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Abstract: In configuration design, the task is to compose a system out of a set of predefined, modu-lar
building blocks assembled by defined interfaces. Product configuration systems, both with or without
integration of geometric models, implement reasoning techniques to model and explore the resulting
solution spaces. Among others, the formulation of constraint satisfaction problems (CSP) is state of the
art and the informational background in many proprietary configuration engine software packages.
Basically, configuration design tasks can also be implemented in modern computer aided design
(CAD) systems as these contain different techniques for knowledge-based product modeling but
literature reports only little about detailed application examples, best practices or training materials.
This article aims at bridging this gap and presents a step-by-step implementation guide for CSP-based
CAD configurators for combinatorial designs with the example of Autodesk Inventor.

Keywords: knowledge-based engineering; product configurators; constraint satisfaction problems;
computer aided design; solution space modeling

1. Introduction

The design of variant-rich, configurable products has not just been a topic since
the rise of Mass Customization during the 1990s [1,2]. In configuration design, the task
is to compose a system out of a set of predefined, modular building blocks assembled
by defined interfaces [3,4]. Depending on count and quality of the interfaces, a small
number of building blocks already leads to huge solution spaces, i.e., the set of all feasible
configurations. Taking the example of Durhuus and Eilers [5], six LEGO bricks in the size 2
to 4 span a solution space of 915,103,765 possible configurations when the only restriction is
that all blocks need somehow to be connected to at least another one in the usual rectangular
grid. Assuming that an average designer would need around 5 min to assemble the six
bricks in a computer aided design (CAD) system, derive a technical drawing with bill-
of-materials and check-in the data into a product data management system, the manual
documentation of all configurations would take approx. 8705 years, working 24/7. In
automotive engineering, the manifold of solution spaces is even magnitudes larger [6].

Automating such (routine) design tasks is one aim of knowledge-based engineering,
with product configurators as an instance for its application [7,8]. One of the first doc-
umented product configuration systems dates back to the 1980s, which is McDermott’s
R1/XCON rule-based configurer [9]. While this system in its final version used thousands
of production rules as inference engine to get from requirements to the needed product
variant, other approaches rely on model-based reasoning techniques, like the formulation
of constraint satisfaction problems (CSP) [10,11]. In brief, a CSP consists of a set of finite
domains as containers for variables and their possible parameter values as well as a set
of constraints that are links between the domains and determine which combinations of
values of the single variables are allowed [12]. Compared to rule-based systems, the CSP
approach usually leads to better performance, reduced maintenance effort and higher
implementation efficiency [13].
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There exists a multitude of proprietary software packages to integrate constraint-based
configuration and CAD [14,15]. However, many of today’s CAD systems offer plenty of
functionalities already in their out of the box version to implement knowledge-based de-
signs and configurators [16]. These functionalities include, among others, design rules,
mathematical and logical constraints between parameters and design features, parameter
control via spreadsheets and script languages, as well as of course the application pro-
gramming interface (API) [17–19]. A CAD-based design automation system using these
functionalities can perform the above task of assembling the six LEGO bricks in less than
two days on today’s desktop computers. Nonetheless, the implementation of CSP-based
configuration designs needs a level of abstraction since the initial design problem needs
to be transformed into a configuration problem [20]. Afterwards, the information system
needs to be designed accordingly to this.

Engineering literature reports only little about detailed application examples, best
practices or training materials related to this topic. Existing workbooks usually are related
to expert system shells from the 1990s, e.g., PLAKON [21,22] or the above-mentioned pro-
prietary software packages. In order to foster and promote the possibilities and application
of constraint-based configuration and to encourage engineers in using this approach for
configurable assemblies, this contribution presents a step-by-step implementation guide
for CSPs into combinatorial CAD models. The CAD assembly is set up in the CAD system
Autodesk Inventor, the constraint solver is implemented through its API.

The article is structured as follows: In Section 2, the theoretical background of con-
straint satisfaction problems as a model-based reasoning technique is briefly illustrated,
before Section 3 introduces the running example for the configuration design task. Section 4
then presents a specification of the information system to be built. In Section 5, the code
for the CSP implementation is developed, including an introduction of new domains and
constraints afterwards. The coupling to the CAD model is discussed in Section 6. The final
Section 7 concludes the article.

2. Theoretical Background

Basically, inference mechanisms as part of a knowledge-based engineering system can
be implemented on the basis of model elements and their relations. Depending on how
both are modeled, literature distinguishes logic-based, constraint-based and resource-based
approaches [13].

For a logic-based representation of knowledge and reasoning, an object-oriented data
structure is used [23]. This consists of the actual objects (so-called individuals), logical
structures for aggregating objects (concepts) and binary relationships between individual
objects (roles). Objects, in a narrow sense, may be understood as classes, from which
arbitrarily many instances can be derived and assigned different values. Additionally, the
class concept allows attributes of objects to be inherited from higher hierarchy levels. The
reasoning is performed by checking whether a special object is included in a superordinate
class [11].

Constraint-based approaches represent, as mentioned in the introduction, constraint
networks where a constraint represents the relation between two model elements and has
a rule for value assignment [13]. In this way, e.g., physical or engineering contexts can
be modeled, e.g., the calculation of a bolted connection. Values applied to the constraint
network can then be propagated, which means that the values of all other model elements
are calculated on their basis. By nature, it is irrelevant according to which variables the
formulas are resolved and which variables are used as inputs [24]. CSPs in this application
correspond to a system of equations, constraint propagation to the solution of the system
of equations.

A further very typical task for constraint-based reasoning is the representation of
configuration problems. For this, the elements are modeled likewise with their value
ranges and relations. An example for this is the so-called map coloring problem [25]. As
shown in Figure 1, the single countries are abstracted into domains containing the available
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colors for the map as values. Inequality constraints are introduced between two neighboring
countries, expressing that neighboring countries are to be colored differently [26].
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A constraint solver now has the task of finding solutions for the constraint network
that satisfy all constraints. For this purpose, different algorithms are available, e.g., Gener-
ate-and-Test, which systematically tests possible parameter combinations. However, this
method also calculates predictably erroneous value assignments. In the example of the
map in Figure 1, L1 has an initial value grey. The solver then sequentially assigns colors
to the other domains and tests the involved constraints. Starting with L2 = white, the
constraint between L1 and L2 is satisfied. Proceeding to L3 = white, a constraint is violated,
the solution is discarded. The algorithm will then return to the last known state that
satisfied all constraints and change the last variable assignment. If L3 is then assigned gray
instead of white, the problem can be further processed and solved. This procedure is called
backtracking [26].

Since a constraint network can be written as a graph (the domains form the nodes, the
constraints the arcs), alternative algorithms exploit graph-theoretic methods to reduce the
effective search space by enforcing local consistency. A CSP is considered node-consistent if
all unary constraints, which limit the value of a single variable, are satisfied. Arc consistency
involves binary constraints between domains. Inconsistent values from the further involved
domain are then immediately removed for the search [12]. For the example in Figure 1,
this means that the value gray can no longer be available for L2 and L4 because L1 is
already occupied by gray as input. Path consistency extends this by not only collapsing
one domain but removing pairs of values from a constraint [26]. Continuing the above
example with pre-collapsed L2 and L4, gray remains as a single consistent value for L3 and
leads automatically to the two solutions depicted on the right of the figure, without testing
further configurations.

Resource-based reasoning is a special case of constraint-based reasoning. Here, the
relationships between the model elements are represented on the basis of resource con-
sumption and provision functions. The reasoning mechanism then aims at achieving a
state of equilibrium. The concept is kept abstract and counts also, e.g., installation space,
assembly time or technical interfaces to resources [27].

For use in a design automation system or in constraint-based configuration, such
reasoning mechanisms need to be coupled with a product model [20]. Such a product
model can be a realized as a simple catalog from which options are chosen by the algorithm.
Another implementation aims at the generation of a geometric (CAD) model for visualiza-
tion or further processing in the sense of design templates [28,29]. Note that model-based
reasoning in general is able to include configurable artifacts beside the actual product
model. On the one hand, this may be, e.g., the joint configuration of product features and
their respecting manufacturing processes [30,31], but also combines product and service
configuration in hybrid offerings [32].
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3. Modeling Task

The running example for this article is a configurable toy sorting box for small kids
as depicted in Figure 2. The customer first chooses four different slots that are described
by article number, shape and color. In a second configuration step, the customer can choose
a brick variant for the selected slots, which is described by article number, color, shape and
infill (flat, raised, embossed—refer, e.g., to the blue prism bricks in Figure 2).
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Figure 2. Configurable toy sorting box with according brick variants.

For the slots, ten different variants are available. The main restriction is that no equal
slots may be chosen. Permutations (red, yellow, green, blue OR red, blue, green, yellow) are
to be allowed. Nonetheless, if the customer by incident chooses a predefined template
configuration (three out of four connected colors), the last color should automatically be
restricted to the missing template slot. Depending on the chosen slot, there may be up to
three possible brick variants for the second configuration step.

4. Specification of the Information System

The resulting customer interaction during configuration is depicted in the use case
diagram in Figure 3. Besides choosing slots and bricks, the customer should furthermore
be able to change or reset a choice or the whole configuration as such at each point of the
configuration process. In order to keep the configuration process flexible, it should not
matter in which sequence the slots are selected by the user.
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The abstraction of the design problem to a configuration problem results in a first
set of four domains SLOT1 . . . SLOT4 representing the slots with their respective alterna-
tives. A second set of four domains BRICK1 . . . BRICK4 contains the representation of all
brick variants.
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As constraints, inequality of SLOT1, SLOT2, SLOT3 and SLOT4 to each other is ex-
pressed by bidirectional constraints. The bidirectionality leads to the fact that it later does
not matter which value must be set first and which must be propagated afterwards. Addi-
tionally, equalities between the slots and the corresponding bricks are introduced. A special
feature of the configuration tool is the template definition of four predefined colors. There-
fore, an auxiliary domain TEMPLATE is created that contains the template configurations.
This constraint is only to be propagated if three slot domains, independently which of
them, have an assigned value, otherwise the constraint is relaxed. The resulting constraint
network is depicted in Figure 4.
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In order to avoid hardcoding of domains, variables and constraints, domain and
constraint lists should be stored externally and so be easily updateable and extendable.
After starting the configuration tool, the first step is that domain and constraint lists are
loaded from this repository and the constraint network is established automatically in the
blackboard of the configuration tool (Figure 5).
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The system then waits for user inputs and adds all involved constraints linked to the
changed domain to a queue. As long as the queue is not empty, the solver sequentially
propagates and deletes the next constraint in the queue. Afterwards, in order to apply local
consistency, the system checks whether neighboring domains have been affected. If so,
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again the involved constraints are added to the end of the queue. After the queue has been
completely processed, the solution set is output.

5. Building the CSP

The implementation is designed for Autodesk Inventor Professional as representative
for parametric CAD systems with knowledge-based product modeling and a Visual Basic
for Applications (VBA) API, which is commonly available as basic API language in many
CAD systems. Although this language has many deficiencies and more similarities to
scripting automation, this origin in macros still keeps it widespread in the mechanical
engineering domain and practically relevant. As Inventor additionally offers the possibility
to integrate and embed MS Excel spreadsheets into the CAD model, Excel was chosen
as the repository for domain and constraint lists. Other spreadsheet applications are
not supported in this context. So, the CSP-based configurator is implemented as VBA
macro with its own user interface in order to control both Excel and Inventor for the later
CAD assembly.

As a domain can be abstracted as a list of variables and their values, dictionaries
are a feasible representation as they offer some advantages over, e.g., array lists: First, all
dictionary properties are writable and retrievable (including the key values) and can handle
nearly every type of key except arrays. Second, dictionary methods offer the possibility to
check if a key value already exists. Finally, although slower in initial creation, dictionaries
are significantly faster in processing than array lists. In order to use dictionaries, the MS
scripting runtime within VBA must be activated.

The code for the example is available in the appendix of this article and additionally
via https://doi.org/10.25835/6wdfdp03 (last accessed on 4 September 2022). The link
contains the Autodesk Inventor 2020 and Excel files as well as separate VBA files (form,
basic and class files) with the code for the sorting box with four slots and four bricks. The
data set is reduced to an empty assembly and the macro. No part files or geometry is
included. So, the macro in this form should also work as it is with other CAD systems
which use VBA as scripting language by importing the corresponding VBA files into the
macro editor.

5.1. Domain and Constraint Lists

Beside the VBA form for the configuration system, the user interface also contains the
repository for the domain and constraint lists. Regarding the two domains for slots and
bricks, Figure 6 shows the structure in the Excel spreadsheet. Each domain is situated on
its own workbook containing all describing properties like Article Number, Color, Shape and,
in the case of the bricks, additionally the Infill as columns with headlines.
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As can be seen from the constraint network, the constraint list has to store equality,
inequality and the obligatory assignment of the fourth color from a template. This is
coded as Expression as depicted in Figure 7. Additionally, the requirement of a flexible
configuration process and local consistency leads to the distinction of both unary and binary

https://doi.org/10.25835/6wdfdp03
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constraints. In order to maintain a uniform declaration, a single constraint can include up
to four arguments. Two are needed for equality and inequality, i.e., the two domains that
are linked by the constraint. Four (the colors of the template) are needed for handling the
obligatory assignment.
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5.2. Creating Domains and the Constraint List

Before the actual handling of the input data can take place, the initial variable declara-
tions need to be done in VBA (Appendix A, row 1 to 21). Beside the dictionaries for the
eight domains, two additional dictionaries dict_SlotsORI (for original) and dict_BricksORI
are declared. These domain masters are intended as reference objects to be written in the
blackboard of the configuration system. E.g., if a domain needs to be reset when the user
changes his or her selection, the domain master is copied in the respecting domain and all
constraints are to be regenerated without reobtaining data from the spreadsheet.

Furthermore, the dictionaries dict_ConList and dict_ConQue are declared for constraint
handling. The first is meant as a reference list containing all constraints, the second is
the actual queue. Finally, a global counter is declared, which is needed for the template
constraint and global strings as the internal working memory for assigned domain values.

Additionally, as part of the variable declaration, three public class modules
iComponent_Bricks, iComponent_Slots and iConstraint are introduced as follows in Figure 8.
The first two define the domains and their properties, which are translated to the columns
of the dictionaries later. The last class module is the generalized constraint variable. The
dictionaries ConArg1 . . . ConArg4 represent domains that are connected to a constraint, the
strings formalize value assignments. This is, e.g., necessary for the template configurations
where these arguments contain the four colors. Additionally, the string ConExpr contains
the type of the constraint, ConDir, whether it is unary or binary.

The subroutine for reading the inventory and creating the blackboard is shown in
Appendix A, row 62 to 76. Beside the path to the spreadsheet, it basically contains three
functions that address the single workbooks. Note that the path to the repository in row
62 needs to be adjusted to the path where the repository is locally saved.

The generation of the domains can be found in Appendix A, row 79 to 109 for the slots
and row 112 to 143 for the bricks. In the first part of both routines, the domain master is
created. Basically, it adds each row from row two on (first row is the column headline) of
the spreadsheet to the dictionary. Thereby, ArticleID is a temporary variable which contains
the key for the dictionary. Reading the spreadsheet ends when an empty cell in the first
column of the spreadsheet is reached. After the reference is created, it is distributed to the
four respecting domains as the initial solution set.

Populating the constraint reference list works similar, as shown in Appendix A, row
145 to 271. The key is realized as a counter. In order to couple domains with equality
and inequality constraints (Appendix A, row 154 to 249), the involved domains need to
be declared as arguments. As VBA does not allow to compose variable names out of,
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e.g., a combination of strings and numeric values at runtime, the strings obtained from the
spreadsheet once need to be related to the dictionaries. Therefore, the select case expressions
contain the corresponding assignments for the constraint arguments. Additionally to the
dictionaries, the arguments are also stored as strings for further processing. If the constraint
is binary, a second constraint with opposite arguments is created.
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If the spreadsheet contains a constraint with the expression Obligation, the four argu-
ments of the corresponding entry in the constraint list are populated with the four colors as
shown in Appendix A, row 251 to 271.

5.3. User Interface

Following the use case diagram from Figure 3, the user form needs to contain con-
trol elements for system initialization (command button Generate Domains which starts
Sub read_inventory), resetting the whole configuration process (command button Reset All
which clears all domains and outputs), as well as choosing and resetting of slots and bricks
and generating the CAD model (Figure 9).

Primary user interaction elements are list boxes. After initialization, the configuration
system writes the domain content as items into the respective list box. The user then
can double click on an item to make his or her selection which is written into a label
(e.g., red, yellow and green in Figure 9) and the remaining list boxes are updated after
constraint handling. For each selection, a command button relax is implemented which
resets just the according domain and updates the others after constraint handling. The
VBA code for the user form including the naming of control elements is documented
in Appendix B.

5.4. Constraint Handling
5.4.1. Queueing

After initialization, the queue is at first empty. If now the user chooses a slot by double
clicking on an entry in a list box, the code in Appendix B, row 45 to 69, first establishes node
consistency as it processes the unary constraint for collapsing the respecting domain SLOT1.
Afterwards, it increases the counter for the selected domains by one which is relevant for
the queueing of the obligatory assignments.
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Afterwards, the actual queueing takes place as the configuration system scans through
the constraint reference list from the blackboard and adds either all equality/inequality
constraints to the queue where the involved domain is the first argument (source) or it adds
the obligation constraints if three of four slots have been selected by the user. The code for
the other list box inputs is similar.

5.4.2. Solver and Output of the Solution Set

The constraint solver itself is mainly organized within a while loop that is processed
until the queue is empty (Appendix A, row 323 to 369). Therefore, the first constraint from
the queue is taken and read out in a temporary variable set. Afterwards, the constraint is
deleted from the queue and, depending on the expression of the constraint, the arguments
are used to call the according functions.

The function Del_Equal_Slots (Appendix A, row 484 to 498) eliminates values that are
equal to those of a source domain and is used to process the inequality constraints. The
function Bricks_to_Slots (Appendix A, row 501 to 516) processes the equality constraints as
it eliminates all values that are unequal to those of a source domain (Figure 10).

Handling the obligatory assignments is a bit more complicated since it should not
matter which order or domain assignment the three chosen are. Figure 11 depicts the
structure of the corresponding code (Appendix A, row 518 to 625).
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The final output of the solution set is then organized as an update of the list boxes
after the queue has been processed (Appendix A, row 274 to 320).

5.5. Resetting a Selection

In order to reset an already made choice, Figure 12 describes the activities of the
configuration system. At first, the domain to be reset is cleared and repopulated from the
domain master. If the reset domain is of type slots, the corresponding brick domain is reset
as well. In the next step, all domains that have already been processed by the user and
that have a selection are reevaluated by propagating all unary constraints assigned to it.
In this way, the according solution set is extended by the selection which has been reset.
Afterwards, each constraint from the constraint list is evaluated if the actual domain is the
source, i.e., first argument. If so, the constraint is added to the queue. After all domains
have been reevaluated, the constraint solver is activated and the reset is completed. The
corresponding code is shown in Appendix A, row 372 to 468.
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5.6. Extending the Example from 8 to 10 Domains

In order to show a typical maintenance task beside the adaption of the domain content,
the following steps describe the extension of the existing CSP with each a fifth slot and
brick domain.

At first, the user interface in userform1 is extended by the relevant control elements which
are copied and renamed according to the existing naming convention (e.g., into lbx_slots5).

Regarding the code in the module main (Appendix A), the first step is to add the
corresponding new variable declarations for dict_Slots5 and dict_Bricks5 according to row 5
and 8. Other extensions involve:

• Sub reset: New domains and control elements integrated according to Appendix A,
row 26, 31, 40, 44, 48 and 52.

• Sub generate domains: New loop according to Appendix A, row 96 to 98 and row 130
to 132.

• Sub get_constraints: New translations like in Appendix A, row 160/161, 168/169,
180/181, 188/189, 208/209, 214/215, 227/228, 235/236.

• Sub update_listboxes: Introduction of slots5 and bricks5 according to Appendix A, row
277–282 and 300–304.

• Sub constraint_relax: Introduction of slots5 and bricks5 according to Appendix A, row
375–387 and 426–434.

Afterwards, the new control elements need to be equipped with their event handlers:

• cmd_relax_1_5: Code added according to Appendix B, row 8–16.
• lbx_slots5_doubleclick: Code added according to Appendix B, row 45–69.

At last, the constraint list in the spreadsheet needs to be extended with four inequality
constraints linking each SLOT1, SLOT2, SLOT3 and SLOT4 to SLOT5 as well as an equality
constraint linking SLOT5 and BRICKS5.

The above changes do not include the extension of the obligatory assignment. Here, the
spreadsheet and the constraint handling need to be added by a fifth domain
argument DOMAIN_E.
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6. Addressing the CAD Assembly

Basically, two different options for the integration of the CAD model are available. On
the one hand, following the principle of the digital master, an assembly document contains
all possible part and feature occurrences that are either activated or suppressed according
to the configured product. On the other hand, a model or draft generator starts with an empty
assembly document and adds all parts and features from the configured product to it. An
advantage of the former is that the assembly is created completely in advance, i.e., including
all positioning dependencies or geometric constraints between components. Accordingly,
the advantage of the latter is that there is no need for an assembly to be predefined and
engineered in advance, but the positioning of each part needs to be automated instead. In
the case of the sorting box, the configuration system merges both principles since there are
no duplicate selections.

When the user approves his or her choice and initializes the generation of the CAD model,
the configuration system opens the digital master for the sorting box assembly, as shown in
Figure 13. Afterwards, any activated parts are suppressed to assure an explicit initial state.
The system then processes each slot and transmits the according user selection to the CAD
model where the corresponding slot part is activated. Afterwards, this part is positioned in
the fixed grid according to its position (SLOT1 is upper left, SLOT2 upper right, etc.). This
avoids including redundant slot parts at each position. After the slots have been activated and
positioned, the configuration system processes the bricks accordingly (Figure 14).
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7. Discussion and Conclusions

Focusing on the above configuration problem, the core of the example, the configura-
tion of the four slots mirrors exactly the map coloring problem which has been extended
by additional related choices and the obligatory assignment of an option depending on
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selections made by the user. Thus, the example of the sorting box is a placeholder for many
configurable assemblies and products. Taking online car configurators, the functionalities
of mandatory choices, configuration interdictions and the realization of templates or lines
of equipment are similar functions. The search strategy for the solution is kept simple in
this example by enforcing local consistency, without further examining the time complexity
of the solution algorithm. User input or a modification of a domain leads to adding the
corresponding constraints to the queue without further nesting or querying. In this case,
there is no need for backtracking. Further constraints could be hierarchical constraints or
additional classifying criteria, e.g., if two light colors are chosen, only two dark colors may
be added, which correspond widely to the obligatory assignments.

Due to the separation of knowledge base, i.e., the spreadsheet, inference engine, i.e.,
the API code, and the CAD model, a more or less linear control flow is realized. A function
which has not been included is math constraints since these can also be expressed directly
in the geometric CAD model by, e.g., relating parameters by calculations. In this context, a
more complex control flow might integrate reobtaining parameter values from the CAD
model, e.g., values of dimensions, and feed them back into the CSP. An open question
is if modeling complex assemblies like known from plant engineering, which contain
several hundred domains, is adequate with this kind of implementation and the search
strategy or if the performance will suffer compared to configurators based on proprietary
software packages.

A deficiency of the presented example is the fact that VBA does not allow generating
variables or code at runtime. Other languages, e.g., python or expert system shells, which
include this functionality, will shorten the code and raise efficiency and maintainability.
Furthermore, especially code generation and an automatic adaptation of the user interface
at runtime could widely automate user interface creation, e.g., to extend the sorting box
to five slots even with less effort. In the same way, e.g., python offers a constraint module
which includes a backtracking solver, recursive backtracking solver and minimum conflicts
solver as well as 10 different constraint types. A module for remote controlling Autodesk
Inventor is also available, a comparative study of implementing the above design task is an
obvious avenue.

The example of the sorting box can easily be extended by, e.g., pricing information that
is calculated with respect to the user selections. Therefore, the domains need to be extended
by the corresponding part costs, which have to be added by the configuration system. As an
example, to include non-geometric features like services, it would be conceivable to choose
between a neutral standard package and a package that shows the actual configured sorting
box. The described extension to 10 domains involves multiple adjustments to the code.
From a theoretical perspective, an extension to 1000 domains seems not adequate. However,
taking into account that many combinatorial design tasks in mechanical engineering can
be broken down to 10 to 25 core components on an assembly level, a relevant field of
application exists, independently from the implementation in VBA or a higher language.

Further interesting issues lie in coupling different inference mechanisms to the CSP-
based configuration system and decentralizing its knowledge base as the CAD system
itself can control, e.g., part or feature occurrences by rules or other scripting. Additionally,
case-based reasoning would be an interesting approach to include a dynamic generation of
template configurations depending on, e.g., configuration history, user ratings or overall
most favorite configurations. Including data about the user, this could be further developed
to a recommendation system.

Concluding, the application of CSP-based configuration using just the functionalities of
a standard CAD system has the potential of automating combinatorial designs and integrate
knowledge-based CAD assemblies with high efficiency. The approach is compatible with
existing and usually familiar tools, thus easy in its application and extendible. In such a
way, managing the combinatorial complexity of a design solution space is possible.
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Appendix A. Code for Module Main

Table A1. VBA Code for Module Main.

Row Code

1 ‘For Dictionary Use activate:
2 ‘Extras -> References -> Microsoft Scripting Runtime
3
4 ‘Generate Dictionaries for all Components
5 Public dict_Slots1 As New Dictionary, dict_Slots2 As New Dictionary
6 Public dict_Slots3 As New Dictionary, dict_Slots4 As New Dictionary
7 Public dict_SlotsORI As New Dictionary
8 Public dict_Bricks1 As New Dictionary, dict_Bricks2 As New Dictionary
9 Public dict_Bricks3 As New Dictionary, dict_Bricks4 As New Dictionary
10 Public dict_BricksORI As New Dictionary
11
12 ‘Generate Constraint Handling
13 Public dict_ConList As New Dictionary
14 Public dict_ConQue As New Dictionary
15
16 ‘Internal Selection Working Memory
17 Public strSlot1, strSlot2, strSlot3, strSlot4 As String
18 Public strBrick1, strBrick2, strBrick3, strBrick4 As String
19
20 ‘Global Counter
21 Public count_Slots As Integer
22
23
24 Sub reset()
25 ‘Clear all Dicitonaries
26 dict_Slots1.RemoveAll
27 dict_Slots2.RemoveAll
28 dict_Slots3.RemoveAll
29 dict_Slots4.RemoveAll
30 dict_SlotsORI.RemoveAll
31 dict_Bricks1.RemoveAll
32 dict_Bricks2.RemoveAll
33 dict_Bricks3.RemoveAll
34 dict_Bricks4.RemoveAll
35 dict_BricksORI.RemoveAll
36 dict_ConQue.RemoveAll
37 dict_ConList.RemoveAll
38
39 ‘Clear User Interface
40 UserForm1.lbx_Slots1.Clear
41 UserForm1.lbx_Slots2.Clear

https://doi.org/10.25835/6wdfdp03
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Table A1. Cont.

Row Code

42 UserForm1.lbx_Slots3.Clear
43 UserForm1.lbx_Slots4.Clear
44 UserForm1.lbx_Bricks1.Clear
45 UserForm1.lbx_Bricks2.Clear
46 UserForm1.lbx_Bricks3.Clear
47 UserForm1.lbx_Bricks4.Clear
48 UserForm1.lbl_Slots1.Caption = ““
49 UserForm1.lbl_Slots2.Caption = ““
50 UserForm1.lbl_Slots3.Caption = ““
51 UserForm1.lbl_Slots4.Caption = ““
52 UserForm1.lbl_Bricks1.Caption = ““
53 UserForm1.lbl_Bricks2.Caption = ““
54 UserForm1.lbl_Bricks3.Caption = ““
55 UserForm1.lbl_Bricks4.Caption = ““
56
57 ‘Reset Global Counter
58 count_Slots = 0
59 End Sub
60
61
62 Sub read_inventory()
63 Dim ExcWB As Excel.Workbook
64 ‘——————————————————-
65 ‘ADJUST PATH TO LOCAL PATH OF THE REPOSITORY FILE BELOW!
66 ‘——————————————————-
67 Set ExcWB = Workbooks.Open(“ . . . \Inventory_List.xlsx”)
68
69 ‘Call creating subs
70 generate_domains ExcWB.Worksheets(“Slots”)
71 generate_Brickss ExcWB.Worksheets(“Bricks”)
72 get_constraints ExcWB.Worksheets(“_CONSTRAINTS_”)
73
74 ‘Close Workbook
75 ExcWB.Close
76 End Sub
77
78
79 Sub generate_domains(ByVal ExcWS As Excel.WorkSheet)
80 Dim iRow As Integer
81 Dim key As Variant
82
83 ‘Set Start for reading in second row
84 iRow = 2
85 ‘Get Slot Domain Master
86 Do Until ExcWS.Cells(iRow, 1).Value = ““
87 ArticleID = ExcWS.Cells(iRow, 1).Value
88 Set oPart1 = New iComponent_Slots
89 oPart1.Slots_Colour = ExcWS.Cells(iRow, 2).Value
90 oPart1.Slots_Shape = ExcWS.Cells(iRow, 3).Value
91 dict_SlotsORI.Add ArticleID, oPart1
92 iRow = iRow + 1
93 Loop
94
95 ‘Distribute Master to all 4 Slot Domains
96 For Each key In dict_SlotsORI
97 dict_Slots1.Add (key), dict_SlotsORI(key)
98 Next
99 For Each key In dict_SlotsORI
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100 dict_Slots2.Add (key), dict_SlotsORI(key)
101 Next
102 For Each key In dict_SlotsORI
103 dict_Slots3.Add (key), dict_SlotsORI(key)
104 Next
105 For Each key In dict_SlotsORI
106 dict_Slots4.Add (key), dict_SlotsORI(key)
107 Next
108
109 End Sub
110
111
112 Sub generate_Brickss(ByVal ExcWS As Excel.WorkSheet)
113 Dim iRow As Integer
114 Dim key As Variant
115
116 ‘Set Start for reading in second row
117 iRow = 2
118 ‘Get Brick Domain Master
119 Do Until ExcWS.Cells(iRow, 1).Value = ““
120 ArticleID = ExcWS.Cells(iRow, 1).Value
121 Set oPart1 = New iComponent_Bricks
122 oPart1.Bricks_Colour = ExcWS.Cells(iRow, 2).Value
123 oPart1.Bricks_Shape = ExcWS.Cells(iRow, 3).Value
124 oPart1.Bricks_Infill = ExcWS.Cells(iRow, 4).Value
125 dict_BricksORI.Add ArticleID, oPart1
126 iRow = iRow + 1
127 Loop
128
129 ‘Distribute Master to all 4 Brick Domains
130 For Each key In dict_BricksORI
131 dict_Bricks1.Add (key), dict_BricksORI(key)
132 Next
133 For Each key In dict_BricksORI
134 dict_Bricks2.Add (key), dict_BricksORI(key)
135 Next
136 For Each key In dict_BricksORI
137 dict_Bricks3.Add (key), dict_BricksORI(key)
138 Next
139 For Each key In dict_BricksORI
140 dict_Bricks4.Add (key), dict_BricksORI(key)
141 Next
142
143 End Sub
144
145 Sub get_constraints(ByVal ExcWS As Excel.WorkSheet)
146 Dim ConPa As iConstraint
147 ‘Set Start for reading in second row
148 iRow = 2
149 KeyID = 1
150
151 ‘Get Constraints from Repository
152 Do Until ExcWS.Cells(iRow, 1).Value = ““
153
154 ‘—— EQUALITIES / INEQUALITIES ——
155 If ExcWS.Cells(iRow, 2) = “equal” Or ExcWS.Cells(iRow, 2) = “unequal” Then
156 ‘Formalize for Processing in VBA
157 Set oConstraint1 = New iConstraint
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158 ‘Assign Source Domain
159 Select Case ExcWS.Cells(iRow, 4)
160 Case “Slots1”
161 Set oConstraint1.ConArg1 = dict_Slots1
162 Case “Slots2”
163 Set oConstraint1.ConArg1 = dict_Slots2
164 Case “Slots3”
165 Set oConstraint1.ConArg1 = dict_Slots3
166 Case “Slots4”
167 Set oConstraint1.ConArg1 = dict_Slots4
168 Case “Bricks1”
169 Set oConstraint1.ConArg1 = dict_Bricks1
170 Case “Bricks2”
171 Set oConstraint1.ConArg1 = dict_Bricks2
172 Case “Bricks3”
173 Set oConstraint1.ConArg1 = dict_Bricks3
174 Case “Bricks4”
175 Set oConstraint1.ConArg1 = dict_Bricks4
176 End Select
177 oConstraint1.ConArg1Str = ExcWS.Cells(iRow, 4)
178 ‘Assign Target Domain
179 Select Case ExcWS.Cells(iRow, 5)
180 Case “Slots1”
181 Set oConstraint1.ConArg2 = dict_Slots1
182 Case “Slots2”
183 Set oConstraint1.ConArg2 = dict_Slots2
184 Case “Slots3”
185 Set oConstraint1.ConArg2 = dict_Slots3
186 Case “Slots4”
187 Set oConstraint1.ConArg2 = dict_Slots4
188 Case “Bricks1”
189 Set oConstraint1.ConArg2 = dict_Bricks1
190 Case “Bricks2”
191 Set oConstraint1.ConArg2 = dict_Bricks2
192 Case “Bricks3”
193 Set oConstraint1.ConArg2 = dict_Bricks3
194 Case “Bricks4”
195 Set oConstraint1.ConArg2 = dict_Bricks4
196 End Select
197 oConstraint1.ConArg2Str = ExcWS.Cells(iRow, 5)
198 ‘Get Expression
199 oConstraint1.ConExpr = ExcWS.Cells(iRow, 2)
200 ‘Add to Constraint List
201 dict_ConList.Add KeyID, oConstraint1
202 KeyID = KeyID + 1
203
204 ‘If binary get inverse Constraint
205 If ExcWS.Cells(iRow, 3) = “TRUE” Then
206 Set oConstraint1 = New iConstraint
207 Select Case ExcWS.Cells(iRow, 5)
208 Case “Slots1”
209 Set oConstraint1.ConArg1 = dict_Slots1
210 Case “Slots2”
211 Set oConstraint1.ConArg1 = dict_Slots2
212 Case “Slots3”
213 Set oConstraint1.ConArg1 = dict_Slots3
214 Case “Slots4”
215 Set oConstraint1.ConArg1 = dict_Slots4
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216 Case “Bricks1”
217 Set oConstraint1.ConArg1 = dict_Bricks1
218 Case “Bricks2”
219 Set oConstraint1.ConArg1 = dict_Bricks2
220 Case “Bricks3”
221 Set oConstraint1.ConArg1 = dict_Bricks3
222 Case “Bricks4”
223 Set oConstraint1.ConArg1 = dict_Bricks4
224 End Select
225 oConstraint1.ConArg1Str = ExcWS.Cells(iRow, 5)
226 Select Case ExcWS.Cells(iRow, 4)
227 Case “Slots1”
228 Set oConstraint1.ConArg2 = dict_Slots1
229 Case “Slots2”
230 Set oConstraint1.ConArg2 = dict_Slots2
231 Case “Slots3”
232 Set oConstraint1.ConArg2 = dict_Slots3
233 Case “Slots4”
234 Set oConstraint1.ConArg2 = dict_Slots4
235 Case “Bricks1”
236 Set oConstraint1.ConArg2 = dict_Bricks1
237 Case “Bricks2”
238 Set oConstraint1.ConArg2 = dict_Bricks2
239 Case “Bricks3”
240 Set oConstraint1.ConArg2 = dict_Bricks3
241 Case “Bricks4”
242 Set oConstraint1.ConArg2 = dict_Bricks4
243 End Select
244 oConstraint1.ConArg2Str = ExcWS.Cells(iRow, 4)
245 oConstraint1.ConExpr = ExcWS.Cells(iRow, 2)
246 dict_ConList.Add KeyID, oConstraint1
247 KeyID = KeyID + 1
248 End If
249 End If
250
251 ‘—— OBLIGATIONS ——
252 If ExcWS.Cells(iRow, 2) = “obligation” Then
253 Set oConstraint1 = New iConstraint
254 ‘Get Arguments
255 oConstraint1.ConArg1Str = ExcWS.Cells(iRow, 4)
256 oConstraint1.ConArg2Str = ExcWS.Cells(iRow, 5)
257 oConstraint1.ConArg3Str = ExcWS.Cells(iRow, 6)
258 oConstraint1.ConArg4Str = ExcWS.Cells(iRow, 7)
259 ‘Get Get Expression
260 oConstraint1.ConExpr = ExcWS.Cells(iRow, 2)
261 oConstraint1.ConIndex = ExcWS.Cells(iRow, 1)
262 ‘Add to Constraint List
263 dict_ConList.Add KeyID, oConstraint1
264 KeyID = KeyID + 1
265 End If
266
267 iRow = iRow + 1
268 Loop
269 count_Slots = 0
270
271 End Sub
272
273
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274 Sub update_Listboxes()
275 ‘Update Content of the User Interface
276 ‘Update Slots
277 UserForm1.lbx_Slots1.Clear
278 ‘Repopulate Listbox from Domain
279 For Each key In dict_Slots1
280 Set oComp = dict_Slots1(key)
281 UserForm1.lbx_Slots1.AddItem (oComp.Slots_Colour)
282 Next
283 UserForm1.lbx_Slots2.Clear
284 For Each key In dict_Slots2
285 Set oComp = dict_Slots2(key)
286 UserForm1.lbx_Slots2.AddItem (oComp.Slots_Colour)
287 Next
288 UserForm1.lbx_Slots3.Clear
289 For Each key In dict_Slots3
290 Set oComp = dict_Slots3(key)
291 UserForm1.lbx_Slots3.AddItem (oComp.Slots_Colour)
292 Next
293 UserForm1.lbx_Slots4.Clear
294 For Each key In dict_Slots4
295 Set oComp = dict_Slots4(key)
296 UserForm1.lbx_Slots4.AddItem (oComp.Slots_Colour)
297 Next
298
299 ‘Update Bricks
300 UserForm1.lbx_Bricks1.Clear
301 For Each key In dict_Bricks1
302 Set oComp = dict_Bricks1(key)
303 UserForm1.lbx_Bricks1.AddItem (oComp.Bricks_Colour & “ | “ & oComp.Bricks_Infill)
304 Next
305 UserForm1.lbx_Bricks2.Clear
306 For Each key In dict_Bricks2
307 Set oComp = dict_Bricks2(key)
308 UserForm1.lbx_Bricks2.AddItem (oComp.Bricks_Colour & “ | “ & oComp.Bricks_Infill)
309 Next
310 UserForm1.lbx_Bricks3.Clear
311 For Each key In dict_Bricks3
312 Set oComp = dict_Bricks3(key)
313 UserForm1.lbx_Bricks3.AddItem (oComp.Bricks_Colour & “ | “ & oComp.Bricks_Infill)
314 Next
315 UserForm1.lbx_Bricks4.Clear
316 For Each key In dict_Bricks4
317 Set oComp = dict_Bricks4(key)
318 UserForm1.lbx_Bricks4.AddItem (oComp.Bricks_Colour & “ | “ & oComp.Bricks_Infill)
319 Next
320 End Sub
321
322
323 Public Sub Constraint_Solver()
324
325 Dim key As Variant
326 Dim arg1 As Dictionary, arg2 As Dictionary, arg3 As Dictionary, arg4 As Dictionary
327 Dim arg1str, arg2str, arg3str, arg4str As String
328 Dim ConExpr As String
329 Dim oComp As iComponent_Slots
330 Dim ConPa As iConstraint
331 ‘As long as Queue is not empty
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332 Do While dict_ConQue.Count <> 0
333 For Each key In dict_ConQue
334 ‘Get Arguments from Constraint in Queue
335 Set ConPa = dict_ConQue(key)
336 Set arg1 = ConPa.ConArg1
337 Set arg2 = ConPa.ConArg2
338 Set arg3 = ConPa.ConArg3
339 Set arg4 = ConPa.ConArg4
340 arg1str = ConPa.ConArg1Str
341 arg2str = ConPa.ConArg2Str
342 arg3str = ConPa.ConArg3Str
343 arg4str = ConPa.ConArg4Str
344 ConExpr = ConPa.ConExpr
345 ‘Get Expression for processing
346 Select Case ConExpr
347 ‘Unequality
348 Case “unequal”
349 ‘Delete Constraint from Queue
350 dict_ConQue.Remove (key)
351 ‘Call Processing
352 Call Del_Equal_Slots(arg1, arg2)
353 ‘Equality
354 Case “equal”
355 dict_ConQue.Remove (key)
356 Call Bricks_to_Slots(arg1, arg2)
357 ‘Obligatory Assignment
358 Case “obligation”
359 dict_ConQue.Remove (key)
360 Call Set_Obliged_Slots(arg1str, arg2str, arg3str, arg4str)
361 Case Else
362 dict_ConQue.Remove (key)
363 End Select
364 Next
365 Loop
366 ‘Update User Interface
367 update_Listboxes
368
369 End Sub
370
371
372 Sub Constraint_Relax()
373 ‘—— Repopulte reset Domain ——
374 ‘Evaluate if Domain is NOT collapsed
375 If strSlot1 = ““ Then
376 ‘Refresh the domain including reset selection
377 ‘for slot
378 dict_Slots1.RemoveAll
379 For Each key In dict_SlotsORI
380 dict_Slots1.Add (key), dict_SlotsORI(key)
381 Next
382 ‘for brick
383 dict_Bricks1.RemoveAll
384 For Each key In dict_BricksORI
385 dict_Bricks1.Add (key), dict_BricksORI(key)
386 Next
387 End If
388
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389 If strSlot2 = ““ Then
390 dict_Slots2.RemoveAll
391 For Each key In dict_SlotsORI
392 dict_Slots2.Add (key), dict_SlotsORI(key)
393 Next
394 dict_Bricks2.RemoveAll
395 For Each key In dict_BricksORI
396 dict_Bricks2.Add (key), dict_BricksORI(key)
397 Next
398 End If
399
400 If strSlot3 = ““ Then
401 dict_Slots3.RemoveAll
402 For Each key In dict_SlotsORI
403 dict_Slots3.Add (key), dict_SlotsORI(key)
404 Next
405 dict_Bricks3.RemoveAll
406 For Each key In dict_BricksORI
407 dict_Bricks3.Add (key), dict_BricksORI(key)
408 Next
409 End If
410
411 If strSlot4 = ““ Then
412 dict_Slots4.RemoveAll
413 For Each key In dict_SlotsORI
414 dict_Slots4.Add (key), dict_SlotsORI(key)
415 Next
416 dict_Bricks4.RemoveAll
417 For Each key In dict_BricksORI
418 dict_Bricks4.Add (key), dict_BricksORI(key)
419 Next
420 End If
421
422 ‘—— Add relevant Constraints to queue ——
423 Dim oConstr As iConstraint
424 ‘if the domain is already occupied by a selection
425 ‘then add relevant constraints to queue where this is source
426 If Not strSlot1 = ““ Then
427 Call Un_Constraint(dict_Slots1, strSlot1)
428 For Each key In dict_ConList
429 Set oConstr = dict_ConList(key)
430 If oConstr.ConArg1Str = “Slots1” Then
431 dict_ConQue.Add (key), dict_ConList(key)
432 End If
433 Next
434 End If
435
436 If Not strSlot2 = ““ Then
437 Call Un_Constraint(dict_Slots2, strSlot2)
438 For Each key In dict_ConList
439 Set oConstr = dict_ConList(key)
440 If oConstr.ConArg1Str = “Slots2” Then
441 dict_ConQue.Add (key), dict_ConList(key)
442 End If
443 Next
444 End If
445
446 If Not strSlot3 = ““ Then
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447 Call Un_Constraint(dict_Slots3, strSlot3)
448 For Each key In dict_ConList
449 Set oConstr = dict_ConList(key)
450 If oConstr.ConArg1Str = “Slots3” Then
451 dict_ConQue.Add (key), dict_ConList(key)
452 End If
453 Next
454 End If
455
456 If Not strSlot4 = ““ Then
457 Call Un_Constraint(dict_Slots4, strSlot4)
458 For Each key In dict_ConList
459 Set oConstr = dict_ConList(key)
460 If oConstr.ConArg1Str = “Slots4” Then
461 dict_ConQue.Add (key), dict_ConList(key)
462 End If
463 Next
464 End If
465
466 ‘Start Solver
467 Constraint_Solver
468 End Sub
469
470
471 Sub Un_Constraint(ByRef arg1 As Dictionary, ByVal ConVal As String)
472 ‘Collapses Domain according to node consistency
473 Dim key As Variant
474 Dim oComp As iComponent_Slots
475 For Each key In arg1
476 Set oComp = arg1(key)
477 If Not oComp.Slots_Colour = ConVal Then
478 arg1.Remove (key)
479 End If
480 Next
481 End Sub
482
483
484 Sub Del_Equal_Slots(ByRef arg1 As Dictionary, ByRef arg2 As Dictionary)
485 ‘Elimitates values equal to the reference domain
486 Dim key1 As Variant, key2 As Variant
487 Dim oComp1 As iComponent_Slots, oComp2 As iComponent_Slots
488 For Each key1 In arg1
489 Set oComp1 = arg1(key1)
490 For Each key2 In arg2
491 Set oComp2 = arg2(key2)
492 If oComp1.Slots_Colour = oComp2.Slots_Colour Then
493 arg2.Remove (key2)
494 End If
495 Next
496 Next
497
498 End Sub
499
500
501 Sub Bricks_to_Slots(ByRef arg1 As Dictionary, ByRef arg2 As Dictionary)
502 ‘Elimitates values unequal to the reference domain
503 Dim key1 As Variant, key2 As Variant



Algorithms 2022, 15, 318 23 of 28

Table A1. Cont.

Row Code

504 Dim oComp1 As iComponent_Slots
505 Dim oComp2 As iComponent_Bricks
506 For Each key1 In arg1
507 Set oComp1 = arg1(key1)
508 For Each key2 In arg2
509 Set oComp2 = arg2(key2)
510 If Not oComp1.Slots_Colour = oComp2.Bricks_Colour Then
511 arg2.Remove (key2)
512 End If
513 Next
514 Next
515
516 End Sub
517
518 Sub Set_Obliged_Slots(ByVal arg1str As String, ByVal arg2str As String, _
519 ByVal arg3str As String, ByVal arg4str As String)
520
521 ‘Assigns missing value from template
522
523 Dim key1, key2, key3, key4 As Variant
524 Dim KeyA, KeyB As Variant
525 Dim oComp1 As iComponent_Slots, oComp2 As iComponent_Slots, oComp3 As _
526 iComponent_Slots, oComp4 As iComponent_Slots, oCompA As iComponent_Slots
527
528 Dim dict_comp As New Dictionary
529 Dim dict_set As New Dictionary
530
531 ‘establish comparative dictionary from constraint arguments
532 ‘if this domain has an assigned value write it to the comparative dictionary
533 If dict_Slots1.Count = 1 Then
534 For Each key1 In dict_Slots1
535 Set oComp1 = dict_Slots1(key1)
536 ‘get colour independently from sequence or position
537 If oComp1.Slots_Colour = arg1str Or oComp1.Slots_Colour = arg2str Or _
538 oComp1.Slots_Colour = arg3str Or oComp1.Slots_Colour = arg4str Then
539 dict_comp.Add (key1), dict_Slots1(key1)
540 End If
541 Next
542 End If
543 If dict_Slots2.Count = 1 Then
544 For Each key2 In dict_Slots2
545 Set oComp2 = dict_Slots2(key2)
546 If oComp2.Slots_Colour = arg1str Or oComp2.Slots_Colour = arg2str Or _
547 oComp2.Slots_Colour = arg3str Or oComp2.Slots_Colour = arg4str Then
548 dict_comp.Add (key2), dict_Slots2(key2)
549 End If
550 Next
551 End If
552 If dict_Slots3.Count = 1 Then
553 For Each key3 In dict_Slots3
554 Set oComp3 = dict_Slots3(key3)
555 If oComp3.Slots_Colour = arg1str Or oComp3.Slots_Colour = arg2str Or _
556 oComp3.Slots_Colour = arg3str Or oComp3.Slots_Colour = arg4str Then
557 dict_comp.Add (key3), dict_Slots3(key3)
558 End If
559 Next
560 End If
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561 If dict_Slots4.Count = 1 Then
562 For Each key4 In dict_Slots4
563 Set oComp4 = dict_Slots4(key4)
564 If oComp4.Slots_Colour = arg1str Or oComp4.Slots_Colour = arg2str Or _
565 oComp4.Slots_Colour = arg3str Or oComp4.Slots_Colour = arg4str Then
566 dict_comp.Add (key4), dict_Slots4(key4)
567 End If
568 Next
569 End If
570
571 ‘check if three slots have been assigned
572 If dict_comp.Count = 3 Then
573 ‘establish control dictionary for value retrieval
574 For Each key In dict_SlotsORI
575 Set oCompA = dict_SlotsORI(key)
576 If oCompA.Slots_Colour = arg1str Or oCompA.Slots_Colour = arg2str Or _
577 oCompA.Slots_Colour = arg3str Or oCompA.Slots_Colour = arg4str Then
578 dict_set.Add (key), dict_SlotsORI(key)
579 End If
580 Next
581
582 ‘identify missing assignment
583 For Each KeyA In dict_comp
584 dict_set.Remove (KeyA)
585 Next
586
587 ‘set assignment
588 For Each KeyA In dict_set
589 Set oCompA = dict_set(KeyA)
590 ‘if slot one is the open one then assign last value here and collapse
591 If Not dict_Slots1.Count = 1 Then
592 For Each key1 In dict_Slots1
593 Set oComp1 = dict_Slots1(key1)
594 If Not oComp1.Slots_Colour = oCompA.Slots_Colour Then
595 dict_Slots1.Remove (key1)
596 End If
597 Next
598 End If
599 If Not dict_Slots2.Count = 1 Then
600 For Each key2 In dict_Slots2
601 Set oComp2 = dict_Slots2(key2)
602 If Not oComp2.Slots_Colour = oCompA.Slots_Colour Then
603 dict_Slots2.Remove (key2)
604 End If
605 Next
606 End If
607 If Not dict_Slots3.Count = 1 Then
608 For Each key3 In dict_Slots3
609 Set oComp3 = dict_Slots3(key3)
610 If Not oComp3.Slots_Colour = oCompA.Slots_Colour Then
611 dict_Slots3.Remove (key3)
612 End If
613 Next
614 End If
615 If Not dict_Slots4.Count = 1 Then
616 For Each key4 In dict_Slots4
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617 Set oComp4 = dict_Slots4(key4)
618 If Not oComp4.Slots_Colour = oCompA.Slots_Colour Then
619 dict_Slots4.Remove (key4)
620 End If
621 Next
622 End If
623 Next
624 End If
625 End Sub

Appendix B. Code for Userform1

Table A2. VBA Code for Userform1.

Row Code

1 Private Sub cmd_gen_domains_Click()
2 ‘Generates the Domains from the Excel Repository and inits User Interface
3 Main.reset
4 Main.read_inventory
5 Main.update_Listboxes
6 End Sub
7
8 Private Sub cmd_relax1_1_Click()
9 ‘Reset Label in User Interface and Internal Selection Working Memory
10 lbl_Slots1.Caption = ““
11 strSlot1 = ““
12 ‘decrease global counter by one
13 count_Slots = count_Slots − 1
14 ‘Refreshopen Domains
15 Main.Constraint_Relax
16 End Sub
17
18 Private Sub cmd_relax1_2_Click()
19 lbl_Slots2.Caption = ““
20 strSlot2 = ““
21 count_Slots = count_Slots − 1
22 Main.Constraint_Relax
23 End Sub
24
25 Private Sub cmd_relax1_3_Click()
26 lbl_Slots3.Caption = ““
27 strSlot3 = ““
28 count_Slots = count_Slots − 1
29 Main.Constraint_Relax
30 End Sub
31
32 Private Sub cmd_relax1_4_Click()
33 lbl_Slots4.Caption = ““
34 strSlot4 = ““
35 count_Slots = count_Slots − 1
36 Main.Constraint_Relax
37 End Sub
38
39 Private Sub cmd_reset_Click()
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40 ‘Empty Domains, Queue and User Interface
41 reset
42 End Sub
43
44
45 Private Sub lbx_Slots1_DblClick(ByVal Cancel As MSForms.ReturnBoolean)
46 ‘Selection of a Domain Variable and Queueing of Neighbours
47 ‘Add Selection to Label in User Interface and Internal Selection Working Memory
48 lbl_Slots1.Caption = lbx_Slots1.Text
49 strSlot1 = lbx_Slots1.Text
50 ‘Add unary Constraint to Queue for Collapsing
51 Call Main.Un_Constraint(dict_Slots1, strSlot1)
52 ‘Increase global counter by one
53 count_Slots = count_Slots + 1
54 ‘Add relevant binary Constraints to Queue
55 Dim oConstr As iConstraint
56 For Each key In dict_ConList
57 Set oConstr = dict_ConList(key)
58 If oConstr.ConArg1Str = “Slots1” Then
59 dict_ConQue.Add (key), dict_ConList(key)
60 End If
61 If count_Slots = 3 Then
62 If oConstr.ConExpr = “obligation” Then
63 dict_ConQue.Add (key), dict_ConList(key)
64 End If
65 End If
66 Next
67 ‘Start Solver
68 Main.Constraint_Solver
69 End Sub
70
71
72 Private Sub lbx_Slots2_DblClick(ByVal Cancel As MSForms.ReturnBoolean)
73 lbl_Slots2.Caption = lbx_Slots2.Text
74 strSlot2 = lbx_Slots2.Text
75 Call Main.Un_Constraint(dict_Slots2, strSlot2)
76 count_Slots = count_Slots + 1
77 Dim oConstr As iConstraint
78 For Each key In dict_ConList
79 Set oConstr = dict_ConList(key)
80 If oConstr.ConArg1Str = “Slots2” Then
81 dict_ConQue.Add (key), dict_ConList(key)
82 End If
83 If count_Slots = 3 Then
84 If oConstr.ConExpr = “obligation” Then
85 dict_ConQue.Add (key), dict_ConList(key)
86 End If
87 End If
88 Next
89 Main.Constraint_Solver
90 End Sub
91
92 Private Sub lbx_Slots3_DblClick(ByVal Cancel As MSForms.ReturnBoolean)
93 lbl_Slots3.Caption = lbx_Slots3.Text
94 strSlot3 = lbx_Slots3.Text
95 Call Main.Un_Constraint(dict_Slots3, strSlot3)



Algorithms 2022, 15, 318 27 of 28

Table A2. Cont.

Row Code

96 count_Slots = count_Slots + 1
97 Dim oConstr As iConstraint
98 For Each key In dict_ConList
99 Set oConstr = dict_ConList(key)
100 If oConstr.ConArg1Str = “Slots3” Then
101 dict_ConQue.Add (key), dict_ConList(key)
102 End If
103 If count_Slots = 3 Then
104 If oConstr.ConExpr = “obligation” Then
105 dict_ConQue.Add (key), dict_ConList(key)
106 End If
107 End If
108 Next
109 Main.Constraint_Solver
110 End Sub
111
112 Private Sub lbx_Slots4_DblClick(ByVal Cancel As MSForms.ReturnBoolean)
113 lbl_Slots4.Caption = lbx_Slots4.Text
114 strSlot4 = lbx_Slots4.Text
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