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Abstract: In this paper, we propose an efficient numerical computation method of reduced-order
controller design for linear time-invariant systems. The design problem is described by linear matrix
inequalities (LMIs) with a rank constraint on a structured matrix, due to which the problem is non-
convex. Instead of the heuristic method that approximates the matrix rank by the nuclear norm,
we propose a numerical projection onto the rank-constrained set based on the alternating direction
method of multipliers (ADMM). Then the controller is obtained by alternating projection between the
rank-constrained set and the LMI set. We show the effectiveness of the proposed method compared
with existing heuristic methods, by using 95 benchmark models from the COMPLeib library.

Keywords: reduced-order control; rank constraint; linear matrix inequality; alternating projection;
convex optimization

1. Introduction

It is well known that a stabilizing output-feedback controller and an H∞ controller of
a linear time-invariant system can be obtained by solving linear matrix inequalities (LMIs),
assuming that the order of the controller is more than or equal to that of the controlled
plant model [1,2]. Since the set of optimization variables described by LMIs is convex,
the problem can be efficiently solved by convex optimization solvers such as Sedumi [3],
SDPT3 [4], and MOSEK [5]. Also, LMIs are easily coded with YALMIP [6] and CVX [7] on
MATLAB, and CVXPY [8] on Python.

Practically, it is preferred for implementation to use a low-order controller, especially
a static controller of a high-order plant, which we call a reduced-order controller. To obtain
a reduced-order controller that has a lower order than the plant is however known to be
NP-hard [9] due to a rank constraint [10]. Therefore, we need to employ a heuristic method
to efficiently obtain an approximated reduced-order controller. Actually, a couple of heuristic
methods have been proposed; the XY-centring algorithm [11], the cone complementarity
linearization algorithm [12], and alternating projection methods [13,14], to name a few.

More recently, the nuclear norm minimization with LMIs has been proposed to cope
with this hard problem [15–19]. This is based on the fact that the nuclear norm of a matrix
well approximates the matrix rank [20]. Since the nuclear norm is a convex function and the
set described by LMIs is also a convex set, the problem boils down to a convex optimization
problem that can be solved very efficiently. The nuclear norm heuristic has been recently
applied to, e.g., principal component analysis [21], image denoising [22,23], and system
identification [24,25].

Although the nuclear norm heuristic is widely used for rank-constrained problems, we
show by numerical examples in this paper that this is not necessarily efficient for reduced-
order controller design. Instead, we propose a new method to solve the reduced-order
controller design problem by extending the alternating projection method proposed in [13].
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The idea is to compute a more precise projection onto the set of rank-constrained structured
matrices by the alternating direction method of multipliers (ADMM) [26] . By numerical
examples in Section 4, we show that the proposed method significantly improves the
precision of the solution compared to the nuclear norm minimization [15] and the original
alternating projection method [13].

The organization of this paper is as follows: In Section 2, we show two reduced-order
control problems that are described as rank-constrained LMI problems. In Section 3, we
propose the alternating projection algorithm to solve the rank-constrained LMI problem.
Numerical examples are shown in Section 4 to illustrate the effectiveness of the proposed
method with 95 benchmark models from the COMPLeib library [27]. A summary is given
in Section 5.

We note that the MATLAB programs to check the numerical examples and the results
of stability tests for 95 benchmark models shown in Section 4 are available at the web page
of [28].

Notation

Let A be a matrix. The transpose of A is denoted by A>, the trace by tr(A), and the
rank by rank(A). The i-th singular value of A is denoted by σi(A). In this paper, we use
two kinds of matrix norms: one is the Frobenius norm ‖A‖ of A is defined by

‖A‖ ,
√

tr(A>A) =

√
n

∑
i=1

σ2
i (A). (1)

Matrix inequalities A � 0, A � 0, A ≺ 0, and A � 0 respectively mean A is positive
definite, positive semidefinite, negative definite, and negative semidefinite. For A ∈ Rn×m

with r = rank(A) < n, A⊥ is a matrix that satisfies

A⊥ ∈ R(n−r)×n, A⊥A = 0, A⊥A⊥> � 0. (2)

By Sn, we denote the set of n× n real symmetric matrices.
For a closed subset Ω of Sn, the projection operator of X ∈ Sn onto Ω is denoted by

ΠΩ, that is,
ΠΩ(X) ∈ arg min

Z∈Ω
‖Z− X‖, (3)

and the distance from X to Ω is defined by

dist(X, Ω) , min
Z∈Ω
‖Z− X‖. (4)

2. Reduced-Order Controller Design Problems

In this section, we show two examples of reduced-order controller design.

2.1. Reduced-Order Stabilizing Controllers

Let us consider the following linear time-invariant system:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), t ≥ 0, (5)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. For this
system, we consider an output-feedback controller u = Ky, whose order is assumed to
be nc < n. Then, the reduced-order output-feedback controller design is described as the
following feasibility problem [10].

Problem 1 (Stabilizing controller). Find X1, X2 ∈ Sn such that the rank constraint

rank
[

X1 I
I X2

]
≤ n + nc, (6)
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and LMIs

−
[

X1 I
I X2

]
� 0, (7)

B⊥(AX1 + X1 A>)B⊥> � −εI, (8)

C>⊥(X2 A + A>X2)C>⊥> � −εI (9)

hold for some ε > 0

We note that the inequality “� −εI” can be “≺ 0,” however for the projection-based
algorithm described in Section 3, we introduce small ε > 0 to make the subsets closed.

2.2. Reduced-Order H∞ Controllers

Let us consider the following generalized plant:

G :

ẋ(t)
z(t)
y(t)

 =

 A B1 B2
C1 D11 D12
C2 D21 0

x(t)
w(t)
u(t)

, t ≥ 0, (10)

where we assume that (A, B2) is stabilizable and (C2, A) is detectable. Let Tzw denote the
feedback connection (or the linear fractional transformation) [29] of G and a controller K
such that u = Ky. Then, the problem is to seek a controller K of order nc ≤ n such that the
H∞ norm of Tzw satisfies ‖Tzw‖∞ < γ with a given γ > 0. This problem is described as
LMIs with a rank constraint [10,30].

Problem 2 (H∞ controller). Find X1, X2 ∈ Sn such that the rank constraint (6), the LMI (7),
and the following LMIs: B2

D12
0

⊥AX1 + X1 A> X1C>1 B1
C1X1 −γI D11
B>1 D>11 −γI

 B2
D12

0

⊥>� −εI, (11)

C>2
D>21

0

⊥X2 A + A>X2 X2B1 C>1
B>1 X2 −γI D>11

C1 D11 −γI

C>2
D>21

0

⊥>� −εI (12)

hold for some ε > 0.

3. Algorithms

In this section, we propose a new algorithm based on the projection onto the set of
rank-constrained structured matrices.

3.1. Proposed Algorithm

First, we define function F(X1, X2) such that F(X1, X2) � 0 is equivalent to the LMIs
to be solved. For Problem 1 for example, F(X1, X2) � 0 means that the LMIs (7)–(9) hold.
Namely, we consider the following problem including Problems 1 and 2.

Problem 3. Find a pair of matrices (X1, X2) ∈ S2
n such that

rank
[

X1 I
I X2

]
≤ r, F(X1, X2) � 0. (13)
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Then, we propose alternating projection [31] to solve the rank-constrained LMI prob-
lems. For this, we define the two closed subsets of S2

n:

Ωr ,
{
(X1, X2) ∈ S2

n : rank
[

X1 I
I X2

]
≤ r
}

, (14)

Λ ,
{
(X1, X2) ∈ S2

n : F(X1, X2) � 0
}

. (15)

Then, the problem is that of finding a pair of matrices (X1, X2) in Ωr ∩ Λ with r =
n + nc. For this, we adapt alternating projection between Ωr and Λ. The iterative algorithm
is given by

Z[k] = ΠΩr (X[k]),

X[k + 1] = ΠΛ(Z[k]), k = 0, 1, 2, . . . ,
(16)

where X[0] = (X1[0], X2[0]) ∈ S2
n is a given initial guess of (X1, X2). The computation of

the projection operators ΠΩr and ΠΛ are shown in the next following subsections.
We show a stability result for this algorithm as follows:

Lemma 1. The sequences {X[k]} and {Z[k]} generated by (16) satisfy the following inequalities:

‖X[k + 1]− Z[k + 1]‖ ≤ ‖X[k]− Z[k]‖,
dist(X[k + 1], Ωr) ≤ dist(X[k], Ωr),

dist(Z[k + 1], Λ) ≤ dist(Z[k], Λ), k = 0, 1, 2, . . .

(17)

where dist is the distance function defined in (4).

The proof is given in Appendix A.

Remark 1. We can also adopt the Dykstra algorithm [32] that gives an element in Ωr ∩Λ that
is a projection (i.e., one of the nearest points) on Ωr ∩Λ from the initial guess X[0] ∈ S2

n. The
algorithm is described as follows:

Z[k] = ΠΩr (X[k] + P[k]),

P[k + 1] = X[k] + P[k]− Z[k],

X[k + 1] = ΠΛ(Z[k] + Q[k]),

Q[k + 1] = Z[k] + Q[k]− X[k + 1], k = 0, 1, 2, . . . ,

(18)

where we set P[0] = Q[0] = 0.

3.2. Projection onto the Set Ωr of Rank-Constrained Structured Matrices

Here we consider the projection of (X1, X2) onto the set Ωr of rank-constrained struc-
tured matrices in (14). This projection can be written by definition as

ΠΩr (X1, X2) ∈ arg min
(Z1,Z2)∈Ωr

‖Z1 − X1‖2 + ‖Z2 − X2‖2. (19)

We note that, since the set Ωr is closed but non-convex, multiple solutions may exist for the
minimization in (19) may exist.

For this, we propose a precise projection based on alternating direction method of mul-
tipliers (ADMM). For the minimization problem (19), we introduce the indicator function
Ir defined by

Ir(Z) ,

{
0, if rank(Z) ≤ r,
+∞, otherwise.

(20)
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Then the minimization problem in (19) is equivalently described as

minimize
(Z1,Z2)∈S2

n ,Z̃∈S2n

‖Z1 − X1‖2 + ‖Z2 − X2‖2 + Ir(Z̃)

subject to Z̃ =

[
Z1 I
I Z2

] (21)

The convergence of the ADMM algorithm of (21) with nonconvex constraint (20) is dis-
cussed in [33].

To solve this optimization problem, we first consider the projection ΠCr (Z) onto the
set of rank-r matrices

Cr , {Z ∈ R2n×2n : rank(Z) ≤ r}. (22)

The projection ΠCr is easily computed via the singular value decomposition Z = UΣV>.
Define Σr by setting all but r largest (in magnitude) diagonal entries of Σ to 0. Then, the
projection ΠCr (Z) is given by

ΠCr (Z) = UΣrV>. (23)

Now, the optimization problem in (21) can be efficiently solved by adapting the
alternating direction method of multipliers (ADMM) algorithm [26]. The iterative algorithm
is given by

Z1[i + 1] =
(

1 +
ρ

2

)−1(
X1 +

ρ

2
M11[i]

)
, (24)

Z2[i + 1] =
(

1 +
ρ

2

)−1(
X2 +

ρ

2
M22[i]

)
, (25)

Z̃[i + 1] = ΠCr

([
Z1[i + 1] I

I X2[i + 1]

]
−W[i]

)
, (26)

W[i + 1] = W[i] + Z̃[i + 1]−
[

Z1[i + 1] I
I Z2[i + 1]

]
, i = 0, 1, 2, . . . , (27)

where ρ > 0 is the step size, and M11[i], M22[i] ∈ Rn×n are defined as[
M11[i] M12[i]
M21[i] M22[i]

]
, Z̃[i] + W[i]. (28)

We show in Appendix B how to obtain this iteration algorithm for solving (21).

3.3. Projection onto the Set Λ Described by LMIs

The projection of (X1, X2) onto the set Λ in (15) can be described as convex optimiza-
tion with LMIs [34,35].

minimize
Z1,Z2,W∈Sn

tr(W)

subject to F(Z1, Z2) � 0,[
W (Z− X)>

Z− X I

]
� εI,

(29)

where Z = [Z1 Z2]
> and X = [X1 X2]

>.

Remark 2. Grigoriadis and Skelton [13] have also proposed an alternating projection method. This
method is described as

Z[k] = ΠR
(
ΠD(X[k])

)
X[k + 1] = ΠΛ(Z[k]), k = 0, 1, 2, . . . ,

(30)
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where

D ,
{

Z ∈ S2n : Z =

[
X1 0
0 X2

]
, X1, X2 ∈ Sn

}
,

R , {Z ∈ S2n : rank(Z + J) ≤ r},

J ,
[

0 I
I 0

]
.

(31)

We note that Ωr in (14) is the intersection of D and R. The difference between the proposed
algorithm (16) and the above algorithm (30) is the projection onto the set Ωr of rank-constrained
structured matrices. Namely, the algorithm in [13] approximates the projection ΠΩr by a composite
projection ΠRΠD .

Finally, we summarize the proposed algorithm to solve Problem 3 in Algorithm 1.

Algorithm 1 Algorithm to solve Problem 3.

Require: Initial guess (X1[0], X2[0]) ∈ Sn
Ensure: (X1, X2) ∈ Ωr ∩ΩΛ

for k = 0, 1, 2, . . . , N − 1 do
X1 ← X1[k] . Projection onto Ωr
X2 ← X2[k]
Z̃[0]← 0
W[0]← 0
for i = 0, 1, 2, . . . , M− 1 do

Z1[i + 1]←
(
1 + ρ

2
)−1(X1 +

ρ
2 M11[i]

)
Z2[i + 1]←

(
1 + ρ

2
)−1(X2 +

ρ
2 M22[i]

)
Z̃[i + 1]← ΠCr

([
Z1[i + 1] I

I X2[i + 1]

]
−W[i]

)
[i + 1]←W[i] + Z̃[i + 1]−

[
Z1[i + 1] I

I Z2[i + 1]

]
end for
X ← [Z1[M], Z2[M]]> . Projection onto ΩΛ

(Z1, Z2, W)← arg min
Z1,Z2,W∈Sn

tr(W) subject to F(Z1, Z2) � 0,
[

W (Z− X)>

Z− X I

]
� εI,

X1[k + 1]← Z1
X2[k + 1]← Z2

end for
X1 ← X1[N]
X2 ← X2[N]

4. Numerical Examples

In this section, we show some control examples to illustrate the effectiveness of the
proposed algorithm. We use benchmark models listed in the COMPLeib library [27].
MATLAB programs for the numerical computation in this section can be downloaded
from [28]. For numerical optimization in the examples, we use SDPT3 [4] on MATLAB.

4.1. Stabilizing Static Controllers

We consider all benchmark linear time-invariant models whose order is less than 1000
from COMPLeib. There are 95 benchmark models to be checked. For these models, we
solve Problem 1 by five methods:
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1. Nonsmooth H∞ synthesis [36] with hinfstruct funciton in MATLAB (NSH∞)
2. Cone complementarity linearization algorithm [12] (CCL)
3. Nuclear norm minimization [15] (NNM)
4. Alternating projection with approximate projection onto Ωr [13] (GS96)
5. Alternating projection with the proposed precise projection in Section 3 (Proposed)

Table 1 summarizes the number of successful results (i.e., a static stabilizing controller
is obtained), and the average computational time.

Table 1. Stabilizing static controller design results.

NSH∞ [36] CCL [12] NNM [15] GS96 [13] Proposed

# success 75 61 53 56 59
CPU time [s] 0.365 56.5 4.58 663 666

From this table, we can say that the Nonsmooth H∞ method [36] is the best among
the five methods. We note that the alternating methods by [13] and our method show a
very long average CPU time since there are a few models (e.g., EB5 and JE1) for which it
takes a very long CPU time by the se methods. For example, GS96 takes 53,450 [s] and
the proposed method takes 52,315 [s] for EB5. However, there are models for which the
proposed method successfully gives a stabilizing static controller while some of the other
methods fail. We summarize the results in Table 2.

Table 2. Stabilizing static controller results (the full list available at [28]).

NSH∞ [36] CCL [12] NNM [15] GS96 [13] Proposed

HE6 unstable stable unstable stable stable
HE7 stable stable unstable stable stable
REA3 unstable stable unstable unstable stable
DIS1 stable stable unstable unstable stable
PAS unstable stable stable stable stable
TF1 unstable unstable unstable unstable stable
TF2 unstable stable stable stable stable
NN1 stable unstable unstable unstable stable
NN11 stable stable unstable stable stable
NN12 unstable unstable unstable stable stable
FS unstable stable stable stable stable

An advantage of the proposed method is found in this table. Since stabilizing static
controller design is in general a non-convex problem, and hence there may be no unified
approach that gives a solution for any plant models. For example, no methods but the
proposed method can compute a stabilizing static controller for TF1. We emphasize our
method is an effective method that may provide a solution to a reduced-order controller
design problem that cannot be solved by standard methods as nonsmooth H∞, cone
complementarity linearization, and nuclear norm minimization.
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4.2. Stabilizing Low-Order Controllers

In this section, we focus on the model TF1. In this model, the state-space matrices are
given as follows:

A =



−1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 −1 0 0

−0.088 0.0345 0 0 1 −0.0032 0
0 0 0.05 0 0 0 −0.00001


, B =



1 0
0 0
0 0
0 0.09
0 0
0 0
0 0


,

C =


0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

, D =


0 0
0 0
0 0
0 0

.

(32)

As explained in the previous subsection, a static controller is obtained only with the
proposed method. Here, we consider low-order controllers with order nc = 1 and nc = 2.
It is observed that all methods but the nonsmooth H∞ method return stabilizing controllers
with order 1 and 2. The results are summarised in Table 3.

Table 3. Results of stabilizing low-order controllers with nc = 1 and 2 for TF1.

NSH∞ [36] CCL [12] NNM [15] GS96 [13] Proposed

TF1 (nc = 1) unstable stable stable stable stable
CPU time [s] 0.016910 0.214947 0.177307 0.194252 1.836873

TF1 (nc = 2) unstable stable stable stable stable
CPU time [s] 0.016012 0.263448 0.205307 0.206729 4.250059

The state-space matrices AK, BK, CK, DK of the second order controller (nc = 2) with
the proposed method is given by

AK =

[
−1.804× 104 1.356× 104

9512 −7151

]
, BK =

[
−9193 −2019 −240.4 −1.77× 104

4848 1066 126.8 9333

]
,

CK =

[
−4412 3317

−1.075× 105 8.08× 104

]
,

DK =

[
−2249 −496 −58.91 −4329

−5.478× 104 −1.203× 104 −1433 −1.055× 105

]
.

(33)

4.3. H∞ Static Controllers

Then, we consider the reduced-order H∞ control problem formulated in Problem 2.
Here we choose AC4, NN1, NN12, and HE6 from COMPLeib. AC4 is from a autopilot control
problem for an air-to-air missile discussed in [37]. NN1 and NN12 are academic test problems
proposed in [38] and [39], respectively. HE6 is a helicopter model that has four inputs, 20
states, and six outputs [40]. For these plant models, we seek the H∞ static controller by
using the bisection method on γ. Namely, we first give a sufficiently large upper bound
γ, for example γ = 100, and a sufficiently small lower bound γ (e.g., γ = 0). Then we set
γ = (γ + γ)/2 = 50 and solve Problem 2. If there is a feasible solution, then we update the
upper bound to γ = γ = 50, otherwise we set the lower bound to γ = γ = 50. We note
that the problem is assumed to be infeasible if a solution of Problem 2 is not found after 15
iterations of (16). We repeat this process until sufficient accuracy is achieved.
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Table 4 shows the obtained upper bounds of γ for the chosen models.

Table 4. Upper bounds γ of the H∞ norm by static controller.

Model AC4 NN1 NN12 HE6

γ 1.000 74.72 28.09 520.0

The obtained static controllers are given as follows:

KAC4 =
[
−0.3228 −0.07534

]
,

KNN1 =
[
3.5 60.22

]
,

KNN12 =

[
22.81 −35.61
−5.179 8.137

]
,

KHE6 =


83.25 −0.5581 −0.5931 0.1238 0.1546 −0.02533
−24.27 7.876 0.7263 0.0309 0.3272 −0.6042
−15.85 0.1609 −6.578 −2.062 1.677 0.1478
65.77 −1.413 9.07 −16.61 −0.9596 −0.04191

.

(34)

It is easy to check that the obtained static controllers really achieve the H∞ norm
listed in Table 2. These numerical examples demonstrate the effectiveness of the proposed
method.

5. Conclusions

In this paper, we have proposed a novel design method of reduced-order controllers
based on projection onto the set of rank-constrained structured matrices. We compared the
proposed method with existing methods by numerical examples. We have shown that the
proposed algorithm successfully solved benchmark problems that other methods could not.
This is thanks to the precise computation of the projection onto the set of rank-constrained
structured matrices. Future work includes reduced-order controller design with sparsity
constraints on the controller realization, which is a challenging problem that should take
two non-convex rank and sparsity constraints.
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Appendix A. Proof of Lemma 1

From the definitions of (3) and (4), and the iterative algorithm (16), we have

dist(X[k], Ωr) = ‖Z[k]− X[k]‖ ≤ ‖Z[k− 1]− X[k]‖,
dist(Z[k], Λ) = ‖X[k + 1]− Z[k]‖ ≤ ‖X[k]− Z[k]‖,

dist(X[k + 1], Ωr) = ‖Z[k + 1]− X[k + 1]‖ ≤ ‖Z[k]− X[k + 1]‖,
dist(Z[k + 1], Λ) = ‖X[k + 2]− Z[k + 1]‖ ≤ ‖X[k + 1]− Z[k + 1]‖,

(A1)

for k = 0, 1, 2, . . .. These inequalities easily imply (17).
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Appendix B. ADMM Algorithm

The minimization problem in (19) is described as a standard form for ADMM [26],
and the iteration algorithm is directly obtained by[

Z1[i + 1]
Z2[i + 1]

]
= arg min

Z1,Z2

f1(Z1, Z2; Z̃[i], W[i]),

Z̃[i + 1] = arg min
Z̃

f2(Z̃; Z1[i + 1], Z2[i + 1], W[i]),

W[i + 1] = W[i] + Z̃[i + 1]−
[

X[i + 1] I
I Y[i + 1]

]
,

i = 0, 1, 2, . . . , (A2)

where

f1(Z1, Z2; Z̃, W) , ‖Z1 − X1‖2 + ‖Z2 − X2‖2 +
ρ

2

∥∥∥∥Z̃−
[

Z1 I
I Z2

]
+ W

∥∥∥∥2

, (A3)

f2(Z̃; Z1, Z2, W) , Ir(Z̃) +
ρ

2

∥∥∥∥Z̃−
[

Z1 I
I Z2

]
+ W

∥∥∥∥2

. (A4)

First, for function f1, we have

f1(Z1, Z2; Z̃[i], W[i]) = c
∥∥∥∥Z1 − c−1

(
X1 +

ρ

2
M11[i]

)∥∥∥∥2

+ c
∥∥∥∥Z2 − c−1

(
X2 +

ρ

2
M22[i]

)∥∥∥∥2

+ const. (A5)

where c , 1 + ρ/2, and M11[i], M22[i] are defined in (28). From (A5), we have the first two
steps (24) and (25).

Then, by the definition of projection, a minimizer of f2(Z̃; Z1[i + 1], Z2[i + 1], W[i])
in (A4) is obtained by the right-hand side of (26).
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