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Abstract: A traditional total variation (TV) model for infrared image deblurring amid salt-and-pepper
noise produces a severe staircase effect. A TV model with low-order overlapping group sparsity
(LOGS) suppresses this effect; however, it considers only the prior information of the low-order
gradient of the image. This study proposes an image-deblurring model (Lp_HOGS) based on the
LOGS model to mine the high-order prior information of an infrared (IR) image amid salt-and-pepper
noise. An Lp-pseudo-norm was used to model the salt-and-pepper noise and obtain a more accurate
noise model. Simultaneously, the second-order total variation regular term with overlapping group
sparsity was introduced into the proposed model to further mine the high-order prior information
of the image and preserve the additional image details. The proposed model uses the alternating
direction method of multipliers to solve the problem and obtains the optimal solution of the overall
model by solving the optimal solution of several simple decoupled subproblems. Experimental
results show that the model has better subjective and objective performance than Lp_LOGS and other
advanced models, especially when eliminating motion blur.

Keywords: infrared image deblurring; overlapping group sparse total variation; Lp-pseudo-norm;
salt-and-pepper noise

1. Introduction

Images are a primary source of information because they contain large volumes
of information and are well-aligned with the cognitive functions of the brain. In the
absence of visible light, infrared (IR) radiation generated by an object can be converted
into visible IR images using an IR thermal imaging system. The brightness of each pixel in
the image corresponds to the change in the intensity of the object’s radiation energy [1].
IR thermal-imaging systems are widely used in biomedicine, military, industrial, and
agricultural applications, owing to their strong environmental adaptability, concealment,
anti-interference, and identification abilities. However, they have disadvantages such as
high noise, low contrast, and blurring. Among the various types of noise, the salt-and-
pepper and the Gaussian noises have the greatest impact on IR images [2].

Salt-and-pepper noise is a common random noise exhibiting sparsity in mathematics
and statistics. The common methods for removing salt-and-pepper noise include median
filter, partial differential equation (PDE) model-based methods, and total variation (TV)
model-based methods. Although the median filter method can effectively remove salt-
and-pepper noise, it produces deblurred images with incomplete image details [3]. In the
last decade, PDE-based models have been developed for various physical applications
in image restoration [4]. TV-based models can answer fundamental questions related to
image restoration better than other models [5]. The main advantage of this method is that
it preserves the image edge. Traditional TV models, including anisotropic TV (ATV) [6]
and isotropic TV (ITV) [7], can only approximate the piecewise constant function, causing
staircase effects in the restored images [8,9]. Scholars have proposed several variants
of the TV model to alleviate the staircase effect. For example, Liu et al. used the L1
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norm to describe the statistical characteristics of noise and introduced overlapping group
sparsity TV into the salt-and-pepper noise model, achieving good results [10]. However,
many non-convex models have achieved better sparse constraints in practical applications
than those based on the L1 norm at low sampling rates. Therefore, Yuan and Ghanem
proposed a new sparse optimization model (L0TVPADMM) that used an L0 norm as the
fidelity term to solve the reconstruction problem based on the TV model [11]. Adam
et al. proposed the HNHOTV-OGS method, which combined non-convex high-order total
variation and overlapping group sparse regularization [12]. Chartrand proposed a non-
convex optimization problem with the minimization of the Lp-pseudo-norm as the objective
function [13,14]. Subsequently, Chartrand and Staneva provided a theoretical condition
of the Lp-pseudo-norm to recover an arbitrary sparse signal [15]. Wu and Chen [16] and
Wen et al. [17] theoretically demonstrated the superiority of methods based on the Lp-
pseudo-norm. The Lp-pseudo-norm exhibited a stronger sparse representation ability than
the L1 norm. Therefore, it has garnered extensive research interest in recent years [18–23].
For example, Lin et al. imposed sparse constraints on the high-order gradients of the
image, combined the Lp-pseudo-norm with the total generalized variation model, and
proposed an image restoration algorithm that achieved good performance [22]. Based on
the mathematical model in [22], Wang et al. replaced the L1 norm with the Lp-pseudo-
norm to describe the statistical characteristics of salt-and-pepper noise and proposed an
image denoising method based on the Lp-pseudo-norm with low-order overlapping group
sparsity (Lp_LOGS) [23].

Among these algorithms, Lp_LOGS performed the best in removing salt-and-pepper
noise. However, this method only considers the prior information of the low-order gradient
of an image. This study proposes an image-deblurring model based on the Lp_LOGS
model to mine the high-order prior information of an IR image containing salt-and-pepper
noise, called Lp_HOGS. The second-order TV regularization term was introduced with
overlapping group sparsity into the LOGS model, and the Lp-pseudo-norm was retained in
the salt-and-pepper noise model. Experimental results show that compared with Lp_LOGS
and other advanced models, the proposed Lp_HOGS model demonstrated better peak
signal-to-noise ratio (PSNR), structural similarity (SSIM), and gradient magnitude similarity
deviation (GMSD). Additionally, the proposed model retained more image details, making
the visual effect greater in similarity to the original image. Finally, the proposed model
facilitated the subsequent target recognition and tracking processing of the image.

2. Materials and Methods
2.1. The Background to Deblurring Algorithms
2.1.1. The Lp-Pseudo-Norm

The Lp-pseudo-norm represents the distance in the vector space and is a generalized

concept of “distance.” The Lp norm of the matrix X is defined as ‖X‖p =

(
M
∑

i=1

N
∑

j=1

∣∣Xij
∣∣p) 1

p

,

when p is 1 and 2, and corresponds to the L1 and L2 norms, respectively. The Lp-pseudo-

norm is defined as ‖X‖p
p =

M
∑

i=1

N
∑

j=1

∣∣Xij
∣∣p. This study focused on the case where 0 <

p < 1. The contour maps of different norms are presented in Figure 1. The Lp-pseudo-
norm has one more degree of freedom than the L1 and L2 norms, and the contour of
the Lp-pseudo-norm was closest to the coordinate axis. Hence, the solution has a higher
probability of being a point that is on or close to the axis. The Lp-pseudo-norm has a
stronger sparse representation ability based on these reasons. Therefore, the Lp-pseudo-
norm was introduced into the model for salt-and-pepper denoising in this study.
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Figure 1. Contour maps of the different norms. (a) the L1 norm, (b) the L2 norm, and (c) the Lp-
pseudo-norm. 

2.1.2. The Overlapping Group Sparse TV Regularization Term 
The overlapping group sparse TV regularization term is expressed as: 

OGSTV ( ) ( ) ( )R φ φ= ∗ + ∗h vF K F K F  (1)

where ∗  represents the convolution operator, [1, 1]= −hK  is the first-order horizontal 
difference convolution kernel, F  is the original image, and [1, 1]T= −vK  is the first-order 
vertical difference convolution kernel. ( )φ V  is the function for calculating the combined 
gradient and is expressed as: 

 ( )
21 1

( )
N N

N N
i, j,K,K

i j
φ ×

= =

= ∈V V V   (2)

where  i, j,K,KV  represents the overlapping group sparsity matrix, which is defined as: 



, , 1 ,

1, 1, 1 1,

, , 1 ,

l l l l l r

l l l l l r

r l r l r r

i-K j -K i-K j-K i-K j+K

i-K j-K i-K j-K i-K j+K K K
i, j,K,K

i+K j-K i+K j-K i+K j+K

+

+ + + + ×

+

 
 
 = ∈ 
 
 
 





   


V V V

V V V
V

V V V

  (3)

where K  represents the length or width of the matrix of the combined gradient, 
1 ,

2 2l r
K KK K−   = =      

, and .    means round down to the nearest integer. 
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uses the gradient of the pixel point ( , )i j  as the center, constructs a K K×  matrix, com-
bines it using the L2 norm, and replaces the independent gradient of the pixel point. Com-
pared with the traditional anisotropic TV regularization term, the overlapping group 
sparse TV regularization term fully mines the gradient information of each pixel and con-
siders the structural information of the image, thereby increasing the difference between 
the smooth and the edge areas of the image. 

  

Figure 1. Contour maps of the different norms. (a) the L1 norm, (b) the L2 norm, and (c) the
Lp-pseudo-norm.

2.1.2. The Overlapping Group Sparse TV Regularization Term

The overlapping group sparse TV regularization term is expressed as:

ROGSTV(F) = ϕ(Kh ∗ F) + ϕ(Kv ∗ F) (1)

where ∗ represents the convolution operator, Kh = [1,−1] is the first-order horizontal
difference convolution kernel, F is the original image, and Kv = [1,−1]T is the first-order
vertical difference convolution kernel. ϕ(V) is the function for calculating the combined
gradient and is expressed as:

ϕ(V) =
N

∑
i=1

N

∑
j=1
‖Ṽi,j,K,K‖2

(
V ∈ RN×N

)
(2)

where Ṽi,j,K,K represents the overlapping group sparsity matrix, which is defined as:

Ṽi,j,K,K =


Vi−Kl ,j−Kl Vi−Kl ,j−Kl+1 . . . Vi−Kl ,j+Kr

Vi−Kl+1,j−Kl Vi−Kl+1,j−Kl+1 . . . Vi−Kl+1,j+Kr
...

...
. . .

...
Vi+Kr ,j−Kl Vi+Kr ,j−Kl+1 . . . Vi+Kr ,j+Kr

 ∈ RK×K (3)

where K represents the length or width of the matrix of the combined gradient, Kl =⌊
K−1

2

⌋
, Kr =

⌊
K
2

⌋
, and b.cmeans round down to the nearest integer.

As indicated in Equation (3), the overlapping group sparse TV regularization term
uses the gradient of the pixel point (i, j) as the center, constructs a K× K matrix, combines
it using the L2 norm, and replaces the independent gradient of the pixel point. Compared
with the traditional anisotropic TV regularization term, the overlapping group sparse TV
regularization term fully mines the gradient information of each pixel and considers the
structural information of the image, thereby increasing the difference between the smooth
and the edge areas of the image.

2.1.3. The Lp_LOGS Model

Blurred images are generally considered images corrupted by blur kernels and additive
noise. They can be represented by the following linear mathematical model:

G = H ∗ F + η (4)
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where G represents the degraded image to be deblurred, H is the blur kernel, and η is the
additive noise, specifically the salt-and-pepper noise in this study.

The application of the Lp_LOGS model to solve F is an ill-posed inverse problem,
which is expressed as:

F = argmin
F
‖H ∗ F−G‖p

p + µ[ROGSTV(F)], (5)

where ‖H ∗ F−G‖p
p is the fidelity term, ROGSTV(F) is the prior term, and µ is the balance

coefficient used to balance the prior and the fidelity terms.
The Lp_LOGS model leverages the Lp-pseudo-norm and overlapping group sparse TV

regularization term, vastly outperforming the traditional ATV model in terms of deblurring.
However, the Lp_LOGS model only considers the overlapping group sparse constraints of
the low-order gradient information of the image.

To mine the prior information of the high-order gradient of an image, the second-order
overlapping group sparse TV regularization term was introduced into the Lp_LOGS model.
The proposed novel deblurring model is expressed as:

F = argmin
F
‖H ∗ F−G‖p

p + µ1[ϕ(Kh ∗ F)] + µ2[ϕ(Kv ∗ F)]

+µ3[ϕ(Kh ∗Kh ∗ F)] + µ4[ϕ(Kv ∗Kv ∗ F)] + µ5[ϕ(Kv ∗Kh ∗ F)],
(6)

where µi(i = 1, 2, 3, 4, 5) represents the balance coefficient, Kh ∗ Kh is the second-order
horizontal difference convolution kernel, Kv ∗ Kv is the second-order vertical difference
convolution kernel, and Kv ∗Kh is the second-order mixed difference convolution kernel.

This model was named Lp_HOGS to represent a deblurring model based on the
Lp-pseudo-norm with high-order overlapping group sparsity regularization.

2.2. The Solution of the Lp_HOGS Model

The alternating direction method of multipliers (ADMM) was used to solve the
Lp_HOGS model. When solving this model, ADMM transformed the original complex
problem into several relatively simple subproblems by introducing decoupling variables.

According to the ADMM solution framework, the intermediate variables Z0 = H ∗
F−G, Z1 = Kh ∗ F, Z2 = Kv ∗ F, Z3 = Kh ∗Kh ∗ F, Z4 = Kv ∗Kv ∗ F,Z5 = Kv ∗Kh ∗ F, were
included and the original problem was transformed into an optimization problem with
constraints, which is expressed as:

J = min
Z0∼Z5

{‖Z0‖p
p + µ1[ϕ(Z1)] + µ2[ϕ(Z2)]

+µ3[ϕ(Z3)] + µ4[ϕ(Z4)] + µ5[ϕ(Z5)]}.
(7)

The corresponding Lagrange multiplier Λi(i = 0, 1, 2, 3, 4, 5) and quadratic penalty
coefficient βi(i = 0, 1, 2, 3, 4, 5) were used to transform Equation (7) into an unconstrained
optimization problem, i.e., the augmented Lagrange objective function of the original
problem, which is expressed as:

J = max
Λ0∼Λ5

{ min
F,Z0∼Z5

{‖Z0‖p
p − 〈β0Λ0, Z0 − (H ∗ F−G)〉+ β0

2 ‖Z0 − (H ∗ F−G)‖2
2

+µ1[ϕ(Z1)]− 〈β1Λ1, Z1 −Kh ∗ F〉+ β1
2 ‖Z1 −Kh ∗ F‖2

2
+µ2[ϕ(Z2)]− 〈β2Λ2, Z2 −Kv ∗ F〉+ β2

2 ‖Z2 −Kv ∗ F‖2
2

+µ3[ϕ(Z3)]− 〈β3Λ3, Z3 −Kh ∗Kh ∗ F〉+ β3
2 ‖Z3 −Kh ∗Kh ∗ F‖2

2
+µ4[ϕ(Z4)]− 〈β4Λ4, Z4 −Kv ∗Kv ∗ F〉+ β4

2 ‖Z4 −Kv ∗Kv ∗ F‖2
2

+µ5[ϕ(Z5)]− 〈β5Λ5, Z5 −Kv ∗Kh ∗ F〉+ β5
2 ‖Z5 −Kv ∗Kh ∗ F‖2

2}},

(8)

where 〈X, Y〉 represents the inner product of the X, Y matrices.
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0 =
βi
2
‖Λi‖2

2 −
βi
2
‖Λi‖2

2(i = 0, 1, 2, 3, 4, 5) (9)

Subsequently, adding Equation (9) to the right side of Equation (8) obtains:

J = max
Λ0∼Λ5

{ min
F,Z0∼Z5

{‖Z0‖p
p +

β0
2 ‖Z0 − (H ∗ F−G)−Λ0‖2

2 −
β0
2 ‖Λ0‖2

2

+µ1[ϕ(Z1)] +
β1
2 ‖Z1 −Kh ∗ F−Λ1‖2

2 −
β1
2 ‖Λ1‖2

2
+µ2[ϕ(Z2)] +

β2
2 ‖Z2 −Kv ∗ F−Λ2‖2

2 −
β2
2 ‖Λ2‖2

2
+µ3[ϕ(Z3)] +

β3
2 ‖Z3 −Kh ∗Kh ∗ F−Λ3‖2

2 −
β3
2 ‖Λ3‖2

2
+µ4[ϕ(Z4)] +

β4
2 ‖Z4 −Kv ∗Kv ∗ F−Λ4‖2

2 −
β4
2 ‖Λ4‖2

2
+µ5[ϕ(Z5)] +

β5
2 ‖Z5 −Kv ∗Kh ∗ F−Λ5‖2

2 −
β5
2 ‖Λ5‖2

2}}.

(10)

Each subproblem must first be solved to solve the objective function. As the introduced
variables Zi(i = 0, 1, 2, 3, 4, 5), Λi(i = 0, 1, 2, 3, 4, 5), and F were decoupled, the objective
function corresponding to the subproblems of F became:

JF = min
F
{ β0

2 ‖Z0 − (H ∗ F−G)−Λ0‖2
2 +

β1
2 ‖Z1 −Kh ∗ F−Λ1‖2

2

+ β2
2 ‖Z2 −Kv ∗ F−Λ2‖2

2 +
β3
2 ‖Z3 −Kh ∗Kh ∗ F−Λ3‖2

2
+ β4

2 ‖Z4 −Kv ∗Kv ∗ F−Λ4‖2
2 +

β5
2 ‖Z5 −Kv ∗Kh ∗ F−Λ5‖2

2}.
(11)

The convolution theorem was used to apply the Fourier transform to both sides of
Equation (11), which is expressed as:

JF = min
F
{ β0

2 ‖(H ◦ F−G) + Λ0 − Z0‖
2
2 +

β1
2 ‖Kh ◦ F + Λ1 − Z1‖

2
2

+ β2
2 ‖Kv ◦ F + Λ2 − Z2‖

2
2 +

β3
2 ‖Kh ◦Kh ◦ F + Λ3 − Z3‖

2
2

+ β4
2 ‖Kv ◦Kv ◦ F + Λ4 − Z4‖

2
2 +

β5
2 ‖Kv ◦Kh ◦ F + Λ5 − Z5‖

2
2},

(12)

where ◦ denotes the dot product operator and X is the Fourier transform of the X matrix.
The partial derivative of F can be calculated using:

∂JF
∂F

= β0H∗ ◦ ((H ◦ F−G) + Λ0 − Z0) + β1Kh
∗ ◦ (Kh ◦ F + Λ1 − Z1)

+β2Kv
∗ ◦ (Kv ◦ F + Λ2 − Z2) + β3(Kh ◦Kh)

∗ ◦ (Kh ◦Kh ◦ F + Λ3 − Z3)

+β4(Kv ◦Kv)
∗ ◦ (Kv ◦Kv ◦ F + Λ4 − Z4)

+β5(Kv ◦Kh)
∗ ◦ (Kv ◦Kh ◦ F + Λ5 − Z5),

(13)

where X∗ represents the conjugate matrix of the X matrix.
Here, Equation (13) is assumed to be equal to a zero matrix and can be rearranged as:

LHS ◦ F = RHS (14)

where

LHS = β0H∗ ◦H + β1Kh
∗ ◦Kh + β2Kv

∗ ◦Kv + β3(Kh ◦Kh)
∗ ◦ (Kh ◦Kh)

+β4(Kv ◦Kv)
∗ ◦ (Kv ◦Kv) + β5(Kv ◦Kh)

∗ ◦ (Kv ◦Kh)
(15)

and
RHS = β0H∗ ◦ (Z0 + G−Λ0) + β1Kh

∗ ◦ (Z1 −Λ1)

+β2Kv
∗ ◦ (Z2 −Λ2) + β3(Kh ◦Kh)

∗ ◦ (Z3 −Λ3)

+β4(Kv ◦Kv)
∗ ◦ (Z4 −Λ4) + β5(Kv ◦Kh)

∗ ◦ (Z5 −Λ5).
(16)

The updated formula of F is expressed as:

F = F−1(RHS./LHS) (17)
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where ./ represents the dot division operator and F−1(X) is the inverse Fourier transform
of X.

The objective function to solve the subproblem Z0 is expressed as:

JZ0
= min

Z0
{ ‖Z0‖p

p +
β0

2
‖Z0 − (H ∗ F−G)−Λ0‖2

2 } (18)

According to the Lp shrinkage operator:

shrinkp(ξ, τ) = max{|ξ| − τ2−p|ξ|p−1, 0} ξ

|ξ| (19)

The updated formula of Z0 is expressed as:

Z0 = shrinkp

(
(H ∗ F−G) + Λ0, 1

β0

)
= max

{
|(H ∗ F−G) + Λ0| − β0

p−2|(H ∗ F−G) + Λ0|p−1, 0
}

(H∗F−G)+Λ0
|(H∗F−G)+Λ0|

.
(20)

Additionally, the objective function of the subproblem Z1 is expressed as:

JZ1
= min

Z1
{ µ1[ϕ(Z1)] +

β1

2
‖Z1 −Kh ∗ F−Λ1‖2

2} (21)

According to the ADMM algorithm, the updated formula of Z1 is expressed as:

Z1
(k+1)
(n+1) = mat{[I + µ1

β1
D2(Z1

(k+1)
(n) )]

−1
vec
(

Z1
(k+1)
(0)

)
} (Z1

(k+1)
(0) = Kh ∗ F + Λ

(k)
1 ) (22)

where mat is the vector matricization operator, vec is the matrix vectorization operator,
I ∈ RN2×N2

is the identity matrix, and D ∈ RN2×N2
is the diagonal matrix with diagonal

elements.

[D(U)]m,m =

√√√√√ Kr

∑
i=−Kl

Kr

∑
j=−Kl

{
Kr

∑
k1=−Kl

Kr

∑
k2=−Kl

∣∣Um−i+k1,m−J+k2

∣∣2}− 1
2

(23)

where U represents an arbitrary matrix.
Similarly, the updated formulas of Z2 ∼ Z5 can be obtained, which are expressed as:

Z2
(k+1)
(n+1) = mat{[I + µ2

β2
D2(Z2

(k+1)
(n) )]

−1
vec
(

Z2
(k+1)
(0)

)
}
(

Z2
(k+1)
(0) = Kv ∗ F + Λ

(k)
2

)
Z3

(k+1)
(n+1) = mat{[I + µ3

β3
D2(Z3

(k+1)
(n) )]

−1
vec
(

Z3
(k+1)
(0)

)
}
(

Z3
(k+1)
(0) = Kh ∗Kh ∗ F + Λ

(k)
3

)
Z4

(k+1)
(n+1) = mat{[I + µ4

β4
D2(Z4

(k+1)
(n) )]

−1
vec
(

Z4
(k+1)
(0)

)
}
(

Z4
(k+1)
(0) = Kv ∗Kv ∗ F + Λ

(k)
4

)
Z5

(k+1)
(n+1) = mat{[I + µ5

β5
D2(Z5

(k+1)
(n) )]

−1
vec
(

Z5
(k+1)
(0)

)
}
(

Z5
(k+1)
(0) = Kv ∗Kh ∗ F + Λ

(k)
5

)
.

(24)

The objective function to solve subproblem Λ0 is expressed as:

JΛ0
= max

Λ0
{ − 〈β0Λ0, Z0 − (H ∗ F−G)〉 } (25)

According to the gradient ascent method, the updated formula of Λ0 is expressed as:

JΛ0
= max

Λ0
{ − 〈β0Λ0, Z0 − (H ∗ F−G)〉 } (26)

where γ is the learning rate.
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The objective function to solve subproblem Λ1 is expressed as:

JΛ1
= max

Λ1
{ − 〈β1Λ1, Z1 −Kh ∗ F〉 } (27)

According to the gradient ascent method, the updated formula of Λ1 is expressed as:

Λ1
(k+1) = Λ1

(k) + γβ1(Kh ∗ F− Z1
(k+1)) (28)

Similarly, the updated formulas of Λ2 ∼ Λ5 can be obtained, which are expressed as:
Λ2

(k+1) = Λ2
(k) + γβ2(Kv ∗ F− Z2

(k+1))

Λ3
(k+1) = Λ3

(k) + γβ3(Kh ∗Kh ∗ F− Z3
(k+1))

Λ4
(k+1) = Λ4

(k) + γβ4(Kv ∗Kv ∗ F− Z4
(k+1))

Λ5
(k+1) = Λ5

(k) + γβ5(Kv ∗Kh ∗ F− Z5
(k+1)).

(29)

Hence, the subproblems are solved.
Given the above descriptions, the specific description of the Lp_HOGS algorithm is

shown in Algorithm 1.

Algorithm 1. Lp_ HOGS

Input Observed image G.
Output Deblurred image F.
Initialize:

k = 0, tol = 10−4, err = 1, p, γ, F = 0, Zi = 0, Λi = 0, µj, βi
(i = 0, 1, · · · , 5; j = 1, 2, · · · , 5).

1: If err > tol do
2: Use Equations (15)–(17) to update F;
3: Use Equation (20) to update Z0;
4: Use Equations (22) and (24) to update Zi(i = 1, 2, · · · , 5);
5: Use Equation (26) to update Λ0;
6: Use Equations (28) and (29) to update Λi(i = 1, 2, · · · , 5);
7: k = k + 1;
8: err = ‖F(k+1) − F(k)‖2/‖F(k)‖2;
9: End if
10: Return F(k) as F.

where tol represents the threshold.

3. Results and Discussion

The IR test images used in the experiment were downloaded from the publicly avail-
able datasets found at http://adas.cvc.uab.es/elektra/datasets/far-infra-red/ (accessed on
5 January 2022) and http://www.dgp.toronto.edu/~\{\}nmorris/data/IRData/ (accessed
on 5 January 2022). This study evaluated the quality of the denoised images from subjective
and objective aspects. The objective evaluation metrics used in this study are PSNR, SSIM,
and GMSD, which are defined using Equations (30)–(32), respectively:

PSNR = 10 log10(
2552

1
MN

M
∑

i=1

N
∑

j=1
‖xij − yij‖2

1

) (dB), (30)

SSIM =

(
2uXuY + (255k1)

2
)(

2σXY + (255k2)
2
)

(
u2

X + u2
Y + (255k1)

2
)(

σ2
X + σ2

Y + (255k2)
2
) , (31)

http://adas.cvc.uab.es/elektra/datasets/far-infra-red/
http://www.dgp.toronto.edu/~\{\}nmorris/data/IRData/
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where X and Y are the original and the restored image, respectively. uX and uY represent
the mean values of X and Y, respectively. σ2

X and σ2
Y represent the variances of X and Y,

respectively. σXY represents the covariance of X and Y. k1 and k2 are constants to ensure
that SSIM is not zero.

GMSD =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

{
[GMS]i,j −

1
MN

M

∑
i=1

N

∑
j=1

[GMS]i,j

}2

, (32)

where

[GMS]i,j =
2[mX]i,j[mY]i,j + c

[mX]
2
i,j + [mY]

2
i,j + c

. (33)

where c is a constant to ensure that the denominator is a non-zero number. [mX]i,j and
[mY]i,j refer to the gradient amplitude of the image in the horizontal and vertical direc-
tions, respectively.

Larger PSNR, closer-to-1 SSIM, and smaller GMSD values indicate better deblurring
performance.

The variable parameters were preset before the experiment to focus on PSNR opti-
mization before optimizing SSIM and GMSD. The variable parameters of the Lp_HOGS
model were set as follows:

The maximum number of iterations and the learning rate γ were set to 500 and 0.618,
respectively.

For each model, the balance coefficient µj(j = 1, 2, · · · , 5), the quadratic penalty coeffi-
cient βi(i = 0, 1, · · · , 5), and the Lp-pseudo-norm p were manually optimized to achieve
the best deblurring effect on the IR image and ensure a fair experiment.

A sensitivity experiment analysis revealed that K was essential and the image quality
indicators were optimal when K = 3 was the size of the matrix. The structured information
of the image could not be fully mined if the value of K was insignificant. Conversely,
unstructured information could be introduced if the value was excessively large.

3.1. The Comparison of Lp_HOGS with Lp_LOGS

Lp_HOGS and Lp_LOGS were compared to verify the effect of adding the second-
order overlapping group sparse TV regularization term. We added 30%, 40%, and 50%
salt-and-pepper noise to the Gaussian, box, and motion blurs to obtain nine degradation
combinations and compared the quality of the deblurred images. Nine distinct IR images
were selected as the test images. Images of a passerby, a station, a truck, a car, and some
buildings were 384 × 288 pixels each, and images of a garden, some stairs, a corridor, and a
zebra crossing were 506 × 408 pixels each.

3.1.1. The Gaussian Blur

The noise was generated by the MATLAB built-in function “noise (I, type, parame-
ters)”. For example, 30% of the salt-and-pepper noise was set to noise (I, ‘salt & Pepper’,
0.3). We included 30%, 40%, and 50% of the salt-and-pepper noise in the test images with a
7 × 7 Gaussian blur. The experimental results are summarized in Table 1.

The three performance indicators obtained by the Lp_HOGS model were higher than
those of the Lp_LOGS model; thereby demonstrating that the proposed method achieved
better deblurring and denoising effects. The Lp_HOGS model achieved average PSNR
values that were 0.304, 0.784, and 1.287 dB higher than those of the Lp_LOGS model when
the salt-and-pepper noise was 30%, 40%, and 50%, respectively. Therefore, the Lp_HOGS
model had a greater advantage when the noise levels increased.

The passerby images with different degrees of degradation are shown in Figure 2. The
deblurring effects using Lp_LOGS and Lp_HOGS are compared in Figure 3.
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Table 1. The Lp_HOGS and Lp_LOGS deblurring effects on images with the 7 × 7 Gaussian blur.
The optimal indicators for each condition are denoted in bold to facilitate data observation.

Image Noise Level
(%)

Lp_LOGS Lp_HOGS

PSNR (dB) SSIM GMSD PSNR (dB) SSIM GMSD

Passerby
30 40.8630 0.9455 0.0165 41.1052 0.9511 0.0118
40 39.8587 0.9397 0.0197 40.6369 0.9505 0.0139
50 38.3621 0.9247 0.0310 39.7808 0.9422 0.0178

Station
30 39.7670 0.9466 0.0126 39.9526 0.9504 0.0083
40 38.8663 0.9413 0.0146 39.6986 0.9497 0.0104
50 37.7629 0.9323 0.0177 38.5159 0.9428 0.0131

Truck
30 39.6943 0.9472 0.0096 39.8380 0.9502 0.0080
40 38.4550 0.9391 0.0122 39.2490 0.9491 0.0092
50 36.8715 0.9253 0.0254 38.4970 0.9420 0.0119

Garden
30 41.0244 0.9804 0.0115 41.2420 0.9879 0.0091
40 40.5242 0.9781 0.0135 40.8009 0.9871 0.0099
50 39.2265 0.9729 0.0214 40.0002 0.9850 0.0119

Stairs
30 41.0574 0.9826 0.0124 41.4211 0.9898 0.0084
40 40.1333 0.9801 0.0135 40.9604 0.9892 0.0096
50 38.6847 0.9709 0.0273 40.0652 0.9868 0.0114

Corridor
30 40.3201 0.9813 0.0128 40.7789 0.9904 0.0092
40 39.4102 0.9775 0.0156 40.4021 0.9897 0.0105
50 38.2169 0.9719 0.0300 39.6962 0.9872 0.0127

Car
30 39.5951 0.9456 0.0129 39.9887 0.9502 0.0088
40 38.6298 0.9397 0.0183 39.7841 0.9486 0.0103
50 36.7113 0.9101 0.0229 38.5019 0.9409 0.0163

Buildings
30 39.3587 0.9547 0.0171 39.8475 0.9606 0.0120
40 38.6073 0.9487 0.0190 39.2298 0.9589 0.0145
50 37.3181 0.9249 0.0345 38.6869 0.9531 0.0160

Zebra
crossing

30 39.9135 0.9868 0.0112 40.1558 0.9906 0.0099
40 38.9183 0.9843 0.0137 39.7001 0.9900 0.0111
50 37.7372 0.9755 0.0264 38.7267 0.9879 0.0133
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Figure 2. The passerby image with different degrees of degradation. (a) The original image, (b) the
7 × 7 Gaussian blur, and (c) the 7 × 7 Gaussian blur + 30% salt-and-pepper noise.

A comparison of Figure 2a,c with Figure 3b,c revealed that the image deblurred by
Lp_LOGS had more speckle noise than the one deblurred by Lp_HOGS. The images in the
red boxes in Figure 3b,c were enlarged to further visualize the difference between the two
and the results are displayed in Figure 3e,f, respectively.

The right half was a largely smooth area in Figure 3e,f. Figure 3f had less salt-and-
pepper noise compared with Figure 3e and its visual effect was closer to that of the original
image. The left half was mostly the edge area, therefore it was difficult to see the denoising
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effect. However, Figure 3f retained more details. For example, the lines of the iron fence
are clearer and more continuous. Overall, the visual effect of Figure 3f was closer to that
of the original image, indicating that the deblurring performance of Lp_HOGS under the
Gaussian blur was better than that of Lp_LOGS. Lp_HOGS also preserved more details
while suppressing the staircase effect of deblurred images.
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(b) the image deblurred using Lp_LOGS, and (c) the image deblurred using Lp_HOGS. (d–f) The
local enlarged images from the red boxes in (a–c), respectively.

3.1.2. The Box Blur

We added 30%, 40%, and 50% salt-and-pepper noise to the test images with a 7 × 7
box blur. The experimental results are listed in Table 2.

The three performance indicators obtained by the Lp_HOGS model were higher than
those obtained by the Lp_LOGS model. The Lp_HOGS model achieved average PSNR
values that were 0.362, 0.805, and 1.356 dB higher than those of the Lp_LOGS model when
the salt-and-pepper noise was 30%, 40%, and 50%, respectively. In terms of the difference
in the PSNR value, Lp_HOGS had a marginally greater advantage over Lp_LOGS in the
7 × 7 box blur than in the 7 × 7 Gaussian blur.

A station image with different degrees of degradation is shown in Figure 4. The images
that were deblurred by Lp_LOGS and Lp_HOGS are compared in Figure 5.
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Table 2. The Lp_HOGS and Lp_LOGS deblurring effects on images with a 7 × 7 box blur. The
optimal indicators for each condition are denoted in bold.

Image Noise Level
(%)

Lp_LOGS Lp_HOGS

PSNR (dB) SSIM GMSD PSNR (dB) SSIM GMSD

Passerby
30 40.8217 0.9457 0.0180 41.0760 0.9535 0.0124
40 40.1691 0.9402 0.0194 40.7809 0.9518 0.0144
50 38.7155 0.9303 0.0281 40.2154 0.9497 0.0159

Station
30 39.8743 0.9474 0.0094 40.1122 0.9532 0.0080
40 39.1676 0.9415 0.0114 39.7945 0.9521 0.0085
50 37.9245 0.9348 0.0268 39.1034 0.9487 0.0147

Truck
30 39.9195 0.9480 0.0091 40.1125 0.9534 0.0070
40 39.1053 0.9415 0.0108 39.7635 0.9520 0.0080
50 37.4036 0.9304 0.0252 38.7291 0.9481 0.0108

Garden
30 41.1108 0.9821 0.0107 41.3335 0.9872 0.0100
40 40.3230 0.9766 0.0167 40.8003 0.9863 0.0114
50 39.0822 0.9658 0.0279 39.8915 0.9853 0.0126

Stairs
30 41.0179 0.9832 0.0126 41.5490 0.9895 0.0102
40 40.0870 0.9786 0.0173 41.1270 0.9887 0.0117
50 38.6422 0.9701 0.0255 40.0578 0.9872 0.0133

Corridor
30 40.4221 0.9818 0.0162 41.0429 0.9905 0.0093
40 39.3766 0.9758 0.0247 40.5461 0.9897 0.0106
50 37.7766 0.9578 0.0424 39.4056 0.9882 0.0123

Car
30 39.6822 0.9454 0.0106 40.0593 0.9528 0.0090
40 38.8954 0.9362 0.0136 39.8088 0.9511 0.0106
50 37.5309 0.9199 0.0340 38.9581 0.9466 0.0136

Buildings
30 39.6155 0.9534 0.0129 40.2602 0.9642 0.0099
40 38.9742 0.9496 0.0154 39.7577 0.9618 0.0114
50 37.5042 0.9338 0.0258 39.3106 0.9594 0.0125

Zebra
crossing

30 40.0891 0.9851 0.0127 40.2653 0.9904 0.0104
40 38.9207 0.9816 0.0209 39.8872 0.9896 0.0118
50 37.6985 0.9721 0.0308 38.8089 0.9884 0.0136

A comparison of Figure 4a,c with Figure 5b,c revealed satisfactory overall deblurring
effects of Lp_LOGS and Lp_HOGS on images with the box blur. However, the image de-
blurred by Lp_LOGS contained more speckle noise than the image deblurred by Lp_HOGS.
The images in the red boxes in Figure 5b,c are enlarged in Figure 5e,f, respectively.

The upper halves of Figure 5e,f were mostly smooth areas. The model used to create
Figure 5f removed salt-and-pepper noise more thoroughly than that used on Figure 5e
and its visual effect was closer to the original image. The lower half mostly contained
the edge area. Thus, the denoising effect was not evident. However, Figure 5f retained
more detail from the original image. For example, the car logo is clearer. Overall, the
visual effect of Figure 5f was closer to that of the original image, indicating that Lp_HOGS
exhibited better deblurring performance than Lp_LOGS under the box blur. It was also
reconfirmed that Lp_HOGS preserved more detail while suppressing the staircase effect of
the deblurred images.
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station image, (b) the image deblurred using Lp_LOGS, and (c) the image deblurred using Lp_HOGS.
(d–f) The Local enlarged images from the red boxes in (a–c), respectively.

3.1.3. The Motion Blur

Finally, 30%, 40%, and 50% salt-and-pepper noise were added to the test images with
a 7 × 7 motion blur. The experimental results are listed in Table 3.

The three performance indicators obtained by the Lp_HOGS model were higher than
those obtained by the Lp_LOGS model. The Lp_HOGS model achieved average PSNR
values that were 1.387, 1.774, and 2.372 dB higher than those of the Lp_LOGS model when
the salt-and-pepper noise was 30%, 40%, and 50%, respectively. The difference in the PSNR
values showed that Lp_HOGS had more obvious advantages over Lp_LOGS in the motion
blur than in the Gaussian and box blurs.

The images of a truck with different degrees of degradation are shown in Figure 6.
The deblurring effects of Lp_LOGS and Lp_HOGS are compared in Figure 7.
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Figure 6. The truck image with different degrees of degradation. (a) The original image, (b) the 7 × 7
motion blur, and (c) the 7 × 7 motion blur + 50% salt-and-pepper noise.

A comparison of Figure 6a,c with Figure 7b,c revealed that Lp_LOGS and Lp_HOGS
achieved satisfactory deblurring effects in terms of motion blur. Furthermore, the perfor-
mance edge of the proposed model was similar to that under the Gaussian and the box
blurs. The deblurring effects are depicted in Figure 7b,c,e,f.
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Table 3. The Lp_HOGS and Lp_LOGS deblurring effects on images with the 7 × 7 motion blur. The
optimal indicators under each condition are denoted in bold.

Image Noise Level (%)
Lp_LOGS Lp_HOGS

PSNR (dB) SSIM GMSD PSNR (dB) SSIM GMSD

Passerby
30 41.4154 0.9473 0.0224 42.7863 0.9643 0.0109
40 40.0856 0.9324 0.0384 41.4734 0.9594 0.0176
50 38.0234 0.9293 0.0487 40.0456 0.9535 0.0311

Station
30 41.0730 0.9534 0.0134 42.2171 0.9660 0.0048
40 39.3011 0.9415 0.0253 40.7997 0.9629 0.0088
50 36.5096 0.9263 0.0349 38.5807 0.9573 0.0139

Truck
30 41.1586 0.9441 0.0132 42.1004 0.9665 0.0039
40 39.1459 0.9408 0.0178 41.0177 0.9639 0.0058
50 36.0788 0.9372 0.0291 39.1823 0.9590 0.0117

Garden
30 43.1018 0.9877 0.0116 44.4994 0.9929 0.0063
40 41.6052 0.9857 0.0144 43.3407 0.9913 0.0096
50 38.3654 0.9733 0.0356 40.5691 0.9876 0.0269

Stairs
30 43.2679 0.9900 0.0133 44.7027 0.9947 0.0102
40 41.3666 0.9861 0.0221 42.9469 0.9939 0.0119
50 38.2970 0.9779 0.0330 40.0135 0.9884 0.0343

Corridor
30 41.8418 0.9888 0.0138 43.5307 0.9939 0.0092
40 40.0657 0.9841 0.0281 41.8881 0.9920 0.0132
50 37.3735 0.9703 0.0404 39.4419 0.9854 0.0368

Car
30 41.1081 0.9562 0.0084 42.2795 0.9664 0.0048
40 38.9419 0.9439 0.0155 40.9768 0.9635 0.0074
50 35.9764 0.9350 0.0406 38.7575 0.9583 0.0157

Buildings
30 39.8062 0.9577 0.0203 41.3484 0.9716 0.0080
40 37.7007 0.9430 0.0359 39.9433 0.9673 0.0137
50 34.1941 0.9151 0.0686 37.6026 0.9592 0.0243

Zebra crossing
30 41.8608 0.9909 0.0110 43.6546 0.9952 0.0061
40 40.2476 0.9880 0.0167 42.0393 0.9934 0.0135
50 37.2561 0.9760 0.0414 39.2335 0.9891 0.0300
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3.2. The Comparison with Other Methods

This section compares the proposed model with existing models, including ATV [4],
ITV [5], L0TVPADMM [9], and HNHOTV-OGS [10]. Nine distinct IR images were selected
as test images. The truck, the buildings, the car, and the figure images were 384 × 288 pixels,
and the garden, the stairs, the corridor, the road, and the zebra crossing images were
506 × 408 pixels. The experimental results are listed in Table 4 and the unit of PSNR as dB.

Table 4. The deblurring effects of Lp_HOGS and the other methods on the images with a 7 × 7
Gaussian blur. The optimal indicators under each condition are denoted in bold.

Image
Noise Level

30% 40% 50%

Method PSNR SSIM GMSD PSNR SSIM GMSD PSNR SSIM GMSD

Truck

ITV 30.0291 0.8884 0.0616 29.5562 0.8893 0.0651 29.1880 0.8837 0.0691
ATV 35.3620 0.9228 0.0331 33.4723 0.9087 0.0412 31.4261 0.8976 0.0529

HNHOTV-OGS 36.9788 0.9246 0.0280 34.6626 0.9037 0.0365 32.1012 0.8763 0.0490
L0TVPADMM 37.1920 0.9033 0.0271 36.5800 0.8964 0.0291 35.5870 0.8682 0.0326

Lp_HOGS 39.8380 0.9502 0.0080 39.2490 0.9491 0.0092 38.4970 0.9420 0.0119

Garden

ITV 36.4479 0.9357 0.0379 36.0066 0.9318 0.0400 34.5629 0.9233 0.0456
ATV 37.1587 0.9376 0.0352 36.6090 0.9321 0.0385 35.2160 0.9221 0.0432

HNHOTV-OGS 38.8667 0.9429 0.0290 37.7810 0.9328 0.0329 36.5325 0.9163 0.0380
L0TVPADMM 39.2100 0.9290 0.0274 39.0490 0.9347 0.0287 38.7830 0.9260 0.0293

Lp_HOGS 41.2420 0.9879 0.0091 40.8009 0.9871 0.0099 40.0002 0.9850 0.0119

Stairs

ITV 36.1477 0.9353 0.0480 35.5521 0.9303 0.0517 34.4880 0.9225 0.0562
ATV 37.2454 0.9394 0.0426 36.3834 0.9312 0.0469 35.4070 0.9222 0.0517

HNHOTV-OGS 38.2716 0.9351 0.0375 37.1927 0.9226 0.0425 35.8911 0.9027 0.0494
L0TVPADMM 38.8690 0.9273 0.0350 38.6270 0.9251 0.0360 38.3940 0.9227 0.0370

Lp_HOGS 41.4211 0.9898 0.0084 40.9604 0.9892 0.0096 40.0652 0.9872 0.0127

Corridor

ITV 35.1721 0.9273 0.0544 34.5450 0.9227 0.0581 33.8964 0.9122 0.0676
ATV 35.7739 0.9299 0.0519 34.8115 0.9202 0.0565 33.9243 0.9078 0.0628

HNHOTV-OGS 37.4461 0.9281 0.0420 36.4630 0.9151 0.0470 34.9757 0.8995 0.0558
L0TVPADMM 38.5150 0.9404 0.0373 38.4240 0.9395 0.0375 38.0550 0.9343 0.0391

Lp_HOGS 40.7789 0.9904 0.0092 40.4021 0.9897 0.0105 39.6962 0.9872 0.0127

Road

ITV 34.1196 0.9351 0.0443 33.5094 0.9300 0.0472 32.6307 0.9202 0.0520
ATV 34.7909 0.9377 0.0411 33.8026 0.9289 0.0456 32.7069 0.9155 0.0515

HNHOTV-OGS 37.3621 0.9451 0.0302 36.3655 0.9355 0.0338 34.8160 0.9167 0.0404
L0TVPADMM 38.5640 0.9462 0.0262 38.0270 0.9378 0.0276 37.7320 0.9401 0.0289

Lp_HOGS 40.6179 0.9926 0.0077 40.1633 0.9921 0.0088 39.0861 0.9901 0.0119

Buildings

ITV 30.1056 0.8555 0.0613 29.7495 0.8454 0.0645 29.2963 0.8365 0.0676
ATV 34.8630 0.9071 0.0374 33.1033 0.8860 0.0443 30.4774 0.8579 0.0585

HNHOTV-OGS 36.8107 0.9336 0.0286 34.9021 0.9140 0.0356 32.4871 0.8845 0.0470
L0TVPADMM 37.0520 0.9258 0.0276 36.1780 0.9121 0.0305 35.5460 0.8971 0.0328

Lp_HOGS 39.8475 0.9606 0.0120 39.2298 0.9589 0.0145 38.6869 0.9531 0.0160

Car

ITV 30.9921 0.8883 0.0555 30.6337 0.8809 0.0578 30.2899 0.8763 0.0602
ATV 36.0531 0.9175 0.0310 34.6872 0.9013 0.0363 32.1603 0.8813 0.0485

HNHOTV-OGS 37.1645 0.9217 0.0273 35.1484 0.8987 0.0344 32.7652 0.8685 0.0453
L0TVPADMM 37.6620 0.9099 0.0255 37.0140 0.8986 0.0275 36.0630 0.8790 0.0307

Lp_HOGS 39.9887 0.9502 0.0088 39.7841 0.9486 0.0103 38.5019 0.9409 0.0163

Figure

ITV 29.1305 0.8744 0.0861 28.4494 0.8759 0.0931 27.5542 0.8740 0.1032
ATV 35.3557 0.9040 0.0420 33.2249 0.8911 0.0537 29.7096 0.8736 0.0806

HNHOTV-OGS 35.2386 0.8793 0.0426 32.6695 0.8424 0.0573 30.0911 0.7974 0.0771
L0TVPADMM 37.3870 0.8962 0.0318 36.7670 0.8834 0.0357 36.2720 0.8739 0.0378

Lp_HOGS 40.9767 0.9431 0.0094 39.7917 0.9420 0.0147 38.7635 0.9378 0.0190

ZebraCrossing

ITV 33.9752 0.9193 0.0454 33.4185 0.9134 0.0484 32.4327 0.9023 0.0542
ATV 34.8510 0.9267 0.0410 33.8304 0.9170 0.0462 32.9694 0.9032 0.0510

HNHOTV-OGS 37.3081 0.9374 0.0309 36.1585 0.9271 0.0353 34.5367 0.9018 0.0426
L0TVPADMM 38.3140 0.9391 0.0324 38.0470 0.9377 0.0284 37.1780 0.9284 0.0360

Lp_HOGS 40.1558 0.9906 0.0099 39.7001 0.9900 0.0111 38.7267 0.9879 0.0133

ITV performed the worst, whereas Lp_HOGS outperformed the other four methods
in terms of PSNR, SSIM, and GMSD. The PSNR of Lp_HOGS under 30%, 40%, and 50%
salt-and-pepper noise was at least 1.2 dB higher than that of L0TVPADMM, which had the
second-best PSNR. Therefore, the proposed Lp_HOGS model achieved better performance
for removing salt-and-pepper noise than the other state-of-the-art methods. In addition, the



Algorithms 2022, 15, 327 15 of 16

IR image after deblurring obtained a better visual effect, which is conducive to subsequent
image analysis and processing.

4. Conclusions

This study proposed an image-deblurring model based on the LOGS model to mine the
high-order prior information of an IR image containing salt-and-pepper noise. The LOGS
regularization term was investigated, combining the advantage of the Lp-pseudo-norm in
describing salt-and-pepper noise with replacing the low-order term with a high-order term.
The proposed IR image-deblurring model (Lp_HOGS) successfully deblurred an IR image
under salt-and-pepper noise. Lp_HOGS achieved average PSNR values that were 0.304,
0.784, and 1.287 dB higher for salt-and-pepper noise at 30%, 40% and 50%, respectively,
than those of the Lp_LOGS model for a Gaussian blur. Similarly, Lp_HOGS was 0.362,
0.805, and 1.356 dB higher for the box blur and 1.387, 1.774, and 2.372 dB higher for the
motion blur. The findings of this study resulted in the following conclusions:

1. Upon adding the Gaussian blur and different levels of salt-and-pepper noise to a
given test image, the Lp_HOGS model exhibited a better deblurring effect than
the existing models. This result implies that the Lp-pseudo-norm had a stronger
sparse representation ability and the overlapping group sparsity regularization term
increased the difference between the smooth and the edge areas of an image.

2. Upon adding the different types of blur and levels of salt-and-pepper noise to a given
test image, Lp_HOGS yielded stronger indicators than Lp_LOGS. This advantage
became greater as the noise level increased. Therefore, the high-order prior informa-
tion of the image improved the quality of the deblurred IR images and the stability of
salt-and-pepper noise removal.

3. The advantage of Lp_HOGS over Lp_LOGS was most obvious in terms of the mo-
tion blur, indicating that adding the prior constraints of the high-order gradient
to the model could significantly improve the IR image deblurring effect amid the
motion blur.

A limitation of this approach is that the application of the Lp_HOGS model is time-
consuming. In our future work, we will accelerate the process by introducing accelerated
ADMM to improve the performance and efficiency of the proposed method. Nevertheless,
the proposed Lp_HOGS model provides a new approach to reduce the salt-and-pepper
noise impact on IR images.
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