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Abstract: The Deep Operator Network (DeepONet) framework is a different class of neural network
architecture that one trains to learn nonlinear operators, i.e., mappings between infinite-dimensional
spaces. Traditionally, DeepONets are trained using a centralized strategy that requires transferring
the training data to a centralized location. Such a strategy, however, limits our ability to secure
data privacy or use high-performance distributed/parallel computing platforms. To alleviate such
limitations, in this paper, we study the federated training of DeepONets for the first time. That is,
we develop a framework, which we refer to as Fed-DeepONet, that allows multiple clients to train
DeepONets collaboratively under the coordination of a centralized server. To achieve Fed-DeepONets,
we propose an efficient stochastic gradient-based algorithm that enables the distributed optimization
of the DeepONet parameters by averaging first-order estimates of the DeepONet loss gradient. Then,
to accelerate the training convergence of Fed-DeepONets, we propose a moment-enhanced (i.e.,
adaptive) stochastic gradient-based strategy. Finally, we verify the performance of Fed-DeepONet
by learning, for different configurations of the number of clients and fractions of available clients,
(i) the solution operator of a gravity pendulum and (ii) the dynamic response of a parametric library
of pendulums.

Keywords: deep learning; federated learning; deep operator networks; stochastic-gradient descent

1. Introduction

High-fidelity numerical methods have revolutionized how we predict and simulate
complex engineering dynamical systems, such as power grids, robotics, and communication
networks. However, these methods become prohibitively expensive as the complexity
of the system increases. Furthermore, the elevated computational cost of these methods
has prevented their use for tasks that require multiple forward simulations, e.g., control,
optimization, and uncertainty quantification. Thus, it is imperative to develop faster
numerical solvers to tackle the most complex problems in science and engineering.

1.1. Previous Works

Deep learning [1] has radically advanced the state-of-the-art in areas such as computer
vision and natural language processing and promises to deliver faster tools for predicting
and simulating complex dynamical systems. As a result, a recent wave of novel works
has developed neural-network-based surrogates to replace current numerical simulation
methods. These neural-network-based surrogates (i) learn to predict the future states of
the system based on the current state [2–4], (ii) encode the underlying physics equations
during training [5], and (iii) identify sparse representations of the underlying dynamic
equations from streams of data [6–8]. However, most of these neural surrogate models
require retraining when the system experiences new (i) operating conditions, (ii) inputs,
or (iii) parametric realizations. These drawbacks have limited the application of neural
networks to game-changing technologies such as digital twins [9].
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To tackle the above drawbacks, in the seminal paper [10], Lu et al. built on the uni-
versal approximation theorem for nonlinear operators [11] to design a Deep Operator
Network (DeepONet) framework. DeepONet is trained using gradient-based optimization
methods (e.g., Adam [12]) to approximate a mapping between two infinite-dimensional
spaces, e.g., the solution operator of a complex dynamical system. Compared to more
traditional neural networks [1], the proposed DeepONet effectively learns such a complex
mapping using streams of scattered data and exhibits enhanced generalization capabili-
ties. These capabilities have been demonstrated in applications, including multi-physics
problems [13], power systems [14], and control systems [15]. However, the gradient-based
training for DeepONet requires transferring all the training data to a centralized location
for processing. Such a practice may prevent using DeepONet for applications where (i) the
data are collected from multiple clients whose security must be protected or (ii) multiple
distributed/parallel high-performances are available for training. Examples of such ap-
plications include the development of digital twins for predicting (i) household electrical
consumption, (ii) vehicular traffic flow, or (iii) the transmission dynamics of contagious
diseases (e.g., COVID-19).

To circumvent the data security properties and allow the distributed training of neural
networks, McMahan et al. [16] introduced Federated Learning as a newly developed learn-
ing framework with appealing properties. Federated learning (i) allows multiple clients
to train a collaborative learning model under the coordination of a centralized server and
(ii) keeps the training data on local clients where data privacy, security, and access rights
are a matter of vital interest. Keeping the data at local clients protects data privacy, and
coordinating local updates with a centralized server saves significant data transfer volume,
which yields beneficial communication cost reduction. The standard formulation of feder-
ated learning is a distributed optimization framework that tackles communication costs
and client robustness [17]. Central to the formulation is communication efficiency, which
directly motivates the most well-known efficient communication algorithm in federated
learning: the federated averaging (FedAvg) algorithm [16]. FedAvg has been studied under
realistic scenarios in [18–20]. Furthermore, many works have provided convergence proofs
of the algorithm within the field of optimization [21–24].

1.2. Our Work

In this paper, we aim to develop, for the first time, a federated [16] training framework
for Deep Operator Networks, which we refer to as Fed-DeepONet. To this end, we propose
an efficient stochastic gradient-based algorithm that enables the distributed optimization
of the DeepONet parameters by averaging first-order estimates of the DeepONet loss
gradient. Then, we propose a moment-enhanced (i.e., adaptive) stochastic gradient-based
strategy that increases the speed of training convergence of Fed-DeepONet, i.e., an Adaptive
Fed-DeepONet framework. Finally, as a proof of concept, we verify the performance of Fed-
DeepONet using two experiments with different configurations of the number of clients
and different fractions of available clients. The experiments aim at training Fed-DeepONets
for learning (i) the solution operator of a pendulum and (ii) the dynamic response of a
parametric library of pendulums.

We remark that compared to the traditional federated training of neural networks
(FedAvg), the proposed Fed-DeepONet algorithms target the more complex problem of
approximating, in a distributed/federated manner, the infinite-dimensional response of
nonlinear operators. As a result, we can use a trained Fed-DeepONet to tackle complex
engineering and scientific computing tasks (e.g., learning digital twins or materials science
discovery). These tasks are inherently infinite-dimensional, and we can model them
as input-output nonlinear operators. For these infinite-dimensional tasks, however, the
traditional FedAvg for training neural networks, which only approximates mappings
between finite-dimensional spaces in a distributed manner, will fail unless the designer
makes stringent/unrealistic assumptions (e.g., computes the output response for only a
fixed parameter value or a single initial condition) and uses enormous datasets. In addition,
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we will demonstrate in our numerical experiments that Fed-DeepONet significantly reduces
the generalization error, similar to the centralized DeepONet. This generalization capability
makes the proposed Fed-DeepONet framework more robust to non-independent and
identically distributed scenarios than the traditional FedAvg training strategy for deep
neural networks. Finally, the proposed Fed-DeepONet has the following unique feature: It
can effectively tackle data heterogeneity problems in the output functional space (i.e., when
the parametric responses of the clients are different) by learning all possible parametric
responses.

We organize the rest of the paper as follows. Section 2 provides a brief review of
the centralized training of Deep Operator Networks (DeepONet). Section 3 proposes
gradient-based and moment-enhanced (i.e., adaptive) algorithms for the federated training
of DeepONets (Fed-DeepONet). In Section 4, we demonstrate the effectiveness of the
proposed Fed-DeepONet by learning (i) the solution operator of a gravity pendulum and
(ii) a library of pendulums. Finally, Section 5 discusses our results and limitations, and
Section 6 concludes the paper.

2. Background Information

Let us consider the problem of approximating a nonlinear operator G from data.
Operator G maps two infinite-dimensional spaces, i.e., it maps an input function u to an
output function G(u). The input u may (i) represent, for example, a forcing term, a control
input, or a parametric realization and (ii) belong to the space of continuous or measurable
functions. Let y ∈ Y denote a query location within the output domain Y. Then, our
goal in this paper is to employ a Deep Operator Network (DeepONet) Gθ with trainable
parameters θ ∈ Rs to learn from data nonlinear operators G(u)(y) at query locations y ∈ Y.

As a proof of concept, in our numerical experiments (see Section 4), we will study the
problem of learning the solution operator G arising when solving a complex dynamical
system described via the initial value problem (IVP):

d
dt

x(t) = f (x(t), u(t); λ), t ∈ [0, T],

x(0) = x0,
(1)

where x(t) ∈ Rd is the vector-valued state function, u(t) ∈ Rm is an input function, λ ∈ Rp

is a parameter realization, and f : Rd ×Rm → Rd is the unknown vector field. The solution
operator of (1), i.e., G : u 7→ G(u) ≡ x, is given by

G(u)(t) = x0 +
∫ t

0
f (G(u)(s), u(s); λ)ds, t ∈ [0, T]. (2)

Let us now review the traditional centralized strategy for training DeepONets.

Centralized Training of DeepONets

To approximate G, DeepONet [10] employs a neural network architecture (see Figure 1)
that uses two subnetworks: the Trunk network and the Branch network.
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Figure 1. The DeepONet’s architecture. The Branch (resp. Trunk) network processes the input
function um (resp. query location within the output function domain y ∈ Y). The DeepONet’s output
uses a dot product (represented via a crossed node) to fuse the trainable coefficients of the Branch’s
output (b ∈ Rq) with the trainable basis functions of the Trunk’s output (ϕ ∈ Rq).

The Branch network processes the input function u information. Let (x1, . . . , xm) be the
collection of m interpolation points (x1, . . . , xm) (known as sensors in the original paper [10])
that enable us to discretize/encode the input function, i.e., um := (u(x1), . . . , u(xm)). The
Branch network maps this discretized input um to a vector of trainable coefficients b ∈ Rq.
On the other hand, the Trunk network processes the query location y ∈ Y. To this end,
the Trunk network maps the query location y to the following collection of trainable basis
functions:

ϕ := (ϕ1(y), . . . , ϕq(y)) ∈ Rq.

The output of DeepONet is then computed by fusing the trainable coefficients b with
the trainable basis functions ϕ using the following dot product:

Gθ(um)(y) :=
q

∑
i=1

bi · ϕi(y). (3)

The traditional DeepONet Gθ centralized training strategy collects the following
training dataset from possibly distributed locations:

Dcent :=
{

u(k)
m , y(k), G(u(k)

m )(y(k))
}N

k=1
.

Then, at a centralized location, one trains the DeepONet parameter θ by minimizing
(e.g., using the gradient-based Adam [12] algorithm) the following mean squared loss
function:

L(θ) = 1
N

N

∑
k=1

∥∥∥Gθ(u
(k)
m )(y(k))− G(u(k)

m )(y(k))
∥∥∥2

2

over the centralized datasetDcent. Such a centralized training strategy may (i) fail to protect
the privacy of distributed clients, e.g., when learning digital twins for engineering applica-
tions, or (ii) prevent using high-performance parallel and distributed computing frame-
works for scientific computing applications. To alleviate the aforementioned limitations
of the centralized strategy, we propose, in the following section, a federated/distributed
training strategy for DeepONets, which we refer to as Fed-DeepONet.

3. Federated Deep Operator Networks (Fed-DeepONet)

Let us start this section by describing some mathematical notations from federated
learning [17]. We let b·c denote the floor function, and we use ‖ · ‖2 to denote the standard
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Euclidean norm. For any given positive integer n, we let [n] denote the set {1, 2, . . . , n}. We
let C denote the number of clients participating in the federated training of DeepONet and
use variable c to describe the clients within the set of clients [C]. For each client c ∈ [C],
we use Lc and ∇Lc to denote the c-th client’s corresponding DeepONet loss and gradient
of the loss Lc. We let ∇L̃c denote the stochastic gradient of Lc computed using the c-
th client’s dataset. This stochastic gradient ∇L̃c is an unbiased estimator of the exact
gradient ∇Lc [25]. We also denote pc as the weight of the c-th client such that pc =

nc
∑i∈[C] ni

∈ (0, 1), where nc > 0 is the number of data triplets in the c-th client. Let K denote

the number of local stochastic gradient updates taken by each client c ∈ [C] and let R denote
the number of global synchronization events (also known as the number of communication
rounds).

To train the proposed Fed-DeepONet, we follow a distributed optimization strategy.
For traditional neural networks, this distributed strategy was introduced in [16,18], and
it is known as federated averaging (FedAvg). Formally, we aim to solve the following
optimization problem:

min
θ∈Rs

∑C
c=1 Lc(θ)

∑C
c=1 nc

. (4)

In the above, Lc(θ) := ∑nc
j=1 `

(
θ; d(j)

c

)
, where θ ∈ Rs and `

(
θ; d(j)

c

)
is the c-th client’s

DeepONet loss function based on θ and the data triplet d(j)
c := {u(j)

m,c, y(j)
c , G(u(j)

m,c)(y
(j)
c )}

collected by the c-th client, i.e.,

`
(

θ; d(j)
c

)
=
∥∥∥Gθ(u

(j)
m,c)(y

(j)
c )− G(u(j)

m,c)(y
(j)
c )
∥∥∥2

2
.

Here, we have used the notations um,c, yc and G(um,c)(yc) to emphasize that um,c, yc
and G(um,c)(yc) are, respectively, a discretized input, query location, and solution operator
value collected by the c-th client.

The proposed Fed-DeepONet framework can work with independent and identi-
cally distributed and non-independent and identically distributed (heterogeneous) data.
However, most of the applications we seek for Fed-DeepONet (e.g., learning digital
twins, scientific computing, or material discovery) will present some level of data het-
erogeneity. For example, when the clients’ data presents slightly different properties while
sharing some others. To provide a more detailed explanation for the causes of hetero-
geneous data, let us use the joint probability density function pi({um, y}, G(um)(y)) of
the i-th client input–output data samples. Observe that we can factorize this joint as
pi({um, y}, G(um)(y)) = pi({um, y})pi(G(um)(y)|{um, y}). Using this factorization, we
can establish three causes of heterogeneous data for Fed-DeepONet.

1. Different input distributions. In this situation, we have pi({um, y}) 6= pj({um, y}) and
pi(G(um)(y)|{um, y}) = pj(G(um)(y)|{um, y}) for some i, j ∈ [C]. This situation may
occur when learning digital twins for synchronous generators. Suppose all the partic-
ipating clients have generators with the same parameters and assume the datasets
collected by each client are different. For instance, assume most clients have stable
trajectories in their datasets, while the rest may have many unstable and disturbance
trajectories. Such a situation makes the functional input space of the different clients
skewed. However, notice that the output functional space remains the same for all
clients. In Section 4.3, we will design a simple experiment that evaluates the perfor-
mance of Algorithms 1 and 2 to different levels of input distribution heterogeneity.

2. Different conditional distributions. In this situation, we have the conditional probabilities
satisfy pi(G(um)(y)|{um, y}) 6= pj(G(um)(y)|{um, y}) and pi({um, y}) = pj({um, y}).
For an example within the proposed framework, consider the generator digital twin
learning task again. Then an example of this situation is when the clients use the
same excitation signals for system identification but have generators with different
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parameters and responses. This paper will not approach such a situation from a
federated learning perspective. Instead, we show, in our experiments (see Section 4.4),
that Fed-DeepONet can tackle this heterogeneous data situation by learning all pa-
rameter realizations (i.e., a library of digital twins) provided each client has access
to the generators’ parameters. If the client does not know the parameters, then one
could, for example, keep some of the Branch network parameters private. Such a
strategy will control the bias introduced during each synchronization round. We left
the details of this strategy for our future work.

3. Different joint probabilities. In this situation, each client’s input and output functional
spaces may have slightly different characteristics. In Section 4.3, we present a simple
experiment that aims at testing such a situation.

To train the proposed Fed-DeepONet, we first propose a federated averaging imple-
mentation of the stochastic gradient descent algorithm. Such an implementation requires
us to loop over the following three steps:

1. Broadcast to clients: The centralized server broadcasts to all the clients c ∈ [C] the
most up-to-date DeepONet parameters, which we denote as θk. Here k is an integer
variable used to denote the local update number for the c-th client.

2. Client local updates: For any c ∈ [C], the c-th client receives the most up-to-date
DeepONet parameters θk, sets θc

k = θk, and then executes K ≥ 1 local stochastic

gradient DeepONet updates over the client’s dataset {d(j)
c }nc

j=1, i.e.,

γc
k+1 = θc

k − η∇L̃c(θc
k),

where η is the learning rate, and γc
k+1 is the immediate result of the one-step stochastic

gradient update from θc
k, which implies that θc

k+1 = γc
k+1 if k + 1 mod K is not equal

to zero.
3. Global synchronization: The centralized server aggregates the local DeepONet parame-

ters into a unique global Fed-DeepONet parameter as follows, θk+K := ∑c∈[C] pcγc
k+K.

We provide a summary of the aforementioned training strategy for Fed-DeepONet in
Algorithm 1.

Algorithm 1 Federated Deep Operator Network (Fed-DeepONet) learning. Denote by (i) θc
k the

DeepONet parameters of the c-th client, (ii) γc
k the immediate result from θc

k via a local
stochastic gradient update, and (iii) η the learning rate. A global synchronization round
of the DeepONet parameters is executed by the centralized server every K steps. Run the
algorithm for R DeepONet synchronization rounds. Formally, for each client c ∈ [C], the
client locally runs:

γc
k+1 = θc

k − η∇L̃c(θc
k), (5)

θc
k+1 =


γc

k+1 if k + 1 mod K 6= 0

∑C
c=1 pcγc

k+1 if k + 1 mod K = 0.
(6)

Theoretically, under some assumptions, one can show (see [21] for details) the con-
vergence of Algorithm 1. In practice, however, not all the clients may be available for
federated DeepONet training. To handle this intermittent training scenario, we introduce
the set Ak ⊆ [C], denoting the clients available at global synchronization round k (note
that Ak is assumed to be fixed for the next K local updates). Furthermore, we observed
that Algorithm 1 might present slow convergence when training Fed-DeepONets (see
Section 4.1). One can improve the Fed-DeepONet training convergence by using adaptive
(also known as momentum-enhanced) stochastic gradient-based strategies, e.g., Adam [12].
We summarize in Algorithm 2 a federated strategy for handling a variable number of
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available clients, which collectively trains Fed-DeepONet using a local adaptive stochastic
optimization scheme. We call this strategy the Adaptive Fed-DeepONet.

Algorithm 2 Adaptive Federated Deep Operator Network (Adaptive Fed-DeepONet) learning.
Denote by (i) θc

k the DeepONet parameters of the c-th client, (ii) γc
k the immediate result

from θc
k via an adaptive local stochastic gradient with momentum update, (iii) η the step-

size, (iv) β1, β2 ∈ [0, 1) the exponential decay rates for the moment estimates, (v) mc
k the

first-moment vector, (vi) vc
k the second-moment vector, and (vii) ε � 1 a small positive

number introduced to avoid division by zero during Adaptive Fed-DeepONet. A global
synchronization round of the DeepONet parameters is executed by the centralized server
every K steps. Run the algorithm for R DeepONet synchronization rounds. Formally, for
each client c ∈ Ak, the client locally runs:

t = k + Kbk/Kc+ 1,

mc
k+1 =

 (1− β1)∇L̃c(θc
k) if k mod K 6= 0

β1mc
k + (1− β1)∇L̃c(θc

k) if k mod K = 0.

vc
k+1 =


(1− β2)

(
∇L̃c(θc

k)
)2 if k mod K 6= 0

β2vc
k + (1− β2)

(
∇L̃c(θc

k)
)2 if k mod K = 0.

m̂c
k+1 = mc

k+1/(1− (β1)
t) and v̂c

k+1 = vc
k+1/(1− (β2)

t),

γc
k+1 = θc

k − η ·
m̂c

k+1(√
v̂c

k+1 + ε
) , (7)

θc
k+1 =


γc

k+1 if k + 1 mod K 6= 0

∑C
c=1 pcγc

k+1 if k + 1 mod K = 0.
(8)

4. Numerical Experiments

This section tests the efficacy of the proposed Fed-DeepONet framework. To this end,
we use four experiments. In the first experiment (see Section 4.1), we compare the federated
training performance of the two proposed algorithms: Algorithm 1 (Fed-DeepONet) and
Algorithm 2 (Adaptive Fed-DeepONet). In the second experiment (see Section 4.2), we
employ the Adaptive Fed-DeepONet to learn the solution operator of a pendulum. In the
third experiment, we verify how the performance of Fed-DeepONet changes when we
vary the data heterogeneity. In the final experiment (see Section 4.4), we approximate the
dynamic response of a library of pendulums using an Adaptive Fed-DeepONet. Let us
start this section by describing the neural networks used for DeepONet, the distributed
training dataset, and the metrics used to evaluate Fed-DeepONet.

Neural networks. To build the Branch and Trunk networks, we used feed-forward
neural networks. For the Branch, we used 1 hidden layer with a width of 50 neurons.
Further, the Branch’s input and output layers have, respectively, m (defined later) and 50
neurons. For the Trunk, we also used 1 hidden layer with 50 neurons. The Trunk’s input and
output layers have, respectively, 1 and 50 neurons. We obtained these values for the design
of the Branch and Trunk networks after employing a simple routine of hyper-parameter
optimization. For the activation function, we employed the classical ReLU function. We
coded these neural networks in PyTorch and published the code on GitHub.

Training dataset. For each experiment, we collected, using the true operator G, N =

10,000 training data triplets, i.e., {u(k)
m , y(k), G(u(k)

m )(y(k))}N
k=1. Then, we distributed these
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training data triplets among the C clients without repetition. Note that in these experiments,
we used the number of clients C as a parameter to test the performance of Fed-DeepONet.

Metrics. To test the performance of Fed-DeepONet, we computed the L2-relative error
between solution trajectories. That is, for a given discretized input um, we use the trained
Fed-DeepONet (denoted as Gθ∗ , where θ∗ is the vector of trained/optimized parameters)
to predict the solution trajectory V̂um := {Gθ∗(um)(t) : t ∈ Tm} at a collection of selected
points Tm ⊂ [0, T]. Let Vum := {G(um)(t) : t ∈ Tm} denote the solution generated by the
true solution operator G, then we compute the L2-relative error as follows:

eL2 :=
‖Vum − V̂um‖2

‖Vum‖2
· 100%.

Pendulum system. In this section, we study the performance of Fed-DeepONet (Algorithm 1)
and Adaptive Fed-DeepONet (Algorithm 2) using the following pendulum system with
dynamics:

d
dt

x1(t) = x2(t), t ∈ [0, T],

d
dt

x2(t) = −k sin x1(t) + u(t).
(9)

The parameters used to describe the above pendulum dynamics are the simulation
time-horizon T, the pendulum’s constant k, and the initial condition x0. In our first
and second experiments (Sections 4.1 and 4.2), we selected T = 1.0 s, k = 1.0, and
x0 = (0, 0). These are the same parameter values used in the original centralized DeepONet
paper [10] and our proposed centralized Bayesian DeepONet paper [26]. For our fourth
experiment, we allowed k to take values within the interval [0.5, 1.5]. We selected this
arbitrary interval to showcase the ability of the Adaptive Fed-DeepONet to approximate
libraries of parametrically complex dynamical systems (e.g., pendulums). Finally, we want
to remark that, in practice, the values for these parameters depend on the dynamical system
under study.

To generate the training and testing datasets, we follow [10,26] and sample the control
input u that drives the pendulum (9) from the mean-zero Gaussian Random Field (GRF):

u ∼ G(0, k`(x1, x2)),

where the covariance kernel is k`(x1, x2) = exp
(
−‖x1 − x2‖2

2/2`2), i.e., the radial basis
function (RBF) kernel with length-scale parameter ` = 0.2. We will also test the efficacy
of the proposed Fed-DeepONet using the following collection of out-of-distribution input
functions [10]: {t, sin(πt), t sin(2πt)}.

4.1. Experiment 1: Comparing Fed-DeepONet (Algorithm 1) and Adaptive Fed-DeepONet
(Algorithm 2)

In our first experiment, we quickly verify our previous statement that Algorithm 1
presents slow convergence when training Fed-DeepONets. To this end, we construct an
idealized federated training scenario and compare the global training convergences of
Fed-DeepONet (Algorithm 1) and Adaptive Fed-DeepONet (Algorithm 2). The proposed
idealized scenario assumes we have C = 20 clients and a fraction α = 0.75 of the C clients,
selected uniformly at random at each global synchronization round, perform federated
training. The federated dynamics are controlled by the number of synchronization rounds
and the number of local updates, which we set, respectively, to the values R = 20 and
K = 200.

Figure 2 depicts the results of applying federated training using Algorithm 1 and
Algorithm 2. Notice that, as expected, the training convergence of Fed-DeepONet is
poor compared to the training convergence of the Adaptive Fed-DeepONet. We remark
that this result is not new. In centralized deep learning [27], even though most of the
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theoretical results are developed for stochastic gradient descent (SGD), one often uses
adaptive versions of SGD in practice. These adaptive methods generally deal better with
the non-convex nature of the loss function and training dynamics. These results motivate
us to only employ the Adaptive Fed-DeepONet to demonstrate the proposed framework’s
performance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No. of synchronization rounds

10 5

10 4

10 3

Gl
ob

al
 tr

ai
ni

ng
 lo

ss
Alg. 1 - Fed-DeepONet
Alg. 2 - Adaptive Fed-DeepONet

Figure 2. A comparison of the federated training convergence between Fed-DeepONet (Algorithm 1)
and Adaptive Fed-DeepONet (Algorithm 2). We used an idealistic federated scenario with C = 20
clients with a fraction α = 0.75 of available clients, R = 20 global synchronization rounds, and
K = 200 local updates.

4.2. Experiment 2: Learning the Pendulum’s Solution Operator G

In this experiment, we used the adaptive Fed-DeepONet to approximate the solution
operator G of the gravity pendulum with control input u described above.

Verifying the performance of Fed-DeepONet. In this experiment, we tested the proposed
Fed-DeepONet using C = 20 as the available clients. Notice that the number of clients C
is a problem-dependent parameter. However, since we are interested in learning solution
operators of complex dynamical systems, the potential applications for Fed-DeepONet
may have a small number of clients. This motivates us to consider cases where the number
of clients satisfies C ≤ 50. Further, we set the number of global synchronization DeepONet
rounds to R = 20 and the number of local updates to K = 200 using a simple routine of
hyper-parameter optimization [27]. We remark, however, that, in practice, one may need
to select the parameter values for K and R considering problem-dependent constraints,
such as computational resources, communication resources, near real-time performance, or
cyber-security.

Figure 3 illustrates the prediction of the trained Fed-DeepONet Gθ∗ via Algorithm 2
for three solution trajectories driven by test input trajectories generated using the GRF
and not included in the training dataset. Furthermore, we computed the mean L2-relative
error using the 100 test trajectories. We obtained a mean L2-relative error of eL2 = 1.362%.
Such a result illustrates the potential of DeepONet for protecting clients’ data privacy or
employing high-performance distributed computing frameworks while preserving the
extraordinary prediction capability of the centralized DeepONet.

Similarly, Figure 4 depicts the prediction of Fed-DeepONet Gθ∗ , trained using
Algorithm 2, for the solution trajectories driven by the out-of-distribution inputs u(t) ∈
{t, sin(πt), t sin(2πt)}. The results illustrate that Fed-DeepONet preserves the generaliza-
tion capability of the centralized DeepONet.

Testing the sensitivity of Fed-DeepONet with respect to design parameters. This experiment
tests the sensitivity of FeedDeepONet against the number of clients C and the fraction of
available clients, which we denote as α ∈ (0, 1]. First, we fixed the fraction of available
clients to α = 0.75 and varied the number of clients within set C ∈ {10, 20, 40, 50}. Then,
we fixed the number of clients to C = 20 and varied the fraction of available clients within
the set α ∈ {0.25, 0.5, 0.75, 1.0}.
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Figure 3. Fed-DeepONet Gθ∗ prediction of three solution trajectories driven by three inputs generated
using a Gaussian Random Field but not included in the training dataset. The computed L2-relative
errors are: (left) eL2 = 0.442%, (middle) eL2 = 1.252%, and (right) eL2 = 1.561%.
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Figure 4. Fed-DeepONet Gθ∗ prediction of three solution trajectories driven by three out-of-
distribution inputs: (left) u(t) = t, (middle) u(t) = sin(πt), and (right) u(t) = t sin(2πt). The
computed L2-relative errors are: (left) eL2 = 1.813%, (middle) eL2 = 0.748%, and (right) eL2 = 2.296%.

Tables 1 and 2 depict the mean and standard deviation of the L2-relative errors eL2 for
the solution trajectories obtained using the 100 test input trajectories for different numbers
of clients C or fractions of available clients α. The results illustrate that Fed-DeepONet is
robust to the different possible configurations of federated training.

Table 1. The mean and standard deviation of the L2-relative errors computed when predicting with
Fed-DeepONet Gθ∗ 100 test solution trajectories driven by control inputs generated from a Gaussian
Random Field and a variable number of clients within the set C ∈ {10, 20, 40, 50}.

# of Clients C 10 20 40 50

mean eL2 0.989% 1.154% 1.815% 2.613%
st.dev. eL2 1.069% 1.543% 2.057% 4.043%

Table 2. The mean and standard deviation of the L2-relative errors computed when predicting with
Fed-DeepONet Gθ∗ 100 test solution trajectories driven by control inputs generated from a Gaussian
Random Field and variable fraction of available clients within the set α ∈ {0.25, 0.5, 0.75, 1.0}.

Frac. Available Clients α 0.25 0.5 0.75 1.0

mean eL2 1.495% 1.324% 1.154% 1.362%
st.dev. eL2 1.362% 2.091% 1.543% 1.316%

Enabling different fractions of available clients during federated training. In this experiment,
we tested the performance of the Adaptive Fed-DeepONet using a more realistic scenario,
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where fraction α of available clients is time-dependent, i.e., it can vary during federated
training. To this end, we fix the number of clients to C = 20 and allow the fraction of
available clients to vary at each global synchronization round. In particular, we let α take
any value within the interval [0.1, 1.0]. In other words, we always have at least 10% of
clients available for federated training. After employing Fed-DeepONet, the mean and
standard deviation of the L2-relative errors eL2 for the solution trajectories obtained using
the 100 test input trajectories are, respectively, 1.016% and 0.845%. Clearly, these results
illustrate that even in this more realistic scenario, the adaptive Fed-DeepONet framework
can effectively learn such a complex infinite dimensional operator.

4.3. Experiment 3: Fed-DeepONet and Data Heterogeneity

To test the effect of data heterogeneity on the performance of Fed-DeepONet
Algorithms 1 and 2, we designed the following two experiments.

In the first experiment, we modify the amount of data heterogeneity as follows. Consider
the centralized dataset Dcent with N data triplets {u(k)

m , y(k), G(u(k)
m )(y(k))}. We sort this

dataset according to the target operator values G(u(k)
m )(y(k)) (i.e., from smallest to largest).

Then, we divide the sorted dataset into nshards blocks/shards (for simplicity, we let nshard ≥
C). We then assign to each of the clients nshards/C blocks for sampling data. Notice that
as the value of nshards/C increases, the federated dataset becomes more independent and
identically distributed. This is because the clients can get data from multiple blocks, making
the data samples more diversified. As a result, the densities pi({um, y}, G(um)(y)) and
pj({um, y}, G(um)(y)) become more statistically alike. On the other hand, as the value
of nshards/C decreases, the data heterogeneity increases. In particular, for this simple
experiment, the data heterogeneity reaches its maximum when nshards = C.

To verify the effect of data heterogeneity, we consider a federated training scenario
with C = 20 clients and allow the fraction of available clients to vary at each global
round. Moreover, we use R = 20 global synchronization rounds and K = 200 local
updates. Figure 5 (left) (resp. Figure 5 (right)) depicts the mean L2 relative error for 100
in-distribution (resp. out-of-distribution) trajectories when we vary the data heterogeneity
(i.e., nshards/C ∈ {1, 2, . . . , 10, 15, 20}). The results show that for the most extreme data
heterogeneous setting, i.e., when nshards = C, Algorithm 1 outperforms Algorithm 2.
However, in the less extreme data heterogeneity scenarios, Algorithm 2 has an excellent
performance, similar to the case when the data collected by each client is independent and
identically distributed.
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Figure 5. Fed-DeepONet Gθ∗ (Algorithms 1 and 2) performance change on the in-distribution (left)
and out-of-distribution (right) test trajectories when we vary the data heterogeneity using nshards/C.

In our second experiment, we modify the input functional distribution (that is, the input
data heterogeneity) for some of the C clients. In particular, we use two distinct Gaussian
Random Fields (GRF). The first GRF uses the length-scale `1 = 0.2 and the second GRF uses
`2 = `1 + ∆. We use the control parameter ∆ to increase the heterogeneity between the two
input distributions. We follow a federated training scenario similar to the one described in
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the previous example and randomly assign one of the input distributions to each of the C
clients.

Figure 6 (left) (resp. Figure 6 (right)) depicts the mean L2 relative error for 100 in-
distribution (resp. the out-of-distribution) trajectories when we vary the functional input
data heterogeneity (i.e., we increase ∆). The results illustrate that as we increase the
input data heterogeneity (i.e., as we increase ∆ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}), the
performance of the proposed adaptive Fed-DeepONet (Algorithm 2) does not deteriorate.
Such a result shows that Algorithm 2 is robust against changes in the input distribution.
Note also that Algorithm 1 is also not affected by the increase in data heterogeneity. The
performance of Algorithm 1, however, is not acceptable.
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Figure 6. Fed-DeepONet Gθ∗ (Algorithms 1 and 2) performance change on the in-distribution
(left) and out-of-distribution (right) test trajectories when we increase the input functional data
heterogeneity by increasing control parameter ∆.

4.4. Experiment 4: Learning a Library of Pendulums

In this experiment, we verified the capability of Fed-DeepONet Gθ∗ trained using
Algorithm 2 for approximating the dynamic response of a library of pendulums. That is,
we trained the Fed-DeepONet to approximate the dynamic response of all the pendulums
whose parameter k satisfies k ∈ [0.5, 1.5]. Note that the true solution operator for the
library of pendulums is G(um, k)(t) for t ∈ [0, T]. Thus, the desired DeepONet will have
two inputs to the Branch network; that is, um and k. For testing purposes, we sampled k
uniformly within the interval [0.5, 1.5].

For the experiment, we set R = 20, K = 200, C = 50, and α = 0.5. Figure 7 (resp.
Figure 8) depicts the Fed-DeepONet’s prediction of three solution trajectories driven by
three test in-distribution (resp. out-of-distribution) inputs and the parameter k sampled
uniformly from the interval [0.5, 1.5]. Furthermore, the corresponding mean L2-relative
error for the 100 (resp. three) solution trajectories driven by the test inputs (resp. the out-
of-distribution inputs) is eL2 = 2.582% (resp. eL2 = 3.347%). The results clearly show that
Fed-DeepONet effectively predicts and generalizes the dynamic response of a parametric
library of pendulums.
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Figure 7. Fed-DeepONet Gθ∗ prediction of three solution trajectories driven by three inputs generated
using a Gaussian Random Field but not included in the training dataset, and the parameter k sampled
uniformly within the interval [0.5, 1.5]. The computed L2-relative errors are: (left) eL2 = 0.442%,
(middle) eL2 = 1.252%, and (right) eL2 = 1.561%.
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Figure 8. Fed-DeepONet Gθ∗ prediction of three solution trajectories driven by three out-of-
distribution inputs: (left) u(t) = t, (middle) u(t) = sin(πt), and (right) u(t) = t sin(2πt) and
parameter k sampled uniformly within the interval [0.5, 1.5]. The computed L2-relative errors are:
(left) eL2 = 1.726%, (middle) eL2 = 0.419%, and (right) eL2 = 10.012%.

5. Discussion

Our results: In this paper, we have presented a series of illustrative numerical experi-
ments that aim to provide a glimpse of the potential of Fed-DeepONets for learning the
solution operator of complex dynamical systems in a distributed manner. We have shown
that the Adaptive Fed-DeepONet is robust to several scenarios, including time-dependent
available clients or a different number of clients. We remark, however, that depending
on the application, one must carefully select the hyper-parameters used for describing
federated learning (e.g., K or R) or the dynamical system under study. For instance, one
may obtain the parameter values for Fed-DeepONets using a hyper-parameter optimization
routine that respects the underlying constraints of the problem.

The limitations of Fed-DeepONet: The proposed Fed-DeepONet framework has the
following limitations. (i) Fed-DeepONet cannot assimilate data in real time. In other words,
the federated training of DeepONets must be performed offline. This limitation is a direct
consequence of using batch stochastic gradient descent and its variants for neural network
training. One may use a distributed version of Kalman Filters to alleviate this limitation.
However, training neural network parameters with Kalman Filters is a challenging task.
(ii) While Fed-DeepONet protects data privacy, it may not protect the client’s information.
A skillful adversary may infer information about the client’s process from observing the
parameters transmitted to the central server. A simple solution to alleviate this limitation
may be to keep some of the parameters private. (iii) Fed-DeepONet may fail to optimize
multi-objective loss functions or constrained problems. This is another limitation inherited
from using stochastic gradient descent for unconstrained optimization. Two possible
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solutions are as follows. One may use a penalty method to transform the problem into an
unconstrained one. On the other hand, one may design a federated evolutionary strategy
that can handle the underlying multi-objective problem.

Our future work: First, we aim to employ Fed-DeepONet to build digital twins for
(i) distributed renewable energy resources and (ii) city-wide predictive models for the
transmission of contagious diseases (e.g., COVID-19). Then, we will apply Fed-DeepONet
to accelerate material science by enabling training with high-performance distributed and
parallel computing platforms. Finally, we aim to extend our federated optimization strategy
to a federated sampling strategy that enables quantifying uncertainty for DeepONets.

6. Conclusions

This paper proposed a federated learning strategy for Deep Operator Networks (Fed-
DeepONet). In particular, we introduced two algorithms that enabled extending the
classical stochastic gradient descent and its momentum-enhanced (i.e., adaptive) version
to the federated setting for training DeepONets. As a proof of concept, we illustrated
the performance and efficacy of Fed-DeepONet using two experiments. In particular, we
trained Fed-DeepONets to allow a collection of clients (not all the clients available all the
time) to learn, in a distributed manner, (i) the solution operator of a gravity pendulum and
(ii) the dynamic response of a library of pendulums.
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