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Abstract: Given their escalating number and variety, combating malware is becoming increasingly
strenuous. Machine learning techniques are often used in the literature to automatically discover
the models and patterns behind such challenges and create solutions that can maintain the rapid
pace at which malware evolves. This article compares various tree-based ensemble learning methods
that have been proposed in the analysis of PE malware. A tree-based ensemble is an unconventional
learning paradigm that constructs and combines a collection of base learners (e.g., decision trees), as
opposed to the conventional learning paradigm, which aims to construct individual learners from
training data. Several tree-based ensemble techniques, such as random forest, XGBoost, CatBoost,
GBM, and LightGBM, are taken into consideration and are appraised using different performance
measures, such as accuracy, MCC, precision, recall, AUC, and F1. In addition, the experiment
includes many public datasets, such as BODMAS, Kaggle, and CIC-MalMem-2022, to demonstrate
the generalizability of the classifiers in a variety of contexts. Based on the test findings, all tree-based
ensembles performed well, and performance differences between algorithms are not statistically
significant, particularly when their respective hyperparameters are appropriately configured. The
proposed tree-based ensemble techniques also outperformed other, similar PE malware detectors
that have been published in recent years.

Keywords: portable executable malware; tree-based ensemble; performance comparison; statistical
significance test

1. Introduction

Malware (e.g., malicious software) is commonly recognized as one of the most potent
cyber threats and hazards to modern computer systems [1,2]. It is an overarching word that
refers to any code that potentially has a destructive, harmful effect [3]. On the basis of their
behavior and execution processes, malicious softwares are categorized as worms, viruses,
Trojan horses, rootkits, backdoors, spyware, logic bombs, adware, and ransomware. Com-
puter systems are hacked for a variety of reasons, including the destruction of computer
resources, financial gain, the theft of private and confidential information and the use of
computing resources, as well as the inaccessibility of system services, to name a few [4].

Malware is recognized using signature-based or behavior-based methods. The signature-
based malware detection techniques are quick and effective, but obfuscated malware can
quickly circumvent them. In contrast, behavior-based methods are more resistant to obfus-
cation. Nonetheless, behavior-based methods are relatively time-intensive. Therefore, in ad-
dition to the signature-based and behavior-based malware detection techniques, numerous
fusion techniques exist that contain the benefits of both [5,6]. The goal of these fusion
strategies is to address the shortcomings of signature and behavior-based approaches.

While we work to defend ourselves from malware, cybercriminals continue to create
increasingly complex techniques to obtain and steal data and resources. Conventional
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methods (i.e., rule-based, graph-based, and entropy-based) for analyzing and detecting
malware focus on matching known malicious signatures to alleged malicious programs.
Such static solutions require a known harmful signature, rendering them unsatisfactory
against new (e.g., zero-day) attacks, and depend on end users to maintain system updates.
Attackers are aware that these methods may also be vulnerable to obfuscation, such as
code obfuscation to avoid detection against known signatures [7]. Hence, it is necessary
to update and build malware detection mechanisms that are capable of withstanding
significant attacks [8].

Machine learning offers the potential to construct malware detectors that are capable
of combating newer versions of malware, and different supervised and unsupervised-
algorithm-based machine learning methods have been reported in the literature [9–11].
More specifically, ensemble learning approaches have been utilized and achieved excellent
results in malware detection [12–17]. In most cases, ensemble learning algorithms yield
superior results as compared to individual classification algorithms, i.e., support vector
machine, decision tree, naive Bayes, and neural networks. However, although classifier
ensembles demonstrate a significant performance, the majority of these ensembles are
deployed in a restricted manner without adequate hyperparameter tuning. Moreover,
the performance of classifier ensembles is validated using a single dataset; consequently,
no generalizable results are produced.

The tree-based ensemble technique is an ensemble learning paradigm in which a
collection of base learners (e.g., decision trees or CART) are constructed and combined
from the training data [18]. For instance, random forest [19] is comprised of a large number
of individual decision trees that operate as an ensemble. It uses feature randomness
to generate an uncorrelated forest of decision trees. In a similar fashion, the gradient
boosting decision tree algorithms combine a collection of individual decision trees to form
an ensemble. However, unlike random forest, the decision trees in gradient boosting are
constructed serially (e.g., additively). Gradient boosting decision tree algorithms have
recently been proposed and have demonstrated remarkable results in many domains, such
as protein–protein interaction prediction [20], neutronic calculation [21], human activity
recognition [22], etc. However, their performance in classifying and detecting malware
remains questionable. This motivated us to employ ensembles of tree-based algorithms to
classify PE malware. This paper makes the following contributions to the current literature.

(a) Fine-tuned tree-based classifier ensembles, i.e., random forest [19], XGBoost [23],
CatBoost [24], GBM [25], and LightGBM [26], to detect PE malware are employed.

(b) The performance differences between classifier ensembles over the most recent
datasets, i.e., BODMAS [27], Kaggle, and CIC-MalMem-2022 [28] are benchmarked
using statistical significance tests. This study is among the first to utilize the most
recent malware BODMAS and CIC-MalMem-2022 datasets. On the BODMAS and
CIC-Malmem-2022 datasets, our proposed approaches outperform other baselines
with a 99.96% and 100% accuracy rate, respectively.

(c) An in-depth exploratory analysis of each malware dataset is presented to better
understand the characteristics of each malware dataset. The analysis includes a
feature correlation analysis and t-SNE visualization of pairs of samples’ similarities.

The remainder of the paper is structured as follows. An overview of PE malware
detection based on classifier ensembles is provided in Section 2. Next, we present the
background of tree-based classifier ensembles and datasets in Section 3. Section 4 discusses
the experimental results, and in the end, Section 5 concludes the paper.

2. Related Work

Ucci et al. [7], Maniriho et al. [10] provide the machine learning taxonomy for malware
analysis, while [11] present an overview of malware analysis in CPS and IoT. Malware
analysis can be accomplished via either static or dynamic analysis, or a mix of the two,
depending on how the information extraction procedure is carried out. Approaches based
on static analysis evaluate the content of samples without necessitating their execution,
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whereas dynamic analysis examines the behavior of samples by executing them. This study
analyzes a static analysis of PE files, since it can yield a plethora of useful information,
e.g., the compiler and symbols used.

Meanwhile, machine learning techniques were largely employed in malware detec-
tion [29,30]. Malware samples were examined and the extracted features are used to train
the classification algorithm. An overview of the machine learning techniques used for
the classification of malware is provided in the following. We particularly explore mal-
ware detectors that employ at least one ensemble learning technique. Vadrevu et al. [31],
Mills et al. [17], Uppal et al. [32], Kwon et al. [33] utilized random forest for malware
detection based on PE file characteristics and networks. Furthermore, Mao et al. [34],
Wüchner et al. [35], Ahmadi et al. [36] developed a random forest classifier to detect mal-
ware using various features, such as system calls, file system, and Windows registry. Amer
and Zelinka [13] proposed an ensemble learning strategy to address the shortcomings of
the existing commercial signature-based techniques. The proposed technique was able to
focus on the most salient features of malware PE files by lowering the dimensionality of the
data. Dener et al. [37] and Azmee et al. [38] compared the use of various machine learning
algorithms to detect PE malware and showed that XGBoost and logistic regression were the
best-performing methods.

Liu et al. [39] employed data visualization and adversarial training on ML-based
detectors to effectively detect the various types of malware and their variants in order to
address the current issues in malware detection, such as the consideration of attacks from
adversarial examples and the massive growth in malware variants. In [40], a deep feature
extraction technique for malware analysis was addressed in light of the current progress in
deep learning. Deep features were obtained from a CNN and were fed to an SVM classifier
for malware classification. Moreover, a CNN ensemble for malware classification was
proposed in [15,16]. The proposed architecture was constructed in a stacked fashion, with a
machine learning algorithm providing the final classification. A meta-classifier was selected
after various machine learning algorithms were analyzed and evaluated. Most recently,
Hao et al. [41] proposed a CNN-based feature extraction and a channel-attention module to
reduce the information loss in the process of feature image generation of malware samples.
Specific deep learning architectures, such as a deep belief network and transformer-based
classifier, were also considered when classifying Android [42,43] and PE malware [44],
respectively. Table 1 presents a summary of the existing malware detectors described in
the literature.

Table 1. Summarization of the existing PE malware detectors.

Study Algorithm(s) Data Set Validation Technique Best Result

Mills et al. [17] RF Private 7-CV -
Vadrevu et al. [31] RF Private CV and Holdout TPR: 90%, FPR: 0.1%
Uppal et al. [32] NB, DT, RF, and SVM Private 10-CV Accuracy: 98.5%

Kwon et al. [33] RF Private 10-CV TPR: 98.0%, FPR: 2.00%,
F1: 98.0%, AUC: 99.8%

Mao et al. [34] RF Private Repeated hold-out TPR: 99.88%, FPR: 0.1%
Wüchner et al. [35] RF Malicia 10-CV DR: 98.01%, FPR: 0.48%
Ahmadi et al. [36] XGBoost Kaggle 5-CV Accuracy: 98.62%
Amer and Zelinka [13] RF and extra trees Kaggle Hold-out Accuracy: 99.8%, FPR: 0.2%
Liu et al. [39] CNN and autoencoder MS BIG and Ember 10-CV Accuracy: 96.25%

Asam et al. [40] CNN and SVM MalImg Hold-out
Accuracy: 98.61%, precision:
96.27%, recall: 96.30%,
F1: 96.32%

Azeez et al. [15] 1D CNN and Extra
trees Kaggle 10-CV Accuracy: 100%, precision:

100%, recall: 100%, F1: 100%

Damaševičius et al. [16] Stacked CNN ClaMP 10-CV Accuracy: 99.9%, precision:
99.9%, recall: 99.8%, F1: 99.9%
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Table 1. Cont.

Study Algorithm(s) Data Set Validation Technique Best Result

Hou et al. [42] DBN Comodo cloud 10-CV Accuracy; 96.66%
Hou et al. [43] DBN and SAEs Comodo cloud 10-CV Accuracy: 96.66%

Azmee et al. [38] XGBoost Kaggle 10-CV Accuracy: 98.6%, AUC: 0.99,
TPR: 99.0%, FPR: 3.7%

Jingwei et al. [41] CNN MS BIG and
BODMAS 10-CV (MS BIG) accuracy: 99.40%,

(BODMAS) accuracy: 99.26%

Lu et al. [44] Transformer BODMAS and MS
BIG Hold-out

(MS BIG) accuracy: 98.17%,
F1: 98.14%, (BODMAS)
accuracy:96.96%, F1: 96.96%

Dener et al. [37] Logistic regression CIC-MalMem-
2022 Repeated hold-out Accuracy: 99.97%

3. Materials and Methods

This study evaluates the performance of ensembles of tree-based classifiers in detecting
PE malware. Figure 1 depicts the stages involved in our comparative analysis. Several
tree-based ensemble approaches are trained on three distinct PE malware training datasets
in order to generate classification models. The performance of classification models is
then determined by validating them on a testing dataset. Finally, a two-step statistical
significance test is then utilized to evaluate the performance benchmarks. In the following
section, we provide a brief summary of the malware datasets and tree-based classifier
ensembles utilized in this study.

Figure 1. Performance comparison methodology of tree-based ensembles for PE malware detection.
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3.1. Datasets

One of the most problematic aspects of using machine learning to solve malware
detection problems is producing a realistic feature set from a large variety of unidentified
portable executable samples. In essence, the dataset used to train machine learning models
determines their level of sophistication. Hence, developing a solid, labeled dataset that
represents all analyzed samples is more helpful for malware detection. In light of this, we
utilize more recent public datasets that depict the characteristics and attack behaviors of
contemporary malware:

(a) BODMAS [27]
The dataset contains 57,293 malicious and 77,142 benign samples (134,435 in total).
The malware samples were arbitrarily picked each month from the internal malware
database of a security company. The data were collected between 29 August 2019
and 30 September 2020. The benign samples were gathered between 1 January 2007
and 30 September 2020. In order to reflect benign PE binary distribution in real-
world traffic, the database of the security company is also processed for benign
samples. In addition, SHA-256 hash, the actual PE binary, and a pre-extracted feature
vector were given for each malicious sample, whereas only SHA-256 hash and the
pre-extracted feature vector were provided for each benign sample. BODMAS is
comprised of 2381 input feature vectors and 1 class label feature, of which 0 is labeled
as benign and 1 is labeled as malicious.

(b) Kaggle (https://tinyurl.com/22z7u898, access on 25 August 2022)
The dataset was developed using a Python library called pe f ile (https://tinyurl.
com/w75zewvr, accessed on 25 August 2022), which is a multi-platform module
used to parse and work with PE files. Kaggle dataset contains 14,599 malicious and
5012 benign samples (19,611 in total). The dataset is comprised of 78 input features,
denoting PE header files and one class label attribute.

(c) CIC-MalMem-2022 [28]
Unlike the two above-mentioned datasets, CIC-MalMem-2022 is an obfuscated mal-
ware dataset that is intended to evaluate memory-based obfuscated malware detection
algorithms. The dataset was designed to mimic a realistic scenario as accurately as
possible using reowned malware. Obfuscated malware comprises malicious software
that conceals itself to escape detection and eradication. The dataset consists of an
equal ratio of malicious and benign memory dumps (58,596 samples in total). In addi-
tion, CIC-MalMem-2022 is made up of 56 features that serve as inputs for machine
learning algorithms.

3.2. Tree-Based Ensemble Learning

The tree-based ensemble is a non-ordinary learning paradigm that constructs and
combines a set of base learners (e.g., decision trees or CART) as opposed to the common-
place learning paradigm that attempts to construct individual learners from training data.
Normally, an ensemble is formed in two processes, i.e., by first producing the base learners
and then integrating them. For a decent ensemble, it is commonly considered that the
base learners must be as accurate and diversified as possible [18]. This study considers
four tree-based ensemble learning algorithms. It is worth mentioning that tuning the
hyperparamters for each algorithm is carried out using random search approach [45].

(a) Random forest [19]
As its name implies, a random forest is a tree-based ensemble in which each tree is
dependent on a set of random variables. The original formulation of random forest
algorithm provided by Breiman [19] is as follows. A random forest employs trees
hj(X , Ω) as its base learners. For training data D = {(x1, y1), . . . , (xα, yα)}, where
xi = (xi,1, . . . , xi,p)

T represents the p predictors and yi represents the response, and a
specific manifestation ωj of Ωj, the fitted tree is given as ĥj(x, ωj, D). More precisely,
the steps involved in the random forest algorithm are described in Algorithm 1.

https://tinyurl.com/22z7u898
https://tinyurl.com/w75zewvr
https://tinyurl.com/w75zewvr
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We use a fast random forest implementation called ranger [46], available in R, which
is suitable for high-dimensional data such as ours. The list of random forest’s hy-
perparameters for each malware dataset is provided in Table 2. We set the search
space for each hyperparameter tuning is as follows. Number of trees = {50, 100, 250,
500, 750, 1000}, split rule = {‘gini’,‘extratrees’}, minimum node size = {1, 2, . . . , 10},
mtry = number of features × {0.05, 0.15, 0.25, 0.333, 0.4}, sample fraction = {0.5, 0.63,
0.8}, and replace = {TRUE, FALSE}.

Algorithm 1: A common procedure of random forest algorithm for classifica-
tion task.

Training:
Require: Original training set D = {(x1, y1), (x2, y2), . . . , (xα, yα)},
with xi = (xi,1, . . . , xi,p)

T

1. for j = 1 to J
2. Perform a bootstrap sample Dj of size α from D .
3. Using binary recursive partitioning, fit a tree on Dj.
4. end for
Testing:
Require: An instance to be classified x.
1. f̂ (x) = arg maxy ∑J

j=1 I(ĥj(x) = y)

where ĥj(x) denotes the response variable at x using the j-th tree.

Table 2. The final learning parameters of random forest used for each dataset after performing a
random search.

Hyperparameter BODMAS Kaggle CIC-MalMem-2022

Number of trees 100 1000 500
Split rule ‘gini’ ‘gini’ ‘extratrees’
Minimum node size 4 8 6
mtry 119 30 18
Sample fraction 0.63 0.80 0.63
replace FALSE FALSE TRUE

(b) Gradient Boosting Decision Trees
In this paper, we also considered various tree-based boosting ensemble approaches for
malware detection, such as XGBoost [23], CatBoost [24], GBM [25], and LightGBM [26].
As a rule, GBDT ensembles are a linear additive model, where a tree-based classifier
(e.g., CART) was utilized as their base model. Let D = {(xi, yi)|i ∈ {1, . . . , α},
xi ∈ Rη , yi ∈ R} denote the malware dataset comprising η features and α samples.
Considering a collection of j trees, the prediction output y(x̂)j for an input x is obtained
by calculating the predictions from each tree y(x̂)j, as shown in the following formula.

y(x̂)j =
j

∑
i=1

fi(x) (1)

where fi represents the output of the i-th regression tree of the j-tree ensemble. GBDTs
minimize a regularized objective function Objt in order to create the (j + 1)-th tree,
as follows.

min{Obj( f )t} = min{Ω( f )t + Θ( f )t} (2)

where Ω( f )t represents loss function and Θ( f )t is a regularization function to control
over-fitting. The loss function Ω( f )t measures the difference between the prediction
ŷi and the target yi. On the other hand, the regularization function is defined as
Θ( f )t = γT + 1

2 λ ‖ w ‖2, where T and w indicate the number of leaves and leaf
weights in the tree, respectively.
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(i) XGBoost [23]
XGBoost is a scalable end-to-end tree-boosting strategy that generates a large
number of sequentially trained trees. Each succeeding tree corrects the er-
rors made by the preceding one, resulting in an efficient classification model.
Through sparsity-aware metrics and multi-threading approaches, XGBoost
not only addresses the algorithm’s overfitting problem, but also boosts the
speed of most real-world computational tasks. This study utilizes two dif-
ferent XGBoost implementations, such as native implementation in R [47]
and H2O [48]. We set the search space of native XGBoost’s hyperparameters
are as follows. Maximum depth = {2, 3, . . . , 24}, eta = {0, 0.1, 0.2, . . . , 1.0},
subsample = {0.5, 0.6, 0.7, 0.8}, and column sample by tree = {0.5, 0.6, 0.7,
0.8, 0.9}. Moreover, we set the search space of XGBoost’s hyperparameters
implemented in H2O are as follows. Maximum depth = {1, 3, 5, . . . , 29},
sample rate = {0.2, 0.3, . . . , 1}, column sample rate = {0.2, 0.21, 0.22, . . . , 1},
column sample rate per tree = {0.2, 0.21, 0.22, . . . ,1}, and minimum rows =
{0, 1, . . . , log2× number of rows-1}. The final learning parameters for both
XGBoost implementations are presented in Table 3.

Table 3. The final learning parameters of XGBoost used for each dataset after performing a ran-
dom search.

Hyperparameter BODMAS Kaggle CIC-MalMem-2022

Native

Maximum depth 11 19 19
eta 0.2 0.3 0.1
Subsample 0.6 0.8 0.6
Column sample by tree 0.7 0.5 0.6

H2O

Maximum depth 24 23 26
Sample rate 0.52 0.94 0.99
Column sample rate 0.42 0.62 0.6
Column sample rate per tree 0.6 0.25 0.5
Minimum rows 2 2 2

(ii) CatBoost [24]
CatBoost is built with symmetric decision trees. It is acknowledged as a classi-
fication algorithm that is capable of producing an excellent performance and
ten times the prediction speed of methods that do not employ symmetric de-
cision trees. CatBoost, unlike other GBDT algorithms, is able to accommodate
gradient bias and prediction shift to increase the accuracy of predictions and
generalization ability of large datasets. In addition, CatBoost is comprised
of two essential algorithms: ordered boosting, which estimates leaf values
during tree structure selection to avoid overfitting, and a unique technique
for handling categorical data throughout the training process. An implemen-
tation of CatBoost in R is employed in this paper, whereas the search space of
each hyperparameter is considered as follows. Depth = {1, 2, . . . , 10}, learning
rate = {0.03, 0.001, 0.01, 0.1, 0.2, 0.3}, l2 leaf regularization = {3, 1, 5, 10, 100},
border count = {32, 5, 10, 20, 50, 100, 200}, and boosting type = {“Ordered”,
“Plain”}. The final learning parameters of CatBoost for each malware dataset
are given in Table 4.
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Table 4. The final learning parameters of CatBoost used for each dataset after performing a ran-
dom search.

Hyperparameter BODMAS Kaggle CIC-MalMem-2022

Depth 10 4 2
Learning rate 0.2 0.2 0.2
L2 leaf regularization 5 3 5
Border count 100 100 50
Boosting type “Plain” “Plain” “Ordered”

(iii) Gradient boosting machine [25]
GBM is the first implementation of GBDT to utilize a forward learning tech-
nique. Trees are generated in a sequential manner, with future trees being
dependent on the results of the preceding trees. Formally, GBM is achieved
by iteratively constructing a collection of functions f 0, f 1, . . . , f t, given a
loss function Ω(yi, f t). We can optimize our estimates of yi by discovering
another function f t+1 = f t + ht+1(x), such that ht+1 reduces the estimated
value of the loss function. In this study, we adopt GBM implementation
in H2O, whereas the hyperparameters’ search space is specified as follows.
Maximum depth = {1, 3, 5, . . . , 29}, sample rate = {0.2, 0.3, . . . , 1}, column
sample rate per tree = {0.2, 0.21, 0.22, . . . , 1}, column sample rate change
per level = {0.9, 0.91, . . . , 1.1}, number of bins = 2{4,5,...,10}, and minimum
rows = {0, 1, . . . , log2× number of rows − 1}. Table 5 shows a list of all the
final GBM hyperparameters that were used on each malware dataset.

Table 5. The final learning parameters of GBM used for each dataset after performing random search.

Hyperparameter BODMAS Kaggle CIC-MalMem-2022

Maximum depth 24 25 27
Sample rate 0.52 0.44 0.72
Column sample rate per tree 0.42 0.64 0.61
Column sample rate change per level 1.02 1.04 0.92
Number of bins 64 512 1024
Minimum rows 2 2 8

(iv) LightGBM [26]
LightGBM is an inexpensive gradient boosting tree implementations that
employs histogram and leaf-wise techniques to increase both processing
power and prediction precision. The histogram method is used to combine
features that are incompatible with each another. Before generating a n-
width histogram, the core idea is to discretize continuous features into n
integers. Based on the discretized values of the histogram, the training data
are scanned to locate the decision tree. The histogram method considerably
reduces the runtime complexity. In addition, in LightGBM, the leaf with the
greatest splitting gain was found and then divided using a leaf-by-leaf strat-
egy. Leaf-wise optimization may result in overfitting and a deeper decision
tree. To ensure great efficiency and prevent overfitting, LightGBM includes
a maximum depth constraint to leaf-wise. In this study, we employed a
LightGBM implementation in R with the following hyperparameter search
space; Maximum bin = {100, 255}, maximum depth = {1, 2, . . . , 15}, number
of leaves = 2({1,2,...,15}, minimum data in leaf = {100, 200, . . . , 1000}, learning
rate = {0.01, 0.3, 0.01}, lambda l1 = {0, 10, 20, . . . , 100}, lambda l2 = {0, 10,
20, . . . , 100}, feature fraction = {0.5, 0.9}, bagging fraction = {0.5, 0.9}, path
smooth = {1× 10−8, 1× 10−3}, and minimum gain to split = {0, 1, 2, . . . , 15}.
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Table 6 contains the list of all final LightGBM hyperparameters used for each
malware dataset.

Table 6. The final learning parameters of LightGBM used for each dataset after performing ran-
dom search.

Hyperparameter BODMAS Kaggle CIC-MalMem-2022

Maximum bin 100 100 255
Maximum depth 10 9 3
Number of leaves 8192 8 512
Minimum data in leaf 1000 800 700
Learning rate 0.29 0.27 0.07
Lambda l1 40 0 0
Lambda l2 90 20 90
Feature fraction 0.5 0.9 0.9
Bagging fraction 0.5 0.5 0.5
Path smooth 0.001 1× 10−8 0.001
Minimum gain to split 2 15 11

4. Result and Discussion

This section analyzes and discusses the results of the tree-based classifier ensembles
applied to malware classification. The results of exploratory analysis are presented first,
followed by a performance comparison between the tree-based ensemble models.

4.1. Exploratory Analysis

We first provide a correlation analysis between multiple variables in each malware
dataset. Figure 2 shows the correlation coefficient score matrix measured by Pearson
correlation. Correlation analysis is useful to understand the relationship between variables
in a dataset, since the Good input features of a dataset should have a high correlation
with target features, but should be uncorrelated with each other. Figure 2 confirms that
both BODMAS and Kaggle datasets have fewer uncorrelated features than CIC-MalMem-
2022. Hence, to mitigate the curse of dimesionality, it is strongly recommended to employ
feature selection before employing a machine learning method on CIC-MalMem-2022.
Highly correlated features have a negligible effect on the output prediction but raise the
computational cost.

(a) (b) (c)

Figure 2. Feature correlation analysis of each malware dataset: (a) BODMAS, (b) Kaggle, and
(c) CIC-MalMem-2022.
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In addition, we ran a t-SNE algorithm [49] with a learning rate = 5000 and
perplexity = 100. The t-SNE is an approach that converts a set of high-dimensional points
to two dimensions in such a way that, ideally, close neighbors remain close and far points
remain far. Figure 3 provides a spatial representation of the dataset in two dimensions.
The t-SNE provides a pliable border between the local and global data structures. It also
estimates the size of each datapoint’s local neighborhood based on the local density of the
data by requiring each conditional probability distribution to have the same perplexity (e.g.,
Gaussian kernel). Furthermore, Figure 3 demonstrates that both BODMAS and Kaggle
datasets are highly imbalanced as compared with CIC-MalMem-2022.

(a) (b) (c)

Figure 3. Two-dimensional visualization of instance pairs using t-SNE technique of each malware
dataset: (a) BODMAS, (b) Kaggle, and (c) CIC-MalMem-2022.

4.2. Comparison Analysis

In the experiment, we employed a k cross-validation technique (k = 10), where the
final performance outcome for each tree-ensemble model is the mean of the ten folds.
The performance of each model was measured based on six performance metrics, such
as accuracy, MCC, precision, recall, AUC, and F1. These metrics are chosen to provide
more accurate estimates of the behavior of the classifier ensembles under the experiment.
Especially, Chicco et al. [50] have shown that MCC is more informative than accuracy
and F1, which yield reliable estimates when used to balanced datasets, but misleading
outcomes when applied to imbalanced data sets. For a binary classification problem,
the outcome of a tree-based classifier ensemble is typically derived from a contigency

matrix, T =

(
TP FN
FP TN

)
, where TP is true positive, FN is false negative, FP is false

positive, and TN is true negative. Let ξ+ = TP + FN and ξ− = TN + FP be the number
of samples labeled as malware and non-malware, respectively. Hence, the performance
metrics used in this study can be calculated as follows.

Accuracy =
TP + TN
ξ+ + ξ−

(3)

MCC =
TP× TN − FP× FN

((TP + FP)× ξ− × (TN + FN)× ξ+)1/2 (4)

Precision =
TP

TP + FP
(5)

Recall =
TP
ξ+

(6)
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AUC =
∫ 1

0
Recall× FP

ξ−
d

FP
ξ−

=
∫ 1

0
Recall×

(
FP
ξ−

)−1

(x)dx (7)

F1 =
2TP

2TP + FP + FN
(8)

Figure 4 presents the performance score of each algorithm on each dataset. Overall,
considering MCC as a performance indicator, LightGBM is the worst-performing algorithm,
while XGBoost (native) is the best-performing on BODMAS and Kaggle datasets, followed
by GBM (H2O). Interestingly, random forest has also performed well on the remaining
dataset. Using accuracy as a performance metric, it is also apparent that there are modest
performance disparities amongst algorithms (e.g., all algorithms achieve 100% accuracy).
Consequently, our results support the findings stated by [50]. In Table 7, we provide
the performance average of each algorithm over various datasets and demonstrate that
XGBoost (native) is superior to any competitors on the board in terms of accuracy, MCC,
and precision metrics. On the other hand, when recall, AUC, and F1 metrics are utilized,
GBM (H2O) shows a superior performance.

Figure 4. Performance comparison of various tree-based ensemble models on different datasets,
i.e., (a) BODMAS, (b) Kaggle, and (c) CIC-MalMem-2022.

Table 7. Performance average of each ensemble technique over various malware datasets.

Ensemble Algorithms Accuracy MCC Precision Recall AUC F1

CatBoost 0.9940 0.9851 0.9943 0.9856 0.9988 0.9899
XGBoost (native) 0.9968 0.9922 0.9975 0.9923 0.9994 0.9949
LightGBM 0.9927 0.9823 0.9945 0.9828 0.9977 0.9885
Random forest 0.9961 0.9906 0.9959 0.9921 0.9994 0.9940
GBM (H2O) 0.9967 0.9920 0.9964 0.9978 0.9995 0.9971
XGBoost (H2O) 0.9960 0.9902 0.9956 0.9977 0.9994 0.9967

This section includes a two-step statistical significance test using Quade omnibus test
and Quade post-hoc test [51] to better comprehend the performance difference between
tree-based ensemble models. Using a significant threshold α = 0.05 and MCC as a perfor-
mance indicator, the Quade omnibus test demonstrates that at least one classifier performs
differently than others (p-value = 0.01725). Since we found significance in the previous
test, we then applied the Quade post-hoc test to determine the pairwise performance
difference between classifiers. Here, we considered XGBoost (native) as a control classifier
for comparison with the remaining algorithms. Table 8 depicts the p-value of the pairwise
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comparison. It is clear that the performance differences between XGBoost and the other
algorithms are not statistically significant (p-value > 0.05).

Table 8. The p-value of Quade post-hoc, in which XGBoost (native) is used as a control algorithm.

CatBoost XGBoost (Native) LightGBM Random Forest GBM (H2O) GBM (H2O)

0.250153 - 0.125201 0.7014781 0.6092802 0.8983268

To demonstrate the efficacy of tree-based ensemble models for malware detection, we
compared our performance findings to those of previous studies for each dataset. Table 9
denotes the performance comparisons in terms of several performance measures, such
as accuracy, precision, recall, and F1. Please note that the comparison is conducted as
objectively as possible, given that the prior experiment may have been conducted under
different settings, such as validation techniques and the number of training and testing
samples. Nevertheless, this study shows that the top-performing tree-based ensemble
examined for each dataset outperforms prior research, with a comparable result. More
precisely, GBM (H2O), XGBoost (native), and random forest are the best performers on the
Kaggle, BODMAS, and CIC-MalMem-2022 datasets, respectively, which also outperform
other state-of-the-art malware detection techniques available in the recent literature.

Table 9. Performance comparisons over existing studies. The best performance value on each dataset
is shown in bold.

Study Accuracy (%) Precision (%) Recall (%) F1 (%)

Kaggle

Hou et al. [42] 93.68 93.96 93.36 93.68
Hou et al. [43] 96.66 96.55 96.76 96.66
Azmee et al. [38] 98.60 96.30 99.00 -
This study (GBM (H2O)) 99.39 99.27 99.92 99.59

BODMAS

Jingwei et al. [41] 99.29 98.07 98.26 94.23
Lu et al. [44] 96.96 - - 96.96
This study (XGBoost (native)) 99.96 99.65 99.81 99.73

CIC-MalMem-2022

Dener et al. [37] 99.97 99.98 99.97 99.97
This study (Random forest) 100.00 100.00 99.99 100.00

5. Conclusions

This article examined tree-based ensemble learning algorithms that analyze PE mal-
ware. Several tree-based ensemble techniques, including random forest, XGBoost, CatBoost,
GBM, and LightGBM, were assessed based on a number of performance criteria, such as
accuracy, MCC, precision, recall, AUC, and F1. In addition, we incorporated cutting-edge
malware datasets to comprehend the most recent attack trends. This work contributed
to the prior research in several ways, including by providing a statistical comparison of
fine-tuned tree-based ensemble models utilizing several malware datasets. Furthermore,
this article can be expanded in a number of ways, including by looking at the explainability
of tree-based ensemble models and signature-based malware classification. Furthermore,
a deep neural network model for tabular data, such as TabNet [52], has been underexplored
in this application domain, providing a new direction for future research. Finally, it is
anticipated that tree-based PE malware detection will be deployed in various real-world
settings, such as in host, network, and cloud-based malware detection components.
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List of Acronyms

AUC Area Under ROC Curve.
CART Classification and Regression Tree.
CNN Convolutional Neural Network.
CPS Cyber-Physical Systems.
CV Cross Validation.
DBN Deep Belief Network.
DR Detection Rate.
DT Decision Tree.
FPR False Positive Rate.
GBDT Gradient Boosting Decision Tree.
GBM Gradient Boosting Machine.
IoT Internet of Things.
MCC Matthews Correlation Coefficient.
NB Naive Bayes.
PE Portable Executable.
RF Random Forest.
SAEs Stacked AutoEncoders.
SVM Support Vector Machine.
t-SNE t-Stochastic Neighbor Embedding.
TPR True Positive Rate.
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