) where p ∈ Z4n and q ∈ Zm. Hence, from (7) and (8), we can
conclude that {

(bi − ai)
(
dj − cj

)
: i ∈ Z4n, j ∈ Zm

}
= Z4n ×Zm. (9)

Then, let ϕ : Z4n ×Zm → Z4nm be a one–one mapping defined by

ϕ
(
aicj
)
= emi+j = mai + cj, i ∈ Z4n, j ∈ Zm, (10)

and ψ : Z4n ×Zm → Z4nm be a one–one mapping defined by

ψ
(
bidj

)
= fmi+j = mbi + dj, i ∈ Z4n, j ∈ Zm. (11)

Hence, we can obtain the following chain (e0, f0), (e1, f1), . . . , (e4nm−1, f4nm−1). The
translation for the previous chain is (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . ,
(e4nm−1 + σ, f4nm−1 + σ), σ ∈ Z4nm, where the additions are calculated modulo 4nm. Let
π : Z4nm → Z8nm ; it is a one-one mapping defined by

π( fα,σ) = 4nm + fα,σ, fα,σ = fα + σ, α, σ ∈ Z4nm. (12)

We now find novel chains of ordered pairs that are defined by (e0 + σ, π( f0,σ)),
(e1 + σ, π( f1,σ)), . . . , (e4nm−1 + σ, π( f4nm−1,σ)). These novel chains represent the edge de-
composition of C8nm,4nm i.e., E(Cσ) = {(e0 + σ, π( f0,σ)), (e1 + σ, π( f1,σ)), . . . ,
(e4nm−1 + σ, π( f4nm−1,σ))}, σ ∈ Z4nm and∪σ ∈Z4nm E(Cσ) = E(C8nm,4nm) that can be proved
as follows. Let λi = fi − ei, which is unique for every pair (ei, fi); i ∈ Z4nm. For
u 6= v ∈ Z4nm, let (ei + u, fi + u) ∈ E(Cu) and (ei + v, fi + v) ∈ E(Cv). Suppose that
|E(Cu) ∩ E(Cv)| 6= 0 such that there is at least one edge (ei, fi) ∈ {E(Cu) ∩ E(Cv)}. From
the translation definition, we have (ei + u− u, fi + u− u) = (ei, fi), (ei + v− v, fi + v− v)
= (ei, fi); λi = fi − ei is unique for every edge in C0. Hence, |E(Cu) ∩ E(Cv)| 6= 0.
Then, the addition of 4nm to the second component of the ordered pairs (e0 + σ, f0 + σ),
(e1 + σ, f1 + σ), . . . , (e4nm−1 + σ, f4nm−1 + σ), σ ∈ Z4nm constructs the edge decomposition
of C8nm,4nm. Hence, ∪σ ∈Z4nm E(Cσ) = E(C8nm,4nm). �
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Lemma 1. There is an edge decomposition of C8,4 by the graph K2,2 and an edge decomposition
of C8m,4m by the graph mK2,2, then there is an edge decomposition of C32m,16m by the graph
C ∼= mK4,4; gcd(m, 3) = 1.

Proof. The edge set of K2,2 can be represented by (a0, b0 + 4), (a1, b1 + 4), (a2, b2 + 4),
(a3, b3 + 4), where

ai =

{
0 i f i = 0, 2
1 i f i = 1, 3

,

bi = ai + i.
(13)

Hence, {bi − ai : i ∈ Z4} = Z4.
The edge set of the second graph mK2,2 can be represented by (c0, d0 + 4m), (c1, d1 + 4m),

. . . , (c4m−1, d4m−1 + 4m), where

ci =

{
i i f i < 2m
2m + i i f i ≥ 2m

,

di = ci + i.
(14)

Hence, {di − ci : i ∈ Z4m} = Z4m.
Suppose that the first graph K2,2 is represented by the vector v(K2,2) = (0, 1, 0, 1), and

the second graph mK2,2 is represented by the vector w(mK2,2) = (c0, c1, c2, . . . , c4m−1), then
v(K2,2)× w(mK2,2) =

(
a0c0, a0c1, . . . , apcq, . . . , a3c4m−1

)
, where p ∈ Z4 and q ∈ Z4m. Then,

construct the ordered pairs (a0c0, b0d0), (a0c1, b0d1), . . . ,
(
apcq, bpdq

)
, . . . , (a3c4m−1, b3d4m−1)

where p ∈ Z4 and q ∈ Z4m. Hence, from (13) and (14), we can conclude that{
(bi − ai)

(
dj − cj

)
: i ∈ Z4, j ∈ Z4m

}
= Z4 ×Z4m. (15)

Then, let ϕ : Z4 ×Z4m → Z16m be a one–one mapping defined by

ϕ
(
aicj
)
= e4mi+j = 4mai + cj, i ∈ Z4, j ∈ Z4m, (16)

and ψ : Z4 ×Z4m → Z16m be a one–one mapping defined by

ψ
(
bidj

)
= f4mi+j = 4mbi + dj, i ∈ Z4, j ∈ Z4m. (17)

Hence, we can obtain the following chain (e0, f0), (e1, f1), . . . , (e16m−1, f16m−1). The
translation for the previous chain is (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . ,
(e16m−1 + σ, f16m−1 + σ), σ ∈ Z16m, where the additions are calculated modulo 16m. Let
π : Z16m → Z32m be a one–one mapping defined by

π( fα,σ) = 16m + fα,σ, fα,σ = fα + σ, α, σ ∈ Z16m. (18)

We now find novel chains of ordered pairs that are defined by (e0 + σ, π( f0,σ)),
(e1 + σ, π( f1,σ)), . . . , (e16m−1 + σ, π( f16m−1,σ)). These novel chains represent the edge de-
composition of C32m,16m, i.e., E(Cσ) = {(e0 + σ, π( f0,σ)), (e1 + σ, π( f1,σ)), . . . ,
(e16m−1 + σ, π( f16m−1,σ))}, σ ∈ Z16m and ∪σ ∈Z16m E(Cσ) = E(C32m,16m) that can be proved
as follows. Let λi = fi − ei, which is unique for every pair (ei, fi); i ∈ Z16m. For u 6= v ∈
Z16m, let (ei + u, fi + u) ∈ E(Cu) and (ei + v, fi + v) ∈ E(Cv). Suppose that
|E(Cu) ∩ E(Cv)| 6= 0 such that there is at least one edge (ei, fi) ∈ {E(Cu) ∩ E(Cv)}. From
the translation definition, we have (ei + u− u, fi + u− u)
= (ei, fi), (ei + v− v, fi + v− v) = (ei, fi); λi = fi − ei is unique for every edge in C0.
Hence, |E(Cu) ∩ E(Cv)| 6= 0. Then, the addition of 16m to the second component of
the ordered pairs (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . , (e16m−1 + σ, f16m−1 + σ), σ ∈ Z16m
constructs the edge decomposition of C32m,16m. Hence, ∪σ ∈Z16m E(Cσ) = E(C32m,16m). �
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Lemma 2. There is an edge decomposition of C16,8 by the graph 2K2,2 and an edge decomposition
of C8m,4m by the graph mK2,2, then there is an edge decomposition of C64m,32m by the graph
C ∼= 2mK4,4; gcd(m, 3) = 1.

Proof. The edge set of 2K2,2 can be represented by (a0, b0 + 8), (a1, b1 + 8), (a2, b2 + 8),
(a3, b3 + 8), (a4, b4 + 8), (a5, b5 + 8), (a6, b6 + 8), (a7, b7 + 8), where

ai =


0 i f i = 0, 4
1 i f i = 1, 5
2 i f i = 2, 6
3 i f i = 3, 7

,

bi = ai + i.

(19)

Hence, {bi − ai : i ∈ Z8} = Z8.
The edge set of the second graph mK2,2 can be represented by (c0, d0 + 4m), (c1, d1 + 4m)

, . . . , (c4m−1, d4m−1 + 4m), where

ci =

{
i i f i < 2m

2m + i i f i ≥ 2m
,

di = ci + i.
(20)

Hence, {di − ci : i ∈ Z4m} = Z4m.
Suppose that the first graph K2,2 is represented by the vector v(2K2,2) = (0, 1, 2, 3, 0, 1, 2, 3),

and the second graph mK2,2 is represented by the vector w(mK2,2) =
(
c0, c1, . . . , cq, . . . , c4m−1

)
,

then v(2K2,2)× w(mK2,2) =
(
a0c0, a0c1, . . . , apcq, . . . , a7c4m−1

)
, where p ∈ Z8 and q ∈ Z4m.

Then, construct the ordered pairs (a0c0, b0d0), (a0c1, b0d1), . . . ,
(
apcq, bpdq

)
, . . . , (a7c4m−1,

b7d4m−1) where p ∈ Z8 and q ∈ Z4m. Hence, from (19) and (20), we can conclude that{
(bi − ai)

(
dj − cj

)
: i ∈ Z8, j ∈ Z4m

}
= Z8 ×Z4m. (21)

Then, let ϕ : Z8 ×Z4m → Z32m be a one–one mapping defined by

ϕ
(
aicj
)
= e4mi+j = 4mai + cj, i ∈ Z8, j ∈ Z4m, (22)

and ψ : Z8 ×Z4m → Z32m be a one–one mapping defined by

ψ
(
bidj

)
= f4mi+j = 4mbi + dj, i ∈ Z8, j ∈ Z4m. (23)

Hence, we can obtain the following chain (e0, f0), (e1, f1), . . . , (e32m−1, f32m−1). The
translation for the previous chain is (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . ,
(e32m−1 + σ, f32m−1 + σ), σ ∈ Z32m, where the additions are calculated modulo 32m. Let
π : Z32m → Z64m ; it is a one–one mapping defined by

π( fα,σ) = 32m + fα,σ, fα,σ = fα + σ, α, σ ∈ Z32m. (24)

We now find novel chains of ordered pairs that are defined by (e0 + σ, π( f0,σ)),
(e1 + σ, π( f1,σ)), . . . , (e32m−1 + σ, π( f32m−1,σ)). These novel chains represent the edge de-
composition of C64m,32m i.e., E(Cσ) = {(e0 + σ, π( f0,σ)), (e1 + σ, π( f1,σ)), . . . ,
(e32m−1 + σ, π( f32m−1,σ))}, σ ∈ Z32m and ∪σ ∈Z32m E(Cσ) = E(C64m,32m) that can be proved
as follows. Let λi = fi − ei, which is unique for every pair (ei, fi); i ∈ Z32m. For u 6= v ∈
Z32m, let (ei + u, fi + u) ∈ E(Cu) and (ei + v, fi + v) ∈ E(Cv). Suppose that
|E(Cu) ∩ E(Cv)| 6= 0 such that there is at least one edge (ei, fi) ∈ {E(Cu) ∩ E(Cv)}. From
the translation definition, we have (ei + u− u, fi + u− u) = (ei, fi),
(ei + v− v, fi + v− v) = (ei, fi); λi = fi − ei is unique for every edge in C0. Hence,
|E(Cu) ∩ E(Cv)| 6= 0. Then, the addition of 16m to the second component of the ordered
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pairs (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . , (e32m−1 + σ, f32m−1 + σ), σ ∈ Z32m constructs the
edge decomposition of C64m,32m. Hence, ∪σ ∈Z32m E(Cσ) = E(C64m,32m). �

Theorem 2. There is an edge decomposition of C2n,n by the graph K1,n and an edge decomposition
of C4m,2m by the graph K1,2 ∪ K1,2(m−1), then there is an edge decomposition of C4nm,2nm by
the graph K1,2n ∪ K1,2n(m−1); m ≥ 1, n ≥ 2.

Proof. The edge set of K1,n can be represented by (a0, b0 + n), (a1, b1 + n), . . . ,
(an−1, bn−1 + n), where

ai = 0; i ∈ Zn,
bi = ai + i.

(25)

Hence, {bi − ai : i ∈ Zn} = Zn.
The edge set of the second graph K1,2 ∪ K1,2(m−1) can be represented by (c0, d0 + 2m),

(c1, d1 + 2m), . . . , (c2m−1, d2m−1 + 2m), where

ci =

{
0 i f i = 0, m;
m i f 1 ≤ i ≤ m− 1, m + 1 ≤ i ≤ 2m− 1

di = ci + i. (26)

Hence,
{

dj − cj : j ∈ Z2m
}
= Z2m.

Suppose that the first graph K1,n is represented by the vector v(K1,n) = (a0, a1, a2, . . . ,

an−1), and the second graph K1,2 ∪ K1,2(m−1) is represented by the
(

K1,2 ∪ K1,2(m−1)

)
=

(c0, c1, c2, . . . , c2m−1), then v(K1,n) × w(K1,2 ∪ K1,2(m−1)) = (a0c0, a0c1, . . . , apcq, . . . ,
an−1c2m−1), where p ∈ Zn and q ∈ Z2m. Then, construct the ordered pairs (a0c0, b0d0),
(a0c1, b0d1), . . . ,

(
apcq, bpdq

)
, . . . , (an−1c2m−1, bn−1d2m−1), where p ∈ Zn and q ∈ Z2m.

Hence, from (25) and (26), we can conclude that{
(bi − ai)

(
dj − cj

)
: i ∈ Zn, j ∈ Z2m

}
= Zn ×Z2m. (27)

Then, let ϕ : Zn ×Z2m → Z2nm be a one–one mapping defined by

ϕ
(
aicj
)
= e2mi+j = 2mai + cj, i ∈ Zn, j ∈ Z2m, (28)

and ψ : Zn ×Z2m → Z2nm be a one–one mapping defined by

ψ
(
bidj

)
= f2mi+j = 2mbi + dj, i ∈ Zn, j ∈ Z2m. (29)

Hence, we can obtain the following chain (e0, f0), (e1, f1), . . . , (e2nm−1, f2nm−1). The
translation for the previous chain is (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . ,
(e2nm−1 + σ, f2nm−1 + σ), σ ∈ Z2nm, where the additions are calculated modulo nm. Let
π : Z2nm → Z4nm be a one–one mapping defined by

π( fα,σ) = 2nm + fα,σ, fα,σ = fα + σ, α, σ ∈ Z2nm. (30)

We now find novel chains of ordered pairs that are defined by (e0 + σ, π( f0,σ)),
(e1 + σ, π( f1,σ)), . . . , (e2nm−1 + σ, π( f2nm−1,σ)). These novel chains represent the edge de-
composition of C4nm,2nm i.e., E(Cσ) = {(e0 + σ, π( f0,σ)), (e1 + σ, π( f1,σ)), . . . ,
(e2nm−1 + σ, π( f2nm−1,σ))}, σ ∈ Z2nm and∪σ ∈Z2nm E(Cσ) = E(C4nm,2nm) that can be proved
as follows. Let λi = fi− ei, which is unique for every pair (ei, fi); i ∈ Z2nm. For u 6= v ∈ Z2nm,
let (ei + u, fi + u) ∈ E(Cu) and (ei + v, fi + v) ∈ E(Cv). Suppose that |E(Cu) ∩ E(Cv)| 6= 0
such that there is at least one edge (ei, fi) ∈ {E(Cu) ∩ E(Cv)}. From the translation definition,
we have (ei + u− u, fi + u− u) = (ei, fi), (ei + v− v, fi + v− v) = (ei, fi), and λi = fi − ei
is unique for every edge in C0. Hence, |E(Cu) ∩ E(Cv)| 6= 0. Then, the addition of
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2nm to the second component of the ordered pairs (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . ,
(e2nm−1 + σ, f2nm−1 + σ), σ ∈ Z2nm constructs the edge decomposition of C4nm,2nm. Hence,
∪σ ∈Z2nm E(Cσ) = E(C4nm,2nm). �

Theorem 3. There is an edge decomposition of C4n,2n by the graph K1,2 ∪ K1,2(n−1) and an edge
decomposition of C4m,2m by the graph K1,2 ∪ K1,2(m−1), then there is an edge decomposition of
C8nm,4nm by the graph K1,4 ∪ K1,4(n−1) ∪ K1,4(m−1) ∪ K1,4(n−1)(m−1); m ≥ 1, n ≥ 2.

Proof. The edge set of K1,2 ∪ K1,2(n−1) can be represented by (a0, b0 + 2n), (a1, b1 + 2n), . . . ,
(a2n−1, b2n−1 + 2n), where

ai =

{
0 i f i = 0, n;
n i f 1 ≤ i ≤ n− 1, n + 1 ≤ i ≤ 2n− 1

bi = ai + i. (31)

Hence, {bi − ai : i ∈ Z2n} = Z2n.
The edge set of the second graph K1,2 ∪ K1,2(m−1) can be represented by (c0, d0 + 2m),

(c1, d1 + 2m), . . . , (c2m−1, d2m−1 + 2m), where

ci =

{
0 i f i = 0, m;
m i f 1 ≤ i ≤ m− 1, m + 1 ≤ i ≤ 2m− 1

di = ci + i. (32)

Hence,
{

dj − cj : j ∈ Z2m
}
= Z2m.

Suppose that the first graph K1,2∪ K1,2(n−1) is represented by the vector v
(

K1,2 ∪ K1,2(n−1)

)
= (a0, a1, a2, . . . , a2n−1), and the second graph K1,2 ∪ K1,2(m−1) is represented by the vector

v
(

K1,2 ∪ K1,2(m−1)

)
= (c0, c1, c2, . . . , c2m−1), then v

(
K1,2 ∪ K1,2(n−1)

)
×w

(
K1,2 ∪ K1,2(m−1)

)
= (a0c0, a0c1, . . . , apcq, . . . , a2n−1c2m−1), where p ∈ Z2n and q ∈ Z2m. Then, construct the or-
dered pairs (a0c0, b0d0), (a0c1, b0d1), . . . ,

(
apcq, bpdq

)
, . . . , (a2n−1c2m−1, b2n−1d2m−1), where

p ∈ Z2n and q ∈ Z2m. Hence, from (31) and (32), we can conclude that{
(bi − ai)

(
dj − cj

)
: i ∈ Z2n, j ∈ Z2m

}
= Z2n ×Z2m. (33)

Then, let ϕ : Z2n ×Z2m → Z4nm be a one–one mapping defined by

ϕ
(
aicj
)
= e2mi+j = 2mai + cj, i ∈ Z2n, j ∈ Z2m, (34)

and ψ : Z2n ×Z2m → Z4nm be a one–one mapping defined by

ψ
(
bidj

)
= f2mi+j = 2mbi + dj, i ∈ Z2n, j ∈ Z2m. (35)

Hence, we can obtain the following chain (e0, f0), (e1, f1), . . . , (e4nm−1, f4nm−1). The
translation for the previous chain is (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . ,
(e4nm−1 + σ, f4nm−1 + σ), σ ∈ Z4nm, where the additions are calculated modulo nm. Let
π : Z4nm → Z8nm be a one–one mapping defined by

π( fα,σ) = 4nm + fα,σ, fα,σ = fα + σ, α, σ ∈ Z4nm. (36)

We now find novel chains of ordered pairs that are defined by (e0 + σ, π( f0,σ)),
(e1 + σ, π( f1,σ)), . . . , (e4nm−1 + σ, π( f4nm−1,σ)). These novel chains represent the edge de-
composition of C8nm,4nm i.e., E(Cσ) = {(e0 + σ, π( f0,σ)), (e1 + σ, π( f1,σ)), . . . ,
(e4nm−1 + σ, π( f4nm−1,σ))}, σ ∈ Z4nm and ∪σ ∈Z4nm E(Cσ) = E(C8nm,4nm) that can be proved
as follows. Let λi = fi− ei, which is unique for every pair (ei, fi); i ∈ Z4nm. For u 6= v ∈ Z4nm,
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let (ei + u, fi + u) ∈ E(Cu) and (ei + v, fi + v) ∈ E(Cv). Suppose that |E(Cu) ∩ E(Cv)| 6= 0
such that there is at least one edge (ei, fi) ∈ {E(Cu) ∩ E(Cv)}. From the translation definition,
we have (ei + u− u, fi + u− u) = (ei, fi), (ei + v− v, fi + v− v) = (ei, fi); λi = fi − ei is
unique for every edge in C0. Hence, |E(Cu) ∩ E(Cv)| 6= 0. Then, the addition of 4nm to the
second component of the ordered pairs (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . , (e4nm−1 + σ,
f4nm−1 + σ), σ ∈ Z4nm constructs the edge decomposition of C8nm,4nm. Hence, ∪σ ∈Z4nm E(Cσ)
= E(C8nm,4nm). �

Theorem 4. There is an edge decomposition of C4n,2n by the graph K1,2 ∪ K1,2(n−1) and an edge
decomposition of C8m,4m by the graph mK2,2, then there is an edge decomposition of C16nm,8nm by
the graph mK2,4 ∪ mK2,4(n−1); m, n ≥ 2, gcd(m, 3) = 1.

Proof. The edge set of K1,2 ∪ K1,2(n−1) can be represented by (a0, b0 + 2n), (a1, b1 + 2n), . . . ,
(a2n−1, b2n−1 + 2n), where

ai =

{
0 i f i = 0, n;
n i f 1 ≤ i ≤ n− 1, n + 1 ≤ i ≤ 2n− 1

bi = ai + i. (37)

Hence, {bi − ai : i ∈ Z2n} = Z2n.
The edge set of the second graph mK2,2 can be represented by (c0, d0 + 4m), (c1, d1 + 4m)

, . . . , (c4m−1, d4m−1 + 4m), where

ci =

{
i i f i < 2m
2m + i i f i ≥ 2m.
di = ci + i.

(38)

Hence, {di − ci : i ∈ Z4m} = Z4m.
Suppose that the first graph K1,2 ∪ K1,2(n−1) is represented by the vector

v
(

K1,2 ∪ K1,2(n−1)

)
= (a0, a1, a2, . . . , a2n−1), and the second graph mK2,2 is represented

by the vector v(mK2,2) = (c0, c1, c2, . . . , c4m−1), then v
(

K1,2 ∪ K1,2(n−1)

)
× w(mK2,2) =(

a0c0, a0c1, . . . , apcq, . . . , a2n−1c4m−1
)
, where p ∈ Z2n and q ∈ Z4m. Then, construct the or-

dered pairs (a0c0, b0d0), (a0c1, b0d1), . . . ,
(
apcq, bpdq

)
, . . . , (a2n−1c4m−1, b2n−1d4m−1), where

p ∈ Z2n and q ∈ Z4m. Hence, from (37) and (38), we can conclude that{
(bi − ai)

(
dj − cj

)
: i ∈ Z2n, j ∈ Z4m

}
= Z2n ×Z4m. (39)

Then, let ϕ : Z2n ×Z4m → Z8nm be a one–one mapping defined by

ϕ
(
aicj
)
= e4mi+j = 4mai + cj, i ∈ Z2n, j ∈ Z4m, (40)

and ψ : Z2n ×Z4m → Z8nm be a one–one mapping defined by

ψ
(
bidj

)
= f4mi+j = 4mbi + dj, i ∈ Z2n, j ∈ Z4m. (41)

Hence, we can obtain the following chain (e0, f0), (e1, f1), . . . , (e8nm−1, f8nm−1). The
translation for the previous chain is (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . ,
(e8nm−1 + σ, f8nm−1 + σ), σ ∈ Z8nm, where the additions are calculated modulo nm. Let
π : Z8nm → Z16nm ; it is a one-one mapping defined by

π( fα,σ) = 8nm + fα,σ, fα,σ = fα + σ, α, σ ∈ Z8nm. (42)

We now find novel chains of ordered pairs that are defined by (e0 + σ, π( f0,σ)),
(e1 + σ, π( f1,σ)), . . . , (e8nm−1 + σ, π( f8nm−1,σ)). These novel chains represent the edge de-
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composition of C16nm,8nm i.e., E(Cσ) = {(e0 + σ, π( f0,σ)), (e1 + σ, π( f1,σ)), . . . ,
(e8nm−1 + σ, π( f8nm−1,σ))}, σ ∈ Z8nm and ∪σ ∈Z8nm E(Cσ) = E(C16nm,8nm) that can be
proved as follows. Let λi = fi − ei, which is unique for every pair (ei, fi); i ∈ Z8nm. For
u 6= v ∈ Z8nm, let (ei + u, fi + u) ∈ E(Cu) and (ei + v, fi + v) ∈ E(Cv). Suppose that
|E(Cu) ∩ E(Cv)| 6= 0 such that there is at least one edge (ei, fi) ∈ {E(Cu) ∩ E(Cv)}. From
the translation definition, we have (ei + u− u, fi + u− u) = (ei, fi), (ei + v− v, fi + v− v) =
(ei, fi); λi = fi− ei is unique for every edge in C0. Hence, |E(Cu) ∩ E(Cv)| 6= 0. Then, the ad-
dition of 8nm to the second component of the ordered pairs (e0 + σ, f0 + σ), (e1 + σ, f1 + σ),
. . . , (e8nm−1 + σ, f8nm−1 + σ), σ ∈ Z8nm constructs the edge decomposition of C16nm,8nm.
Hence, ∪σ ∈Z8nm E(Cσ) = E(C16nm,8nm). �

Theorem 5. There is an edge decomposition of C2n,n by the graph K1,n and an edge decomposition
of C4m,2m by the graph K1,2 ∪ K2,m−1, then there is an edge decomposition of C4nm,2nm by the
graph K2,n ∪ K2,n(m−1); m, n ≥ 2.

Proof. The edge set of K1,n can be represented by (a0, b0 + n), (a1, b1 + n), . . . ,
(an−1, bn−1 + n), where

ai = 0; i ∈ Zn,
bi = ai + i.

(43)

Hence, {bi − ai : i ∈ Zn} = Zn.
The edge set of the second graph K1,2 ∪ K2,m−1 can be represented by (c0, d0 + 2m),

(c1, d1 + 2m), . . . , (c2m−1, d2m−1 + 2m), where

ci =


0 i f i = 0;
1 i f 1 ≤ i ≤ m− 1;
m i f i = m;

m + 1 i f m + 1 ≤ i ≤ 2m− 1

di = ci + i. (44)

Hence,
{

dj − cj : j ∈ Z2m
}
= Z2m.

Suppose that the first graph K1,n is represented by the vector v(K1,n)
= (a0, a1, a2, . . . , an−1), and the second graph mK2,2 is represented by the vector
v(K1,2 ∪ K2,m−1) = (c0, c1, c2, . . . , c2m−1), then v(K1,n) × w(K1,2 ∪ K2,m−1) = (a0c0, a0c1,
. . . , apcq, . . . ,an−1c2m−1), where p ∈ Zn and q ∈ Z2m. Then, construct the ordered pairs
(a0c0, b0d0), (a0c1, b0d1), . . . ,

(
apcq, bpdq

)
, . . . , (an−1c2m−1, bn−1d2m−1), where p ∈ Zn and

q ∈ Z2m. Hence, from (43) and (44), we can conclude that{
(bi − ai)

(
dj − cj

)
: i ∈ Zn, j ∈ Z2m

}
= Zn ×Z2m. (45)

Then, let ϕ : Zn ×Z2m → Z2nm be a one–one mapping defined by

ϕ
(
aicj
)
= e2mi+j = 2mai + cj, i ∈ Zn, j ∈ Z2m, (46)

and ψ : Zn ×Z2m → Z2nm be a one–one mapping defined by

ψ
(
bidj

)
= f2mi+j = 2mbi + dj, i ∈ Zn, j ∈ Z2m. (47)

Hence, we can obtain the following chain (e0, f0), (e1, f1), . . . , (e2nm−1, f2nm−1). The
translation for the previous chain is (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . ,
(e2nm−1 + σ, f2nm−1 + σ), σ ∈ Z2nm, where the additions are calculated modulo nm. Let
π : Z2nm → Z4nm be a one–one mapping defined by

π( fα,σ) = 2nm + fα,σ, fα,σ = fα + σ, α, σ ∈ Z2nm. (48)
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We now find novel chains of ordered pairs that are defined by (e0 + σ, π( f0,σ)),
(e1 + σ, π( f1,σ)), . . . , (e2nm−1 + σ, π( f2nm−1,σ)). These novel chains represent the edge de-
composition of C4nm,2nm i.e., E(Cσ) = {(e0 + σ, π( f0,σ)), (e1 + σ, π( f1,σ)), . . . ,
(e2nm−1 + σ, π( f2nm−1,σ))}, σ ∈ Z2nm and ∪σ ∈Z2nm E(Cσ) = E(C4nm,2nm) that can be proved
as follows. Let λi = fi − ei, which is unique for every pair (ei, fi); i ∈ Z2nm. For u 6= v ∈ Z2nm,
let (ei + u, fi + u) ∈ E(Cu) and (ei + v, fi + v) ∈ E(Cv). Suppose that |E(Cu) ∩ E(Cv)| 6= 0
such that there is at least one edge (ei, fi) ∈ {E(Cu) ∩ E(Cv)}. From the translation defini-
tion, we have (ei + u− u, fi + u− u) = (ei, fi), (ei + v− v, fi + v− v) = (ei, fi); λi = fi − ei
is unique for every edge in C0. Hence, |E(Cu) ∩ E(Cv)| 6= 0. Then, the addition of
2nm to the second component of the ordered pairs (e0 + σ, f0 + σ), (e1 + σ, f1 + σ), . . . ,
(e2nm−1 + σ, f2nm−1 + σ), σ ∈ Z2nm constructs the edge decomposition of C4nm,2nm. Hence,
∪σ ∈Z2nm E(Cσ) = E(C4nm,2nm). �

Finally, as we stated in Proposition 1, if there is an edge decomposition of C2n,n by
graph G and an edge decomposition of C2m,m by graph H, then there is an edge decompo-
sition of C2nm,nm by graph C. Hence, we can show the classes of graph G, graph H, and
graph C to summarize the constructed results in Section 3. Table 1 exhibits these results.

Table 1. Summary of results of Section 3.

G H C

nK2,2 K1,m nK2,2m
K2,2 mK2,2 mK4,4

2K2,2 mK2,2 2mK4,4
K1,n K1,2 ∪ K1,2(m−1) K1,2n ∪ K1,2n(m−1)

K1,2 ∪ K1,2(n−1) K1,2 ∪ K1,2(m−1)
K1,4 ∪ K1,4(n−1) ∪

K1,4(m−1) ∪ K1,4(n−1)(m−1)
K1,2 ∪ K1,2(n−1) mK2,2 mK2,4 ∪ mK2,4(n−1)

K1,n K1,2 ∪ K2,m−1 K2,n ∪ K2,n(m−1)

Example 1. The labeling of the circulant graphs C8,4 and C10,5 is exhibited in Figure 2. Figure 3
shows an edge decomposition of C8,4 by K1,4. In addition, an edge decomposition of C12,6 by K1,6,
based on the Cartesian product, is exhibited in Figure 4.
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We provide the general tensor product method for constructing the decomposition of
the circulant graphs in the section that follows.

4. Edge Decomposition of C2nm,nm Based on Tensor Products

If A and B are simple graphs, then the graph with the vertex set V(A)×V(B) and
E(A× B) = {(a, b)(c, d) : ac ∈ E(A) and bd ∈ E(B)} is the tensor product of A and B.
The induced subgraphs (A× B)[(E×Y) ∪ (F× Z)] and (A× B)[(E× Z) ∪ (F×Y)] are
referred to as the weak-tensor products of A and B if the simple graphs A and B are
bipartite graphs with bipartitions (E, F) and (Y, Z), respectively. We use A~ B to represent
the weak-tensor product (A× B)[(E×Y) ∪ (F× Z)].

Proposition 2. If there is an edge decomposition of C2m,m by the graph G and an edge decomposition
of C2n,n by the graph H, then there is an edge decomposition of C2nm,nm by the graph G~ H.

Proof. LetA = {G1, G2, . . . , Gm} be the edge decomposition of C2m,m by G on V(C2m,m) =
(E, F), where E = {e1, . . . , em}, and F = { f1, . . . , fm} is the bipartition of C2m,m, and let B =
{H1, H2, . . . , Hn} be the edge decomposition of C2n,n by H on V(C2n,n) = (Y, Z), where Y =
{y1, . . . , yn}, and Z = {z1, . . . , zn} is the bipartition of C2n,n. Let W = V(C2mn,mn) and the par-
tite sets of C2mn,mn be

{(
ep, yq

)
: 1 ≤ p ≤ m, 1 ≤ q ≤ n

}
and

{(
fp, zq

)
: 1 ≤ p ≤ m, 1 ≤ q ≤ n

}
.

Consider the set C =
{(

Gp × Hq
)
[W] : 1 ≤ p ≤ m, 1 ≤ q ≤ n

}
of subgraphs of C2mn,mn.

Clearly,
(
Gp × Hq

)
[W] ∼= G~ H, 1 ≤ p ≤ m, 1 ≤ q ≤ n, sin ce Gp ∼= G and Hq ∼= H. �

Claim 1. Every edge of C2mn,mn occurs in exactly one graph of C.

Consider an arbitrary edge (es, yt)( fu, zv) of C2mn,mn. SinceA is an edge decomposition
of C2m,m by G, and B is an edge decomposition of C2n,n by H, the edges es fu and ytzv are,
respectively, in exactly one graph of A and B. Let the graph containing es fu be Gt1 , and
that of ytzv be Hr1 . Then, the graph containing the edge (es, yt)( fu, zv) is (Gt1 × Hr1)[W].

Claim 2. Any two graphs in C have no edges in common.
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The two graphs (Gt1 × Hr1)[W] and (Gt2 × Hr2)[W] have no edges in common, be-
cause |E(Gt1)∩ E(Gt2)|= 0 and |E(Hr1)∩ E(Hr2)|= 0 .

Example 2. Figure 5 shows an edge decomposition of C6,3 by K1,2 ∪ K2. Figure 6 shows an edge
decomposition of C6,3 by P4. In addition, an edge decomposition of C18,9 by (K1,2 ∪ K2)~ P4 is
exhibited in Figure 7.
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5. Use Case
5.1. Routing Problem in Bipartite Circulant Graphs

As shown earlier, circulant graphs have a wide range of applications. They are es-
pecially promising for communication networks for supercomputer systems and NoCs.
The fact is that in wired communication networks, the classic are various tree-like topolo-
gies [42] (formally, combination of bus and star network topologies). This is due to the
hierarchical structure of such networks, where routers of different levels are connected,
and end devices are leaves of such a tree. Such topologies are also convenient in that
they can contain a predetermined number of nodes that can dynamically connect and
disconnect. However, at the same time, trees also have many disadvantages, such as a long
path between nodes, the congestion of connections located closer to the root nodes, etc.

In closed networks (such as communication subsystem of a supercomputer), the
topology and the number of nodes are usually predetermined. Therefore, they normally
use much more efficient, more connected topologies, such as mesh and torus [43]. They are
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convenient in that they have a flat shape and a regular structure, so that network nodes can
be easily networked. At the same time, routers are also quite simple, and they are of the
same type.

It can be noted that NoCs are (to some extent) analogous to supercomputer networks;
the only difference is the processing nodes are placed inside one chip; there is also the
problem of finding new regular topologies to connect nodes.

With the development of technology, topological characteristics (such as diameter and
mean path length) are becoming even more important; mesh and torus are most effective
when they are square-shaped, i.e., this way, they limit the set of nodes that the network can
consist of. It is known [44] that circulant topologies have better topological characteristics
and also endure any number of nodes, i.e., they are a promising replacement for the classical
regular topologies.

An important requirement for routers in the networks considered is their simplicity;
so, there is no need to implement the whole OSI [42,45] networking model and multi-
layer communication protocols. Ideally, the router should contain a finite-state machine
that, based on the known destination address and its own address, calculates which port
to forward the packet to. On the other hand, such simplicity leads to the fact that the
communication subsystem becomes vulnerable to various destructive phenomena, such as
deadlocks, livelocks, failures, and starvation [46,47]. Deadlocks occur due to the presence
of cyclic dependencies in packet transmission routes, when the tail of one packet blocks the
head of another packet, whose tail (in turn) blocks another packet, and so on.

For mesh and torus, many different methods of dealing with deadlocks have been
developed, many of which are based on the use of virtual channels and sets of rules for
switching between channels and bypassing blocked links [46]. However, for circulant
topologies, there are few such approaches, since it is not entirely clear which rule should be
used to switch virtual channels.

To handle deadlocks, we propose to divide the graph using edge decomposition into a
set of simpler subgraphs that do not have cyclic dependencies (see Figures 2 and 3). The
following rule can be introduced: if a packet moves from one subgraph to another, it has
to change the virtual channel. At the same time, at the beginning of moving through the
network, a packet is always in virtual channel 1.

This approach is primarily applicable for local distributed routing, when the entire
path is not calculated in advance, and the decision to switch the packet to the appropriate
port is made at the router level and only 1 hop ahead. Thus, adding an additional virtual
channel selection rule will lead to a slightly more complicated routing procedure and the
need to store 1–2 additional bits denoting the subgraph label to which the corresponding
router belongs. Against the background of the total resource consumption of the router,
according to the experience of previous studies [48], such a complication should not affect
the resource consumption of the router. This statement needs to be verified in the future.

Example 3. Consider how proposed rule works based on the example of graph C8,4.

Suppose there is a situation of a cycle of vertices 0− > 4− > 2− > 7− > 0, and
according to the rules of the routing algorithm (it is static, not adaptive [46]), the packets
move clockwise along this cycle. We need to transfer the data from node 7 to node 4 (packet
A), from 4 to 2 (packet B), from 2 to 0 (packet C), and from 0 to 2 (packet D). As a result,
a deadlock situation arises, because packet A will block packet C, which (in turn) will
block packet B, and through it packet D, which interferes with A. Using the proposed
rule, the deadlock will be eliminated, since packets C and D (on the second hop) will
cross the boundaries of the subgraph (Figure 8) and switch to virtual channel 2 with no
path blocking.
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A few more simple rules to help resolve deadlocks can be proposed. The most
important is the fact that the proposed plane tessellation methods allow you to mark up a
graph into a set of simple subgraphs without cycles, based on which it is possible to build
deadlock-free routing algorithms.

5.2. New Bipartite Circulant Topology Generation Using Cartesian and Tensor Products

The problem of searching for new topologies for NoCs and supercomputers can also
be taken another look at: while supercomputers are already capable of containing tens
of thousands of computing nodes [49], chips have recently also reached such sizes that
they can accommodate a huge number of computing cores [50,51]. At the same time,
finding the optimal circulants for hundreds of nodes is already a rather difficult task [49].
There is a significant number of works that offer various methods for generating new
topologies. These are both hierarchical topologies [52–54] and topologies obtained by the
graph product [55] (a special case is optimal circulant product [52]), etc. However, as
shown earlier, it is not enough to propose a new topology and evaluate its characteristics.
We still need to develop the effective routing algorithms, as well as methods for dealing
with deadlocks. Therefore, we propose to consider this problem from the reverse: one can
choose a basic subgraph without cycles and then, based on it, use the methods of Cartesian
and tensor products to generate new topologies. Thus, in such graphs, it can be guaranteed
that the method of dealing with deadlocks, described in Section 5.1, can be applied.

Example 4. According to Figure 3, the bipartite circulant graph C8,4 can be generated from the
graph K1,4.

Example 5. Based on tensor product in Example 2 in Section 4, the union of the graphs in
Figure 7 provides C18,9 shown in Figure 9.
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