f_f algorithms

Article

Improved Slime Mold Algorithm with Dynamic Quantum
Rotation Gate and Opposition-Based Learning for Global
Optimization and Engineering Design Problems

Yunyang Zhang !, Shiyu Du %>* and Quan Zhang !

check for
updates

Citation: Zhang, Y.; Du, S.; Zhang, Q.
Improved Slime Mold Algorithm
with Dynamic Quantum Rotation
Gate and Opposition-Based Learning
for Global Optimization and
Engineering Design Problems.
Algorithms 2022, 15, 317. https://
doi.org/10.3390/a15090317

Academic Editor: Giinther Raidl

Received: 19 July 2022
Accepted: 31 August 2022
Published: 4 September 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Information Science and Engineering, Ningbo University, Ningbo 315211, China
Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and
Engineering, Ningbo 315211, China

Correspondence: dushiyu@nimte.ac.cn

Abstract: The slime mold algorithm (SMA) is a swarm-based metaheuristic algorithm inspired
by the natural oscillatory patterns of slime molds. Compared with other algorithms, the SMA is
competitive but still suffers from unbalanced development and exploration and the tendency to
fall into local optima. To overcome these drawbacks, an improved SMA with a dynamic quantum
rotation gate and opposition-based learning (DQOBLSMA) is proposed in this paper. Specifically, for
the first time, two mechanisms are used simultaneously to improve the robustness of the original
SMA: the dynamic quantum rotation gate and opposition-based learning. The dynamic quantum
rotation gate proposes an adaptive parameter control strategy based on the fitness to achieve a
balance between exploitation and exploration compared to the original quantum rotation gate. The
opposition-based learning strategy enhances population diversity and avoids falling into the local
optima. Twenty-three benchmark test functions verify the superiority of the DQOBLSMA. Three
typical engineering design problems demonstrate the ability of the DQOBLSMA to solve practical
problems. Experimental results show that the proposed algorithm outperforms other comparative
algorithms in convergence speed, convergence accuracy, and reliability.

Keywords: slime mold algorithm; metaheuristics algorithm; engineering design problem; dynamic
quantum rotation gate; opposition-based learning

1. Introduction

In the optimization field, solving an optimization problem usually means finding
the optimal value to maximize or minimize a set of objective functions without violating
constraints [1]. Optimization methods can be divided into two main categories: exact algo-
rithms and metaheuristics [2]. While exact algorithms can provide global optima precisely,
they have exponentially increasing execution times in proportion to the number of variables
and are considered less suitable and practical [3]. In contrast, metaheuristic algorithms can
identify the best or near-optimal solution in a reasonable amount of time [4]. During the
last two decades, metaheuristic algorithms have gained much attention, and much devel-
opment and work there have been on them due to their flexibility, simplicity, and global
optimization. Thus, they are widely used for solving optimization problems in almost every
domain, such as big data text clustering [5], tuning of fuzzy control systems [6,7], path plan-
ning [8,9], feature selection [10-12], training neural networks [13], parameter estimation
for photovoltaic cells [14-16], image segmentation [17,18], tomography analysis [19], and
permutation flowshop scheduling [20,21].

Metaheuristic algorithms simulate natural phenomena or laws of physics and are
usually classified into three categories: evolutionary algorithms, physical and chemical
algorithms, and swarm-based algorithms. Evolutionary algorithms are a class of algorithms
that simulate the laws of evolution in nature. The best known is the genetic algorithm

Algorithms 2022, 15, 317. https:/ /doi.org/10.3390/a15090317

https:/ /www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15090317
https://doi.org/10.3390/a15090317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a15090317
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15090317?type=check_update&version=1

Algorithms 2022, 15, 317

2 of 25

(GA) [22], which was developed from Darwin’s theory of superiority and inferiority. There
are other algorithms, such as differential evolution (DE) [23], which simulates the crossover
and variation mechanisms of inheritance, evolutionary programming (EP) [24], and evolu-
tionary strategies (ES) [25]. Physical and chemical algorithms search for the optimum by
simulating the universe’s chemical laws or physical phenomena. Algorithms in this cate-
gory include simulated annealing (SA) [26], electromagnetic field optimization (EFO) [27],
equilibrium optimizer (EO) [28], and Archimedes’ optimization algorithm (ArchOA) [29].
Swarm-based algorithms simulate the behavior of social groups of animals or humans.
Examples of such algorithms include the whale optimization algorithm (WOA) [30], salp
swarm algorithm (SSA) [31], moth search algorithm (MSA) [32], aquila optimizer (AO) [33],
grey wolf optimizer (GWO) [34], harris hawks optimization (HHO) [35], and particle swarm
optimization (PSO) [36].

However, the no free lunch (NFL) theorem [37] proves that no single algorithm can
solve all optimization problems well. If an algorithm is particularly effective for a particular
class of problems, it may not be able to solve other classes of optimization problems. This
motivates us to propose new algorithms or improve the existing ones. The slime mold
algorithm (SMA) [38] is a new meta-heuristic algorithm proposed by Li et al. in 2020.
The basic idea of the SMA is based on the foraging behavior of slime mold, which has
different feedback aspects according to the food quality. Different search mechanisms
have been introduced into the SMA to solve various optimization problems. For example,
Zhao et al. [39] introduced a diffusion mechanism and association strategy into the SMA
and applied the proposed algorithm to the image segmentation of CT images. Salah L. et
al. [40] applied the slime mold algorithm to optimize an artificial neural network model for
predicting monthly stochastic urban water demand. Wang et al. [41] developed a parallel
slime mold algorithm for the distribution network reconfiguration problem with distributed
generation. Tang et al. [42] introduced chaotic opposition-based learning and spiral search
strategies into the SMA and proposed two adaptive parameter control strategies. The
simulation results show that the proposed algorithms outperform other similar algorithms.
Ornek et al. [43] proposed an enhanced SMA that combines the sine cosine algorithm
with the position update of the SMA. Experimental results show that the proposed hybrid
algorithm has a better ability to jump out of local optima with faster convergence.

Although the SMA, as a new algorithm, is competitive with other algorithms, it
also suffers from some shortcomings. The SMA, similarly to many other swarm-based
metaheuristic algorithms, suffers from slow convergence and premature convergence to a
local optimum solution [44]. In addition, the update strategy of SMA reduces exploration
capabilities and reduces population diversity. To improve the above problems, an improved
algorithm based on SMA, called the dynamic-quantum-rotation-gate- and opposition-based
learning SMA (DQOBLSMA), is proposed. In this paper, we introduce two mechanisms,
the dynamic quantum rotation gate (DQGR) and opposition-based learning (OBL), into the
SMA simultaneously. Both mechanisms improve the shortcomings of the original algorithm
in terms of slow convergence and the tendency to fall into local optima. First, DOGR
rotates the search individuals to the direction of the optimum, improving the diversity
of the population and enhancing the global exploration capability of the algorithm. At
the same time, OBL explores the partial solution in the opposite direction, improving the
algorithm’s ability to jump out of local optima. The performance of the DQOBLSMA was
evaluated by comparing it with the original SMA algorithm and with other advanced
algorithms. In addition, three different constraint engineering problems were used to
verify the performance of the DQOBLSMA further: the welded beam design problem, the
tension/compression spring design problem, and pressure vessel design.

The main contributions of this paper are summarized as follows:

1. DQRG and OBL strategies were introduced into SMA to improve the exploration
capabilities of SMA.

2. The DQRG strategy is proposed in order to balance the exploration and exploitation
phases.

Algorithms 2022, 15, 317

30f25

3. By comparing five well-known metaheuristic algorithms, experiments show that the
proposed DQOBLSMA is more robust and effective.

4. Experiments on three engineering design optimization problems show that the
DQOBLSMA can be effectively applied to practical engineering problems.

This paper is organized as follows. Section 2 describes the slime mold algorithm,
quantum rotation gate, and opposition-based learning. Section 3 presents the proposed
improved slime mold algorithm. Sections 4 show the experimental study and discussion
using benchmark functions. The DQOBLSMA is applied to solve the three engineering
problems in Section 5. Finally, the conclusion and future work are given in Section 6.

2. Materials and Methods
2.1. Slime Mold Algorithm

The slime mold algorithm (SMA) [38] is a swarm-based metaheuristic algorithm
recently developed by Li et al. The algorithm simulates a range of behaviors for foraging by
the slime mold. The negative and positive feedbacks of the slime mold using a biological
oscillator to propagate waves during foraging for a food source are simulated by the SMA
using adaptive weights. Three special behaviors of the slime mold are mathematically
formulated in the SMA: approaching food, wrapping food, and grabbing food. The process
of approaching food can be expressed as

Xi(t +1) :{ Xb(t)+vb.£zyk;lg(g(’t)—XB(t)), :;Z W

where t is the number of current iterations, X;(t + 1) is the newly generated position, Xb(t)
denotes the best position found by the slime mold in iteration t, X 4 (t) and Xp(t) are two
random positions selected from the population of slime mold, and r is a random value in
[0,1].

vb and vs.c are the coefficients that simulate the oscillation and contraction mode of
slime mold, respectively, and vs.c is designed to linearly decrease from one to zero during
the iterations. The range of vb is from —a to 4, and the computational formula of 4 is

t
a = arctanh (1 — T) 2)

where T is the maximum number of iterations.

According to Equations (1) and (2), it can be seen that as the number of iterations
increases, the slime mold will wrap the food.

W is a significantly important factor that indicates the weight of the slime mold, and it
is calculated as follows:

1+ rand -log(%50 4 1),i < N/2

W(Smelllndex (7)) = & :If:szif) ©)]
1— rand -log bF—aF +1),i>N/2

SmellIndex(i) = Sort(S(i)) 4)

where N is the size of the population, i represents the i — th individual in the population,
i €1,2...N, rand denotes the random value in the interval of [0, 1], bF denotes the optimal
fitness obtained in the current iterative process, wF denotes the worst fitness value obtained
in the iterative process currently, S(7) represents the fitness of X, SmellIndex denotes the
sequence of fitness values sorted.

p = tanh |S(i) — DF| ()

where DF denotes the best fitness obtained in all iterations.

Algorithms 2022, 15, 317

4 of 25

Finally, when the slime mold has found the food , it still has a certain chance z to
search other new food, which is formulated as

X(t+1) =rand -(UB — LB) + LB, 7, < z (6)

where UB and LB are the upper and lower limits, respectively, and r, implies a random
value in the region [0, 1]. z is set to 0.03 in original SMA.
Finally, the pseudo-code of SMA is given in Algorithm 1.

Algorithm 1: Pseudo-code of the slime mold algorithm (SMA).

Input: Population size N, Maximum number of iteration MaxIt.
Output: The best location X}, the best fitness value bestFitness .

1 Initialize the parameters popsize(N);
2 Initialize the positions of slime mold X;(i =1,2,3..,N) ;
3 while t < MaxIt do

4 Calculate the fitness of all slime molds;
5 Update bestFitness,X;
6 Calculate the W by Equation (3);
7 foreach each slime mold do
8 if <z then
9 ‘ update the position using Equation (6);
10 else
11 Update p, vb, and vc;
12 Update position by Equation (1);
13 end
14 end
15 t=t+1;
16 end

17 return bestFitness, X

2.2. Description of the Quantum Rotation Gate
2.2.1. Quantum Bit

The fundamental storage unit is a quantum bit in quantum computer systems, com-
munication systems, and other quantum information systems [45]. The difference between
quantum bits and classical bits is that quantum bits can be in a superposition of two states
simultaneously, whereas classical bits can be in only one state at a period of time, which is
defined as Equation (7).

9) = al0) + BI1) %

where a and B represent the probability amplitudes of the two superposition states. |a|?
and |B|? are the e probabilities that the qubit is in two different states of ”0” and 17, and
the relationship between them is shown in Equation (8).

2 2
ja]"+[BI” =1 8)
Thus, a quantum bit can represent one state or be in both states at the same time.

2.2.2. Quantum Rotation Gate

In the DQOBLSMA, the QRG strategy is introduced to update the position of some
search individuals to enhance the exploitation of the algorithm. In the physical discipline
of quantum computing, the quantum rotation gate is used as a state processing technique.
Quantum bits are binary, and the position information generated by the swarm-based
algorithm is floating-point data. In order to process the position information, the discrete
data of the quantum bits need to be turned into the algorithm’s continuous data. The

Algorithms 2022, 15, 317 5 of 25

information of each dimension of the search agent is rotated in couples and updated by
a quantum rotation gate. The update process and adjustment operation of QRG are as
follows. Equation (9) shows that the 2 x 2 matrix represents the quantum rotation gate.

cos(6;) —sin(@i)] 9)

u(6:) = [sin(6;) cos(6;)

The updating process is as follows:

ol] { o] { cos(0;) —sin(6;)] [o }

= U(b; = 10
{ B: (6:) Bi sin(6;) cos(6;) Bi (10)
where(a;, B;) T shows the state of the quantum bit of the ith quantum bit of the chromosome

before the update of the quantum rotation gate, and («}, B! T indicates the state of the
quantum bit after the update. 6; denotes the rotation angle of the ith quantum bit, the size
and sign of which have been pre-set, and its adjustment strategy is shown in Table 1.

Table 1. Strategies for specifying rotation angle in QRG.

ituati Ab; s(ai, Bi)

Situation wifi <0 0 =0 wifi >0 Bi=0
f(x;) = best_fitness é 0 0 0 0
f(x;) > best_fitness é -1 +1 +1 0
f(x;) < best_fitness o +1 0 -1 +1

Table 1 shows the rotation angle is labeled by 6; = A6; - s(«;, B;), where s(«;, B;)
denotes the rotation of the target direction. A6; represents the rotation angle of the i-th
rotation, where the position state of the i-th search agent in the population is «;, and the
position state of the optimal search agent in the whole population is ;. By comparing the
fitness values of the current target and the optimal target, the direction of the target with
higher fitness is selected to rotate the individual, thereby expanding the search space. If
f(x;) > best_fitness, then the algorithm evolves toward the current target. Conversely, let
the quantum bit state vector transform towards the direction where the optimal individual
exists [46]. Figure 1 shows the quantum bit state vector transformation process.

(.5

Figure 1. The process of updating the state of a quantum bit.

2.3. Opposition-Based Learning (OBL)

Tizhoosh proposed OBL in 2005 [47]. This technique can increase the convergence
speeds of metaheuristic algorithms by replacing a solution in the population by searching
for a potentially better solution in the opposite direction of the current one. With this
approach, a population with better solutions could be generated after each iteration and
accelerate convergence speed. The OBL strategy has been successfully used in various

Algorithms 2022, 15, 317

6 of 25

metaheuristic algorithms to improve the ability of local optima stagnation avoidance [48],
and the mathematical expression is as follows:

XopL(t) = LB+ UB — X(t) (11)

In opposition-based learning, for the original solution X(¢) and the reverse solution
XopL(t), according to their fitness, save the better solution among them. Finally, the slime
mold position for the next iteration is updated as follows in the minimization problem:

_ J Xosu(t) if f(Xope(t)) < f(X(t))
Xom (1+1) = { ot A%y <) .

3. Proposed Method
3.1. Improved Quantum Rotation Gate

The magnitude of the rotation angle of the QRG significantly affects the convergence
speed. A relatively large amplitude leads to premature convergence. Conversely, smaller
angles lead to slower convergence. In particular, the rotation angle of the original quantum
rotation gate is fixed, which is not conducive to the balance between exploration and
exploitation. Based on this, we propose a new dynamic adaptation strategy to adjust the
rotation angle of the quantum rotation gate. In the early exploration stage, the value of 6
should be increased when the current individual is far from the best. In the exploitation
stage, the value of 6 should be decreased. This method allows the search process to adapt
to different solutions and is more conducive to searching for the global optimum. In detail,
this improved method determines the value of the rotation angle by the difference between
the current individual’s fitness and the best fitness that has been obtained so far. The
rotation angle 6 is defined as

A8 = Omin + 7 - (Gmax - Gmin) (13)

where Omax and Opin are the maximum and minimum values of the range of A6, respectively.
The maximum and minimum values take 0.0357t and 0.0017, respectively. «y is defined as:

4 (=0

Yi=l-e
The pseudo-code of DQRG (Algorithm 2) is as follows:

(14)

Algorithm 2: Pseudo-code of the quantum rotation gate (DQRG).

Input: position X;, fitness values of X; fitness(i), the best fitness value bF, dim
Output: updated position X.

1 Initialize the parameters «, §, s;
2 while i < dim do

3 Update «, 5;

4 | Compare the fitness(i) and bF;

5 | Update s according to Table 1;

6 Update A6 by Equation (13);

7 | Perform DQRG by Equation (10);
8 i=i+1;

9 end

10 return X

3.2. OBL

In this work, an improved method to obtain the opposite solution is proposed further.
Specifically, instead of using only lower and upper bounds to find the opposite point, the
impact of the current better solution, including the optimal, suboptimal, and third optimal

Algorithms 2022, 15, 317

7 of 25

solutions, is added to the opposite point’s calculation procedure. The new formula of the
opposite point is expressed as follows:

Xos + Xss + th

Xm = 3

(15)
where X, is the average of three better solutions, Xs is the current best solution, X;; is the
suboptimal solution, and Xj; is the third optimal solution.

XopL(t+1) = LB+ UB — Xy, (t) + rand - (X, (t) — X(t)) (16)

where Xopp (t + 1) is the improved opposite solution, rand denotes the random value in
the interval of [0,1], and UB and LB are the upper and lower limits.

3.3. Improved SMA

To explore the solution space of complex optimization problems more efficiently, we
propose two strategies based on the original SMA algorithm: the DQRG and OBL strategies.
In the proposed method, two main conditions are considered to execute the proposed
policy procedures. The first condition is the execution of SMA or two other strategies. If
rp < 0.8, then SMA is executed to update the position. Otherwise, the second condition
is checked to determine the strategy to adopt. If r3 < 0.5 in the second condition, the
solution will be updated using the DQRG; otherwise, OBL will be executed for the searched
individual. The pseudo-code of the DQOBLSMA is shown as Algorithm 3:

Algorithm 3: Pseudo-code of the DQOBLSMA.

Input: Population size N, Maximum number of iteration MaxIt.
Output: The best location X}, the best fitness value bF .

1 Initialize the parameters popsize(N), Max;teraition;
2 Initialize the positions of slime mold X;(i = 1,2,3..,N) ;
3 while t < MaxIt do

4 Calculate the fitness of all slime mold;
5 Update bF, X;
6 Calculate the W by Equation (3);
7 foreach slime mold do
8 if r; < 0.8 then
9 if ro<z then
10 ‘ update the position using Equation (6);
1 else
12 Update p, vb, and vc;
13 Update position by Equation (1);
14 end
15 else
16 if r3 < 0.5 then
17 ‘ Operate Dynamic quantum rotation gate by Algorithm 2;
18 else
19 Calculate opposition solution Xpp;, of individual X by Equation
(16);
20 end
21 end
22 end
23 t=t+1;
24 end

25 return bestFitness, X

Algorithms 2022, 15, 317

8 of 25

3.4. Computational Complexity Analysis

The computational complexity of the DQOBLSMA depends on the population size
(N), dimension size (D), and maximum iterations (T). First, the DQOBLSMA produces the
search agents randomly in the search space, so the computational complexity is O(N x D).
Second, the computational complexity of calculating the fitness of all agents is O(N). The
quick-sort of all search agents is O(N x log N). Moreover, updating the positions of agents
in the original SMA is (N x D). Therefore, the total computational complexity of original
SMAisONXD+NxTx (1+D+logN)).

Updating the positions through the DQRG is O(N x D) (maximum), and the OBL is
O(N) (maximum). Updating the position using DQRG and the original SMA will not be
done simultaneously. In summary, the final time complexity is O(DQOBLSMA) = O(N X
D+ N x T x (14 D +log N))(maximum). In summary, the improved strategy proposed
in this paper does not increase the computational complexity when compared with the
original SMA.

4. Experiments and Discussion

We conducted a series of experiments to verify the performance of the DQOBLSMA.
The classical benchmark functions are introduced in Section 4.1. In the experiments of
test functions, the impacts of two mechanisms were analyzed; see Section 4.2. In Section
4.3, the DQOBLSMA is compared with several advanced algorithms. In Section 4.4, the
convergence of the algorithms is analyzed.

The performance of the DQOBLSMA was investigated using the mean result (Mean)
and standard deviation (Std). In order to accurately make statistically reasonable conclu-
sions, the results of the benchmark test functions were ranked using the Friedman test. In
addition, the Wilcoxon’s rank-sum test was used to assess the average performances of
the algorithms in a statistical sense. In this study, it was used to test whether there was
a difference in the effect of the DQOBLSMA compared with those of other algorithms in
pairwise comparisons. When the p-value is less than 0.05, the result is significantly different
from the other methods. The symbols "+," "—," and "=" indicate if the DQOBLSMA is
better than, inferior to, or equal to the other algorithms, respectively.

4.1. Benchmark Function Validation and Parameter Settings

In this study, the test set for the DQOBLSMA comparison experiment was the 23
classical test functions that had been used in the literature [34]. The details are shown in
Table 2. These classical test functions are divided into unimodal functions, multimodal
functions, and fixed-dimension multimodal functions. The unimodal functions (F1-F7)
have only one local solution and one optimal global solution and are usually used to
evaluate the local exploitation ability of the algorithm. Multimodal functions (F8-F13) are
often used to test the exploration ability of the algorithm. F14-F23 are fixed-dimensional
multimodal functions with many local optimal points and low dimensionality, which can
be used to evaluate the stability of the algorithm.

Algorithms 2022, 15, 317

9 of 25

Table 2. The classic benchmark functions.

Function Type Function Name Dimension Range Theoretical Value
F1 Sphere 30 [—100, 100] 0
F2 Schwefel 2.22 30 [—10, 10] 0
Unimodal F3 Schwefel 1.2 30 [—100, 100] 0
test functions F4 Schwefel 2.21 30 [—100, 100] 0
F5 Rosenbrock 30 [—30, 30] 0
F6 Step 30 [—100, 100] 0
F7 Quartic 30 [—1.28,1.28] 0
F8 Schwefel 2.26 30 [—500, 500] —418.9829 x D
. F9 Rastrigin 30 [-5.12,5.12] 0
Muttimodal F10 Ackley 30 [—32, 32] 0
F11 Griewank 30 [—600, 600] 0
F12 Penalized 30 [—50, 50] 0
F13 Penalized2 30 [—50, 50] 0
F14 Foxholes 2 [—65, 65] 0.998004
F15 Kowalik 4 [-5, 5] 0.0003075
F16 Six-Hump Camel Back 2 [—5, 5] —1.03163
F17 Branin 2 [—5, 5] 0.398
Fixed-dimension multimodal F18 Goldstein Price 2 [—2,2] 3
test functions F19 Hartman 3 3 [-1,2] —3.8628
F20 Hartman 6 6 [0, 1] —3.322
F21 Shekel 5 4 0,10] —10.1532
F22 Shekel 7 4 [0, 10] —10.4028
F23 Shekel 10 4 [0,10] —10.5363

The DQOBLSMA has been compared to the original SMA and five other algorithms:
the slime mold algorithm improved by opposition-based learning and Levy flight distribu-
tion (OBLSMAL) [48], the equilibrium slime mold algorithm (ESMA) [49], the equilibrium
optimizer with a mutation strategy (MEO) [50], the adaptive differential evolution with
an optional external archive (JADE) [51], and the gray wolf optimizer based on random
walk (RWGWO) [52]. The parameter settings of each algorithm are shown in Table 3, and
the experimental parameters for all optimization algorithms were chosen to be the same as
those reported in the original works.

Table 3. Parameter settings for the comparative algorithms.

Algorithm Parameter
OBLSMAL z2=003,p, =05,p, =05
ESMA z =0.03
MEO a =2,ap=1,GP =05
JADE uF = 05,uCR = 0.5,p = 0.1,c = 0.1
RWGWO Control parameter a, b decrease linearly from 2 to 0
SMA z=0.03

In order to maintain a fair comparison, each algorithm was independently run 30
times. The population size (N) and the maximum function evaluation times (FEs) of
all experimental methods were fixed at 30 and 15,000, respectively. The comparative
experiment was run under the same test conditions to keep the experimental conditions
consistent. The proposed method was coded in Python3.8 and tested on a PC with an AMD
R5-4600 Hz, 3.00 GHz of memory, 16 GB of RAM, and the Windows 11 operating system.

Algorithms 2022, 15, 317

10 of 25

4.2. Impacts of Components

In this section, different versions of the improvement are investigated. The proposed
DQOBLSMA adds two different mechanisms to the original SMA. To verify their respective
effects, they are compared when separated. Different combinations between SMA and two
mechanisms are listed below:

¢ SMA combined with DQRG and OBL (DQOBLSMA);
e SMA combined with DQRG (DQSMA);

e SMA combined with OBL(OBLSMA);

e Original SMA;

Table 4 gives the comparison results between the original SMA and the improved
algorithm after adding the mechanism. The ranking of the four algorithms is given at the
end of the table, and it can be seen that the first-ranked algorithm is the DQOBLSMA. This
ranking was obtained using the Friedman ranking test [53] and reveals the overall perfor-
mance rankings of the compared algorithms against the tested functions. In these cases, the
ranking from best to worst was roughly as follows: DQOBLSMA > OBLSMA > SMA >
DQSMA. With the addition of both mechanisms, the performance of the DQOBLSMA is
more stable, and the global search capability is much improved. When comparing DOSMA
with OBLSMA, we can see that OBLSMA is much stronger than DQSMA, indicating that
the contribution of OBL to the performance of SMA is more significant than the contribution
of DQRG to the performance of SMA. When comparing DQSMA with SMA, we can see
that DQSMA becomes worse on unimodal functions but stronger on most multimodal and
fixed-dimensional multimodal functions than the original SMA in terms of optimization.

Wilcoxon’s rank-sum test was used to verify the significance of the DQOBLSMA
against the original SMA and SMA with the addition of one mechanism. The results
are shown in Table 5. Based on these results and those in Table 4, the DQOBLSMA
outperformed SMA on 13 benchmark functions, DQSMA on 17 benchmark functions,
and OBLSMA on 8 benchmark functions. Thus, the DQOBLSMA algorithm proposed in
this paper combines DQRG with OBL. Although DOQSMA and OBLSMA can both find
the solutions, there are more benefits to be gained by combining the two strategies. In
conclusion, the DQOBLSMA offers better optimization performance and is significantly
better than SMA, DQSMA, and OBLSMA.

Algorithms 2022, 15, 317 11 of 25
Table 4. Search results (comparisons of the DQOBLSMA, DQSMA, OBLSMA, SMA).
DQOBLSMA DQSMA OBLSMA SMA
Function
Mean Std Mean Std Mean Std Mean Std
F1 0.0000% 10100 0.0000% 10100 1.0891x 10702 4.3266x10703 0.0000x 10790 0.0000% 10100 0.0000% 10100 0.0000x 10100
F2 2.9368x10-231 0.0000x 10190 5.1658 x 1092 1.7908 x 1092 2.7971x 10244 0.0000x 10190 7.2130x 10164 0.0000x 10190
F3 0.0000x 10190 0.0000x 10790 3.8217x1092 5.9525x 1092 0.0000x 10100 0.0000x 10190 0.0000x 10790 0.0000x 10190
F4 1.4919x 107224 0.0000x 10790 1.5620x 10702 8.3506 %109 3.1204x10-2% 0.0000x 10790 5.3508x 10168 0.0000x 10100
F5 1.4718x10~01 1.5834x10~01 5.1129x 10700 1.1125x 10101 6.4059 x 10100 1.1204x 10101 2.8202x 10101 2.6986x 1001
F6 0.0000x 10100 0.0000x 10190 0.0000x 10790 0.0000x 10100 0.0000x 101090 0.0000x 10790 0.0000x 10790 0.0000x 10790
F7 8.8202x107% 7.2479x10~% 5.8003x10%4 3.1965x10" 04 1.3372x 10704 8.9724x 1079 2.3852x10~ % 2.0182x10"%
F8 —1.2569x 10104 1.0234x 10701 —1.1726 10704 1.0829x 10103 —1.2569x 10704 5.6297x10 92 —9.1620x1019 7.0236x 10102
F9 0.0000% 10100 0.0000% 10100 0.0000x 10790 0.0000x 10190 0.0000x 10790 0.0000% 10100 0.0000% 10100 0.0000x 10100
F10 4.4409x1016 0.0000x 10190 4.4409x10~16 0.0000x 10190 4.4409x1016 0.0000x 10190 4.4409%1016 0.0000x 10190
F11 0.0000x 10190 0.0000x 10190 2.2635x1092 1.0138x 10792 0.0000x 10100 0.0000x 10190 0.0000x 10190 0.0000x 10790
F12 8.9207x 1004 1.0608x 10703 5.0820x 1003 1.4513x 10702 3.5431x10-03 9.2857x10~ % 2.4763x1092 9.4810x10793
F13 1.4921x10~93 3.6813x10% 4.2575x1092 7.6342 %1092 2.2321x10703 8.3069x10 % 5.0605x1092 3.4525x1002
Fl14 9.9800x 1091 3.4807x10~13 1.1634x 10100 5.9405x 1001 9.9800x 1091 2.0372x1013 9.9800x 109! 2.0923x10~12
F15 3.8029x 10 %4 9.0820x10~% 4.4014x107%4 1.0909x 1004 4.7568x10704 1.7299 x 1004 5.3389x 10~ % 2.7098x10~%4
F16 —1.0316x10100 4.1555%x10~10 —1.0316x1079% 5.1500x 1096 —1.0316x10790 8.8268x 10710 —1.0316x10100 1.4953x10~%
F17 3.9789x 1001 3.2851x 1008 3.9794x100! 1.2457x10~%4 3.9789x 1001 1.3247x10~%7 3.9789x 1001 3.4597x10~%
F18 3.0000x 10190 4.3415%x10707 3.0006x 10790 5.3604x 1074 3.0000x 10100 5.3937x10~ %8 3.0000x 10790 3.3742x 10798
F19 —3.8628x 10100 6.0439x1097 —3.8628x10100 2.6271x1079° —3.8627x10700 3.4507x 1004 -3.8628x 10100 3.3028 x 10~
F20 —3.2821x10100 5.7002x 1092 —3.2375x101%0 6.5585x 1092 —3.2615x10790 6.0657x 1092 -3.2582x 10100 5.9773x1092
F21 —1.0153x 10101 2.1496x 1004 —1.0152x 10101 1.8979x10~%3 —1.0153%x10701 8.5453x107% -8.7668x 10100 2.7426x 10700
F22 —1.0403x10101 1.8317x 10 %4 —1.0402x 10101 1.0712x10~% —1.0403x 10101 1.2865x 1094 -8.5645x 10700 2.8449x 10100
F23 —1.0536x10101 2.0415%x10 04 —1.0534x10101 3.6030x10~ % —1.0536x10101 1.2450x 1004 —8.5593%10100 2.8800% 10100
Friedman test average rank 1.74 3.33 191 3.02

Algorithms 2022, 15, 317 12 of 25
Table 5. Test statistical results of Wilcoxon’s rank-sum test.
DQOBLSMA vs. DQSMA DQOBLSMA vs. OBLSMA DQOBLSMA vs. SMA
Benchmark
p-Value Winner p-Value Winner p-Value Winner
F1 2.87x10~1 + NaN = NaN =
2 2.87x10~11 + 5.22x10~% — 1.94x10% +
F3 2.87x10~1 + NaN = NaN =
F4 2.87x10~11 + 5.22x10~% — 1.48x10% +
F5 NaN + 6.24x1079 + 2.87x1011 +
F6 NaN = NaN = NaN =
F7 1.63x10708 + 2.37x1092 + 1.73x107% +
F8 2.87x10~1 + 5.96x10703 = 2.87x10~1 +
F9 2.87x10~11 = NaN = NaN =
F10 2.87x10~11 = NaN = 2.87x10~1 =
F11 2.87x10~11 + NaN = NaN =
F12 NaN + 459%10702 + 2.87x10~11 +
F13 7.90%x10705 + NaN + 3.88x10~ 11 +
Fl4 2.87x10~11 + NaN = 2.87x10~11 =
F15 6.8x1073 + 3.09x 1092 + 2.82x107% +
F16 2.87x10~ 11 = NaN = 510x10~% +
F17 2.87x10~11 + NaN = 6.37x107%4 =
F18 2.87x10~1 = NaN + NaN =
F19 1.31x10797 = 5.12x10~%4 + 3.50%x10%8 =
F20 1.15x107% + NaN + 3.76x10703 +
F21 6.81x107%° + 1.41x10793 = 2.33%x10~% +
F22 8.12x10~% + 4.44%x10~92 = 6.26x10798 +
F23 1.54x10~10 + 1.72x1079% = 1.55%x10706 +
+/—/= 17/0/6 8/2/13 13/0/10

4.3. Benchmark Function Experiments

As seen from Table 6, on unimodal benchmark functions (F1-F7), the DQOBLSMA
can achieve better results than other optimization algorithms. For F1, F3, and F6, the
DQOBLSMA could find the theoretical optimal value. For all unimodal functions, the
DQOBLSMA obtained the smallest mean values and standard deviations compared to
other algorithms, showing the best accuracy and stability.

From the results shown in Tables 7 and 8, the DQOBLSMA outperformed the other
algorithms for most of the multimodal and fixed-dimensional multimodal functions. For
the multimodal functions F8-F13, the DQOBLSMA obtained almost all the best mean and
standard deviation values, and obtainedthe global optimal solution for four functions (F8—
F11). As shown in Table 8, the DQOBLSMA obtained theoretically optimal values in 8 of the
10 fixed-dimensional multimodal functions (F14-F23). Although the DQOBLSMA did not
outperform JADE in F14-F23, it exceeded ESMA and OBLSMAL in overall performance.
These results show that the DQOBLSMA also provides powerful and robust exploitation
capabilities.

In addition, Table 9 presents Wilcoxon’s rank-sum test results to verify the significant
differences between the DQOBLSMA and the other five algorithms. It is worth noting
that p-values less than 0.05 mean significant differences between the respective pairs of
compared algorithms. The DQOBLSMA outperformed all other algorithms to varying
degrees, and outperformed OBLSMAL, ESMA, MEO, JADE, and RWGWO, on 14, 15, 16,
15, and 18 benchmark functions, respectively. Table 10 shows the statistical results of the
Friedman test, where the DQOBLSMA ranked first in F1-F7 and F8-F13 and second after
JADE by a small margin in F14-F23. The DQOBLSMA received the best ranking overall. In
summary, the DQOBLSMA provided better results on almost all benchmark functions than
the other algorithms.

Algorithms 2022, 15, 317

13 of 25

Table 6. Results of unimodal benchmark test functions.

Func Criteria DQOBLSMA OBLSMAL ESMA MEO JADE RWGWO
Best 0.0000x101% 0.0000x101% 0.0000x101%0 1.0936x10~5* 7.1160x10~1* 7.2435x10 73
F1 Mean 0.0000x101% 0.0000%x101% 0.0000x10100 1.3473x1075! 1.3924x10712 9.9351x106°
Worst 0.0000x101% 0.0000x107%0 0.0000x101%0 1.1718x107%0 8.3623x10712 2.8903x10~%3
Std 0.0000x101% 0.,0000x107% 0.0000x101%0 3.4983x107°1 2.2303x10712 6.9913x10~%*
Best 1.6860x107280 1.8971x107126 1.2829x107179 1.2944x10732 8.7945x10"%® 8.4261x10>2
0 Mean 2.9368x10~21 7.4709x107 113 4.1210x10717° 6.2425x10731 4.5037x107% 1.2077x10~%
Worst 8.8104x107230 2.1489x10~ 111 83686x107174 22747x10730 7.1303x10"% 7.7841x10~%
Std 0.0000x101%0 51975%10~12 0.0000x1010 7.6873x10731 1.7166x10"% 23314x10~%
Best 0.0000x101% 0.0000x101%0 1.3923x10727® 3.5006x10~2! 3.4830x10100 2.2232x10*03
3 Mean 0.0000x101% 0.0000x107%0 7.5255%x107295 1.7481x10~Y 2.1172x10191 6.0553x 10103
Worst 0.0000x101% 0.,0000x107% 22576x1072% 1.1762x10716 5.6794x10T01 1.1356x1010*
Std 0.0000x101% 0.0000x107% 0.0000%101%0 3.4991x10~Y 1.6585x10101 2.4311x101%
Best 2.2279%x107273 92369x10712 87764x107173 6.6498x1071> 1.2412x10"9 8.3027x10~%
4 Mean 1.4919x10722* 1.3337x107106 1.4870x107162 51881x10~13 6.6358x107 91 2.1528x 1010
Worst 44756x10722 39116x107105 42072x107161 52753%x10712 1.7608x101%0 2.9139x10701
Std 0.0000x101%0 9.4644x10-106 1.0186x107161 1.2870x1012 4.2471x10~91 7.2432x101%
Best 48100x107% 2.6149x10T01 2.3534x101t01 25670x10101 1.5204x10101 2.8626x 10101
F5 Mean 1.4718x10791 2.7476x101T01 2.7593x 10101 2.6755x 10101 3.4093x10T01 2.8807x 10101
Worst 5.6207x10701 2.8866x10T01 2.8973x10101 2.8759x10T01 9.3404x 1011 2.8898x1010!
Std 1.5834x10701 8.0237x10791 1.5217x10190 7.3628x10°91 2.4394x10T01 6.2979x 1092
Best 0.0000x101% 0.0000x107%0 0.0000x101%° 0.0000x107% 0.0000%x101%° 0.0000x 101
F6 Mean 0.0000x10%% 0.0000x107% 0.0000x101%° 0.0000x107% 6.6667x10792 0.0000x 10+
Worst 0.0000x101% 0,0000x107% 0.0000x101% 0.0000x107% 1.0000x101%° 0.0000x 101
Std 0.0000x10%% 0.0000x107% 0.0000x101%° 0.0000x107% 2.9152x10~91 0.0000x 10+
Best 3.2865%x107%7 5.4366x10~% 3.6036x1070 8.8161x107% 93734x10"% 2.1106x10"%
B Mean 8.8202x10~% 21700x10~% 2.0721x10~% 3.7390x10~%* 1.8194x10792 1.7522x10~92
Worst 2.6899%x107% 1.0933x107% 6.4167x107% 1.5364x107% 2.6649%x10792 1.8120x10~%
Std 72479%x107% 2.6392x107% 1.7316x1079% 4.1133x10~%* 4.8117x10"% 4.3922x10~02
Table 7. Results of multi-modal benchmark functions.
Func Criteria DQOBLSMA OBLSMAL ESMA MEO JADE RWGWO
Best —1.2569x 10104 —8.8602x10703 —9.8908x1019 —54647x10103 —1.1856x107%4 —9.3674x 10103
F8 Mean —1.2569x101%% —7.0233x101% —8.5070x1019 —3.7623x1010% —1.0905x107%4 —8.8801x 10103
Worst —1.2569x10104 —5.4879x101% —6.4963x10195 —3.0199x101%% —6.8045x10793 —8.0571x 10103
Std 1.0234x10700 7.7253x10192 85477x10192 5537810792 1.6276x10TB 3.2772x 10102
Best 0.0000x101% 0.,0000x107%0 0.0000x101%° 0.0000x107% 0.0000%x101%° 0.0000x 101
9 Mean 0.0000x101% 0.,0000x107% 0.0000x101%° 0.0000x107% 9.4739%x10~1> 0.0000x 101
Worst 0.0000x10%% 0.0000x107% 0.0000x101%° 0.0000x107% 1.4744x10713 0.0000x10%%
Std 0.0000x101% 0.0000x107°%0 0.0000x101%° 0.0000x10T% 3.7368x10~14 0.0000x 1010
Best 44409x10710 44409x10716 4.4409%x10716 4.4409x10710 7.7624x10708 4.4409x10~16
F10 Mean 44409%x10710 44409%x10710 4.4409x10716 4.4409x10716 3.8505x10792 3.5231x101°
Worst 4.4409%x10716 4.4409x10716 4.4409%x1071 4.4409x10716 1.1551x10100 3.9968x 10715
Std 0.0000x101% 0.0000x107%0 0.0000x101%° 0.0000x10T% 2.7968x10~91 1.2900x10~15
Best 0.0000x101% 0,0000x107% 0.0000x101% 0.0000x107% 7.2387x10~14 0.0000x101%
11 Mean 0.0000x101% 0.0000x107%0 0.0000x101%° 0.0000x107% 4.3486x10~% 0.0000x 1010
Worst 0.0000x101% 0,0000x107% 0.0000x101%° 0.0000x107% 3.6770x10792 0.0000x 101
Std 0.0000x101% 0.0000x107%0 0.0000x101%° 0.0000x107% 9.9297%x10~% 0.0000x 101
Best 5.8098x10~% 1.7590x107% 2.8002x10792 1.1540x10792 4.4220x10"1* 2.9591x1092
F2 Mean 8.9207x107% 4.3823x10792 9.0114x10792 4.6612x10702 4.4934x10792 1.0348x10~ %!
Worst 3.6337x1070% 12371x1079 4.2696x10791 8.6796x10792 4.1469x10"91 7.3880x 100!
Std 1.0608x1079 2.4564x107%2 1.0394x10791 2.0035x10792 1.2955x10~%1 1.6264x10~01
Best 7.3229%1079 2.4407x10701 2.5338x10791 45254x10701 4.1497x10"4 5.6485x1070!
F13 Mean 1.4921x10~% 1.0518x107% 7.9118x10791 8.9529%x107 0! 2.3516x10"10 1.1565x10100
Worst 1.1660x10792 2.6596x10190 1.4767x10190 1.2682x1070 29604x10°% 2.3763x107%
Std 3.6813x107%% 6.9507x107%0 33716x10701 22110x107% 7.8166x10710 4.1169x1070!

Algorithms 2022, 15, 317 14 of 25
Table 8. Results of fixed-dimension multi-modal benchmark functions.
Func Criteria DQOBLSMA OBLSMAL ESMA MEO JADE RWGWO
Best 9.9800x107% 9.9800x10~%1 9.9800x10~°1 1.0937x107%° 9.9800x107°! 9.9800x 100!
Fl4 Mean 9.9800x107 91 1.1304x107% 1.0641x10T%0 5.7783%x10100 9.9800x10~91 1.7229%x 10100
Worst 9.9800x107%1 2.9821x101%0 29821x10T%0 1.2671x10T%1 9.9800x10~91 5.9288x 10100
Std 3.4807x10713 52272x107%1 4.8038x10~% 3.9055x10T% 2.7756x10"17 1.6192x10100
Best 3.0958x107% 3.0772x10~%* 5.8084x1079% 3.0894x107%% 3.0749x10~%* 4.1151x10~%
Fi5 Mean 3.8029x107 04 83277x109 83114x107% 3.4423x10°9% 1.7361x10"% 1.1214x10° %
Worst 6.3781x107% 1.2548x1079 1.2249%x10% 2.0363x10792 2.0363x10792 2.6665x10~ %
Std 9.0820x10~% 33167x107% 2.1318x107% 7.2217x10~9% 5.8251x1079 5.9580%x10~ %
Best —1.0316x10100 —1.0316x10100 —1.0316x101% —1.0316x107%0 —1.0316x107%0 —1.0316x 1070
Fl6 Mean —1.0316x10100 —1.0316x10100 —1.0316x101% —1.0316x1017%0 —1.0316x107%0 —1.0316x 107
Worst —1.0316x10100 —1.0316x10100 —1.0316x101%° —1.0316x1017%0 —1.0316x107%0 —1.0307x 107
Std 4.1555x10710 31460x107% 2.6995x10~10 1.7352x10710 6.5564x10716 23316x10~ %
Best 3.9789x107% 3.9789x107%1 3.9789x1079 3.9789x10791 3.9789x107°! 3.9789x 1001
F17 Mean 3.9789x10701 397891079 3.9789x107 01 3.9789x10701 3.9789x10"91 3.9792x 10~
Worst 3.9789x107% 3.9789x107%1 3.9789x107 91 3.9789x10791 3.9789x107°! 3.9803x 100!
Std 3.2851x107%8 1.4951x10~%7 3.3940x1079% 50177x107% 0.0000x101% 42346x10-0>
Best 3.0000x101%0 3.,0000x101% 3.0000x107% 3.0000x 10T 3.0000x107%° 3.0000x 10190
Fi8 Mean 3.0000x101% 3.0000x101%0 3.0000x1079° 3.0000x107% 3.0000%x101% 3.0029x10+00
Worst 3.0000x101% 3.0000x101%0 3.0000x1079° 3.0000x107% 3.0000x101t% 3.0315x10+00
Std 43415x10~%7 75551x10~%7 45784x10~1 1.0614x10~%° 1.5740x101° 8.2802x10~%
Best —3.8628%x10100 —3.8628x 10100 —3.8628 1010 —3.8626x1017%0 —3.8628x107%0 —3.8628x 1070
F19 Mean —3.8628%x10100 —3.8628x 10100 —3.8627x101%0 —3.8589x1017%0 —3.8628x107%0 —3.8520x 107
Worst —3.8628%x10100 —3.8628%x10100 —3.8616x101%0 —3.8549x 1010 —3.8628x107%0 —3.7967x 10790
Std 6.0439x10797 7.0025x10706 2.8826x107% 2.7955x10~% 2.6226x1071° 1.7232x10 %2
Best —3.3220%x10100 —3.3220% 10100 —3.3220% 1010 —3.3220x1017%0 —3.3220x107%0 —3.2948x 10+
20 Mean —3.2821x101%0 —3.2220x101%0 —3.2313x107%0 —3.2590%x 1079 —3.2903x101%0 —3.1655% 10100
Worst —3.1999%x10100 —3.1985x107%0 —3.0851x101%0 —3.0633x10100 —3.2031x1017%0 —2.9487x10+00
Std 5.7002x10792 4.6895x10792 6.8225x10792 9.1478x10792 5.3456x10792 1.0946x100!
Best —1.0153x10101 —1.0153x10101 —1.0153%10791 —5.1609%x107% —1.0153x10101 —1.0148x10*0!
1 Mean —1.0153%x10101 —9.9934x 10100 —9.3978x 1010 —5,0587x1017%0 —9.3166x107%0 —7.0389x 107
Worst —1.0152x10191 —75756%x 10790 —2.6300x101T% —5.0552x10100 —2.6305x10790 —5.0064x 10700
Std 2.1496x107% 6.7461x10701 24872x107%0 25592x10792 24162x1079°0 2.4611x10100
Best —1.0403%x10101 —1.0403x10701 —1.0403x10191 —8.1136x101%0 —1.0403x10791 —1.0391x1010!
o) Mean —1.0403%x10101 —9.1689%x 10100 —9.3977x 1010 —52039x107%0 —9.7170x 1070 —7.0943x 10+
Worst —1.0402x 10101 —2.7484% 10100 —2.7495% 10100 —2.5429x 10100 —2.7496x 10790 —2.7426x 10790
Std 1.8317x107% 2.8605x107%0 2.6374x10700 1.0562x101%0 2.3627x101%0 2.9401x 101
Best —1.0536x10101 —1.0536x10101 —1.0536x10791 —1.0536x 1071 —1.0536x10101 —1.0536x 100!
03 Mean —1.0536x10101 —8.8867x10100 —9.2412x101%0 —7.4582x101%0 —1.0536x 1071 —6.4373x 1070
Worst —1.0536x10101 —2.4177x10100 —2.4216x101%0 —51285x1017%0 —1.0536x10701 —2.4270x 10790
Std 2.0415x107% 3.1383x101%0 3.0570x107%0 25657x10T%C 1.9610x1071° 25968 x 10100

Algorithms 2022, 15, 317

15 of 25

Table 9. Test statistical results of Wilcoxon’s rank-sum test.

DQOBLSMA vs. OBLSMAL

DQOBLSMA vs. ESMA

DQOBLSMA vs. MEO

DQOBLSMA vs. JADE

DQOBLSMA vs. RWGWO

Benchmark
p-Value Winner p-Value Winner p-Value Winner p-Value Winner p-Value Winner
F1 NaN = NaN = 1.73x1006 + 1.73x10706 + 1.73x 10706 +
F2 1.73%x10706 + 1.73x10706 + 1.73x107% + 1.73x10706 + 1.73%x10706 +
F3 1.73%x10706 + 1.73x10706 + 1.73x107% + 1.73%x10706 + 1.73%x10706 +
F4 1.73x107% + 1.73x10706 + 1.73x107% + 1.73x107% + 1.73x107% +
F5 1.73%x10706 + 1.73%x10706 + 7.04x10701 + 1.73%x10706 + 1.73%x10706 +
F6 NaN = NaN = NaN = NaN + NaN =
F7 241x107% + 420x107% + 1.73x107% + 1.73x1006 + 93210796 +
F8 1.73%x10706 + 1.73%x10706 + 1.73x107% + 1.73%x10706 + 1.73%x10706 +
F9 NaN = NaN = NaN = 1.20x10792 + NaN =
F10 NaN = NaN = NaN = 1.73x107% + 6.39x10797 +
F11 NaN = NaN = NaN = 1.73%x10706 + NaN =
F12 1.73%x10706 + 1.73%x10706 + 2.61x107% + NaN + 1.73%x10706 +
F13 1.73%x10706 + 1.73%x10706 + 2.07x10~92 + 1.73%x10706 - 1.73%x10706 +
F14 2.61x107% + 2.71x10~% + 1.73%x10706 + 1.73%x10706 - 1.73%x10706 +
F15 6.34x10706 + 1.73%x10706 + 3.00x10~92 + NaN + 1.73%x10706 +
F16 4.29x107% = 1.17x10702 - 4.73x10706 — 1.73x10706 = 1.73x10706 =
F17 7.51x107% = NaN = 4.86x1079% — 1.73x10706 = 1.73x10706 -
F18 3.88x10704 = 9.32x10706 — 5.75x10706 = 1.73x107% — 1.73x107%6 +
F19 7.71x10~04 = 1.74x1070%4 + 1.73x10706 + 1.73x10706 - 1.73x10706 +
F20 1.89%x10704 + 8.94x10~%4 + 1.73x107% + 1.75x1092 - 1.74x10704 +
F21 1.73%x10706 + 4.29x10796 + 1.73%x10706 + 1.48x10702 + 1.73%x10706 +
F22 5.22x10706 + 1.02x10705 + 1.73x107% + 2.77x10793 + 1.73%x10706 +
F23 5.22 %1006 + 1.38x10793 + 1.73x10706 + 1.73x10706 - 1.73x10706 +
+/—/= 14/0/9 15/2/6 16/2/5 15/6/2 18/1/4

Algorithms 2022, 15, 317 16 of 25

Table 10. Test statistical results of the Friedman test.

Func DQOBLSMA OBLSMAL ESMA MEO JADE RWGWO
F1-F7 1.36 3 2.36 3.86 5.71 471
F8-F13 2.08 3.42 3.42 3.75 4 4.33
F14-23 245 3.7 3 45 1.85 5.5
F1-F23 2.02 341 291 411 3.59 4.96

4.4. Convergence Analysis

To demonstrate the effectiveness of the proposed DQOBLSMA, Figure 2 shows the
convergence curves of the DQOBLSMA, SMA, ESMA, AEO, JADE, and RWGWO for the
classical benchmark functions. The convergence curves show that the initial convergence
of the DQOBLSMA was the fastest in most cases, except for F6, F9, F10, and F11; and
RWGWO had faster initial convergence for these functions. For F16-F20, all comparison
algorithms converged quickly to the global optimum, and the DQOBLSMA did not show a
significant advantage. In Figure 2, a step or cliff drop in the DQOBLSMA’s convergence
curve can be observed, which indicates outstanding exploration capability. In almost all
test cases, the DQOBLSMA had a better convergence rate than SMA and SMA variants,
indicating that the SMA'’s convergence results can be significantly improved when applying
the proposed search strategies. In conclusion, the DQOBLSMA is not only robust and
effective at producing the best results, but also has a higher convergence speed than the
other algorithms.

°

Bes

10727

10-64

10-101

F1

F2

F3

10-44

10-7™

ed so far

aine

10-104

obt;

{2107

t fitne

= qo-164

Be

107194

10-224

RWGWO

1071 -

N

L
RWGWO

140000

120000

o far

2 100000
80000

60000

Best fitness obtained

40000

20000

—

3000 6000

FEs

9000 12000 0

(a) Convergence curve of F1

F4

3000 6000

FEs

9000 12000

(b) Convergence curve of F2

F5

DQOBLSMA
— SMA

ESMA

AEO
——— JADE
OBLSMAL
RWGWO

=)
=

=

) S, 3
2 = S

Best fitness obtained so far

<

DQOBLSMA

ESMA
AEO
JADE
OBLSMAL
RWGWO

0
0

3000 6000 9000 12000

FEs

(c) Convergence curve of F3

F6

5 3 =

<

Best fitness obtained so far

100

107!

DQOBLSMA

OBLSMAL
RWGWO

3000 6000 9000 12000 0

FEs

(d) Convergence curve of F4

Figure 2. Cont.

6000 9000 12000

FEs

3000

(e) Convergence curve of F5

3000 6000 9000 12000

FEs

(f) Convergence curve of F6

Algorithms 2022, 15, 317

17 of 25

Best fitness obtained so far Best fitness obtained so far Best fitness obtained so far

Best fitness obtained so far

¥7
102 . ‘ Fs ‘ __ B
DQOBLSMA DAOBLEVA
" Daomin 10
5
10" JADE 4000 AEO
s _10) Shian
RWGWO E«’ :Z:":;\":":L K| RWGWO
s
10° 2 2
% ~6000 2 10} |
= K}
5 E
107! 3 3
2 —8000 1 g 107 B
: :
& =
i =
10 -5 Z 10~} 4
/2 —10000 -]
1073 1014}
—12000 - 1
0 3000 6000 9000 12000 0 3000 6000 9000 12000 0 3000 6000 9000 12000
FEs FEs FEs
(g) Convergence curve of F7 (h) Convergence curve of F8 (i) Convergence curve of F9
F10 F11 F12
i i i —— DQOBLSMA
10°F 1 moa
100F R 107 ABO
,2 et
1072 1 . OBLSMAL
E oo} & reates
104 13 2 10° 4
E E
1070 5 1070 1%
2 w0 1
sl R
10 2 109} 1%
10-10] 14 s —
»
Lot poosLsA &
ol |
ESMA - ~
5 AEO 10
10-5F JADE
1074 b OBLSMAL
‘ ‘ Tt ‘ ‘ ‘ fveno
0 3000 6000 9000 12000 0 3000 6000 9000 12000 0 3000 6000 9000 12000
FEs FEs FEs
(j) Convergence curve of F10 (k) Convergence curve of F11 (1) Convergence curve of F12
o 13 102 - . i . F15
107 DQOBLSMA DQOBLSMA DQOBLSMA
— sia 101
B
107 JADE AEO
ommans || o Shtnias —
awawo | & Rwowo || g wawo
5 9 a
10 b "g ﬂg
E 2102 1
. 2 10! 13 0
10 q f 2
£ g
£ g
101] Cﬁ é H
1073 B
10! i
. - . . 100 . i
0 3000 6000 9000 12000 0 3000 6000 9000 12000 0 3000 6000 9000 12000
FEs FEs FEs
(m) Convergence curve of F13 (n) Convergence curve of F14 (o) Convergence curve of F15
Fl6 ‘ _mr ‘ _Es
0.0 T T T DGOTLSNA Sﬁi)shs_\m — Sﬁi)ﬁhs.\’iA
n Evia —
B o —e
. Azo_ —ress —
-02 onLsvaL | opisuar | —— onLsuaL
mvawo | & rvawo || £ —— rwawo
% %
0.4 1E E
E E
= =
H 2 10!
~0.6 1t g]
EN |£
E 10 E
08] m m
-1.0 q
0 3000 6000 9000 12000 0 3000 6000 9000 12000 0 3000 6000 9000 12000
FEs FEs FEs

(p) Convergence curve of F16

Figure 2. Cont.

(q) Convergence curve of F17

(r) Convergence curve of F18

Algorithms 2022, 15, 317

18 of 25

F19

F20

-3.0

DQOBLSMA
sMA
ESMA
AEO
ADE

—— JADE
——— OBLSMAL
RWGWO

OBLSMAL
RWGWO

E
2
E
2

Best fitness obtained so far
|

—
10]

0 3000 6000

(s) Convergence curve of F19

FEs

Best fitness obtained so far

9000

9000 12000 0 3000 6000 9000 12000

FEs

12000 0 3000 6000

FEs

(t) Convergence curve of F20 (u) Convergence curve of F21

F22 F23

DQOBLSNA.

DQOBLSNA.

ESMA

)
OBLSMAL —— OBLSMAL
RWGWO RWGWO

L—
Best fitness obtained so far

~——]

(v) Convergence curve of F22

3000 6000 9000 12000 0 3000 6000 9000 12000

FEs FEs

(w) Convergence curve of F23

Figure 2. Convergence figures on test functions F1-F23.

5. Engineering Design Problems

In this section, the DQOBLSMA is evaluated using three engineering design problems:
the welded beam design problem, tension/compression springs, and the pressure vessel
design problem. These engineering problems are well known and have been widely used
to verify the effectiveness of methods for solving complex real-world problems [54]. The
proposed method is compared with the state-of-the-art algorithms: OBLSMAL, ESMA,
MEO, JADE, and RWGWO. The population size (N) and the maximum number of iterations
were fixed at 30 and 500 for all comparison algorithms.

5.1. Welded Beam Design Problem

The design diagram for the structural problem of a welded beam [55] is shown in
Figure 3. The objective of structural design optimization of welded beams is to minimize
the total cost, subject to certain constraints, which are the shear stress 7, the bending stress
o on the beam, the buckling load P;, and the deflection é of beam. Four variables are
considered in this problem, welded thickness (%), the bar length (I), bar height (¢), and the
thickness of the bar (b).

The mathematical equations of this problem are shown below:

Consider:

X =[xy xpx3x4] =[h11D];
minimize:

f(x) = 1.10471x% x5 + 0.04811x3x4 (14 + x2);

Algorithms 2022, 15, 317

19 of 25

subject to:

where:

g1(x) = \/(T’)2 + ZT/T”% + ()2 — Tyax < 0;

6PL
gz(X) = — Omax < 0;

x3xy

g3(x) =x1 —x4 <0;

ga(x) = 0.10471x2 4 0.04811x3x4(14 + x5) — 5 < 0;

g5(x) =0.125 —x1 <0;
_4p13

= b <O
Ex§x4 max = Yy

g6(x)

4.013Ex3x3 x3 [E
= S —" — < .
gx) =P 6L2 (1 TR Tel

P
o= 7" = MRJ,M = P(L + 2),

2x1xp 2
Jé n X1+ x3 2
12 2

]_z{flexz }

2 2
R= \/’;2 + (’” erx3> P = 60001b,

L = 14in, E = 30 x 10%psi, G = 12 x 10°psi,

Tmax = 13600psi, 0iax = 30000psi,
Omax = 0.25in;

range of variables:

0.1 <x1,x4 <2.0and0.1 < xp,x3 <10.0

Figure 3. Welded beam design problem.

Algorithms 2022, 15, 317

20 of 25

In Table 11, the results of the proposed DQOBLSMA and other well-known com-
parative optimization algorithms are given. It is clear from Table 11 that the proposed
DQOBLSMA provides promising results for the optimal variables compared to other well-
known optimization algorithms. The DQOBLSMA obtained a minimum cost of 1.695436
when h = 0.205598, I = 3.255605 , t = 9.036367, and b = 0.205741.

Table 11. Comparison in welded beam design.

Optimal Values for Variables

Algorithm Optimal Cost
h l t b
DQOBLSMA 0.205598 3.255605 9.036367 0.205741 1.695436
OBLSMAL 0.253062 1.842203 8.270240 0.253229 1.726511
ESMA 0.201567 3.357515 8.983361 0.208407 1.712227
SMA 0.197433 3.407377 9.036868 0.205729 1.703704
MEO 0.194411 3.487386 9.040436 0.205984 1.712024
JADE 0.205734 3.253036 9.036624 0.205730 1.695245
RWGWO 0.247585 3.000055 8.090046 0.256700 1.901643

5.2. Tension/Compression Spring Design

The design goal for extension/compression springs [56] is to obtain the minimum
optimum weight under four constraints: deviation (1), shear stress (g2), surge frequency
(g3), and deflection (g4). As shown in Figure 4, three variables need to be considered. They
are the wire diameter (d), the mean coil diameter (D), and the number of active coils (N).
The mathematical description of this problem is given below:

Consider:

x = [x1 xp x3) = [d D NJ;
minimize:
f(x) = xfxa(2+ x3);

subject to:
_ <0
71785
4x% — x1x 1
= ’ 3l : i =0
12566(xpx7 — x7) 5108x7
140.45x
x)=1——— <0;
g3() x%X3 =

X1+ X2
=—=-1<0;
84 = =75 =0

$2(x)

range of variables:

0.05 < x; < 2.0,0.25 < x5 < 1.3,and 2.0 < x5 < 15.0.

Algorithms 2022, 15, 317 21 of 25

 w
\

I‘

"_.| |._
Figure 4. Tension/compression spring design problem.

The results of the DQOBLSMA and other comparative algorithms are presented in
Table 12. The proposed DQOBLSMA achieved the best solution to the problem. The
DQOBLSMA obtained a minimum cost of 0.012719 when d = 0.050000, D = 0.317425, and
N =14.028013.

Table 12. Comparison for the tension/compression spring design problem.

Optimal Values for Variables

Algorithm Optimal Cost
d D N
DQOBLSMA 0.050000 0.317425 14.028013 0.012719
OBLSMAL 0.050000 0.317409 14.030650 0.012721
ESMA 0.051458 0.353086 12.050995 0.012739
SMA 0.050000 0.317317 14.042338 0.012726
MEO 0.057203 0.514683 7.661607 0.014002
JADE 0.055015 0.442128 7.613118 0.012864
RWGWO 0.056389 0.480684 6.712235 0.013316

5.3. Pressure Vessel Design

The pressure vessel design problem is a four-variable, four-constraint problem in the
industry field that aims to reduce the total cost of a given cylindrical pressure vessel [57].
The four variables studied include the width of the shell (Ts), the width of the head (Th),
the inner radius (R), and the length of the cylindrical section (L), as shown in Figure 5. The
formulation of objective functions and four optimization constraints can be described as

follows:
Consider:
X = [Xl X2 X3 X4} = [Ts Th R L],‘
minimize:
x) =0. xX1x3x4 + 1. Xox3 + 3. x71x4 + 19.84x7x3;
0.6224 1.7781xpx3 + 3.1661x3 x4 + 19.84x%

subject to:

g1(x) = —x1+0.0193x3 < 0

2(x) = —x3 +0.00954x3 < 0

4
93(x) = —7tx3xy — 5mcg + 1296000 < 0
(x)

4(X IX4—240§0,'

oQ

Algorithms 2022, 15, 317

22 of 25

range of variables:

0<x1<99,0<x <9910 <x3 <200,10 < x4 <200

2R

-
\4

Figure 5. Pressure vessel design problem.

Table 13 shows how the DQOBLSMA compares with other competitor algorithms.
The results shows the DQOBLSMA is able to find the optimal solution at the lowest cost,
obtaining an optimal spend of 5885.623524 when Ts= 0.778246, Th = 0.384708, R = 40.323469,
and L =199.950065.

Table 13. Comparison in pressure vessel design.

Optimal Values for Variables

Algorithm Optimal Cost
Ts Th R L
DQOBLSMA 0.778246 0.384708 40.323469 199.950065 5885.623524
OBLSMAL 0.865273 0.427877 44.832637 145.769573 6060.212044
ESMA 0.974581 0.481740 50.496415 112.689545 6417.418230
SMA 0.814081 0.402437 42.180339 175.629283 5949.827184
MEO 0.850407 0.425437 44.051816 154.133369 6046.777664
JADE 0.788821 0.389961 40.870447 192.471633 5904.076066
RWGWO 0.877511 0.432390 45.308765 140.703767 6095.405916

6. Conclusions

In this paper, an enhanced SMA (DQOBLSMA) was proposed by introducing two
mechanisms, DQRG and OBL, into the original SMA. In the DQOBLSMA, these two
strategies further enhance the global search capability of the original SMA: DQRG enhances
the exploration capability of the original SMA, and OBL increases the population diversity.
The DQOBLSMA overcomes the weaknesses of the original search method and avoids
premature convergence. The performance of the proposed DOQOBLSMA was analyzed by
using 23 classical mathematical benchmark functions.

First, the DQOBLSMA and the individual combinations of these two strategies were
analyzed and discussed. The results showed that the proposed strategies are effective, and
SMA achieved the best performance with the combination of the two mechanisms. Sec-
ondly, the results of the DQOBLSMA were compared with five state-of-the-art algorithms
ESMA, AEO, JADE, OBLSMAL, and RWGWO. The results show that the DQOBLSMA is
competitive with other advanced metaheuristic algorithms. To further validate the superi-
ority of the DQOBLSMA, it was applied to three industrial engineering design problems.
The experimental results show that the DQOBLSMA also achieves better results when
solving engineering problems and significantly improves the original solutions.

As a future perspective, a multi-objective version of the DQOBLSMA will be consid-
ered. The proposed algorithm has promising applications in scheduling problems, image

Algorithms 2022, 15, 317 23 of 25

segmentation, parameter estimation, multi-objective engineering problems, text clustering,
feature selection, test classification, and web applications.

Author Contributions: Conceptualization, S.D. and Y.Z.; software, Y.Z.; validation, S.D. and Q.Z;
formal analysis, S.D. and Y.Z.; investigation, S.D. and Y.Z.; resources, S.D.; writing—original draft
preparation, Y.Z.; writing—review and editing, S.D. and Y.Z.; visualization, Y.Z.; funding acquisition,
S.D. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the support of the Key R & D Projects of Zhejiang Province (No.
2022C01236, 2019C01060), the National Natural Science Foundations of China (Grant Nos. 21875271,
U20B2021, 21707147, 51372046, 51479037, 91226202, and 91426304), the Entrepreneuship Program of
Foshan National Hi-tech Industrial Development Zone, the Major Project of the Ministry of Science
and Technology of China (Grant No. 20152X06004-001), Ningbo Natural Science Foundations (Grant
Nos. 2014A610006, 2016A610273, and 2019A610106).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009.

2. Jamil, M.; Yang, X.S. A literature survey of benchmark functions for global optimization problems. IJMMNO 2013, 4, 150,
https:/ /doi.org/10.1504/IJ]MMNO.2013.055204.

3. Katebi, J.; Shoaei-parchin, M.; Shariati, M.; Trung, N.T.; Khorami, M. Developed comparative analysis of metaheuristic optimiza-
tion algorithms for optimal active control of structures. Eng. Comput. 2020, 36, 1539-1558. https:/ /doi.org/10.1007 /s00366-019-
00780-7.

4. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst.
Appl. 2021, 166, 113917. https://doi.org/10.1016/j.eswa.2020.113917.

5. Abualigah, L.; Gandomi, A.H.; Elaziz, M.A.; Hamad, H.A.; Omari, M.; Alshinwan, M.; Khasawneh, A.M. Advances in meta-
heuristic optimization algorithms in big data text clustering. Electronics 2021, 10,101. https:/ /doi.org/10.3390/ electronics10020101.

6. Marinaki, M.; Marinakis, Y.; Stavroulakis, G.E. Fuzzy control optimized by PSO for vibration suppression of beams. Control. Eng.
Pract. 2010, 18, 618-629. https://doi.org/10.1016/j.conengprac.2010.03.001.

7. David, R.C.; Precup, R.E,; Petriu, EM.; Rddac, M.B.; Preitl, S. Gravitational search algorithm-based design of fuzzy control
systems with a reduced parametric sensitivity. Inf. Sci. 2013, 247, 154-173.

8. Tang, A.D.; Han, T.; Zhou, H.; Xie, L. An improved equilibrium optimizer with application in unmanned aerial vehicle path
planning. Sensors 2021, 21, 1814. https://doi.org/10.3390/5s21051814.

9. Fu,J; Ly, T, Li, B. Underwater Submarine Path Planning Based on Artificial Potential Field Ant Colony Algorithm and Velocity
Obstacle Method. Sensors 2022, 22, 3652. https:/ /doi.org/10.3390/s22103652.

10. Alweshah, M.; Khalaileh, S.A.; Gupta, B.B.; Almomani, A.; Hammouri, A .I.; Al-Betar, M.A. The monarch butterfly optimization
algorithm for solving feature selection problems. Neural. Comput. Appl. 2020, 34, 11267-11281. https://doi.org/10.1007/s00521-
020-05210-0.

11. Alweshah, M. Solving feature selection problems by combining mutation and crossover operations with the monarch butterfly
optimization algorithm. Appl. Intell. 2021, 51, 4058—-4081. https://doi.org/10.1007 /510489-020-01981-0.

12. Almomani, O. A Feature Selection Model for Network Intrusion Detection System Based on PSO, GWO, FFA and GA Algorithms.
Symmetry 2020, 12, 1046. https://doi.org/10.3390/sym12061046.

13. Moayedi, H.; Nguyen, H.; Kok Foong, L. Nonlinear evolutionary swarm intelligence of grasshopper optimization al-
gorithm and gray wolf optimization for weight adjustment of neural network. Eng. Comput. 2021, 37, 1265-1275.
https:/ /doi.org/10.1007 /s00366-019-00882-2.

14. Wunnava, A.; Naik, M.K;; Panda, R.; Jena, B.; Abraham, A. A novel interdependence based multilevel thresholding technique
using adaptive equilibrium optimizer. Eng. Appl. Artif. Intell. 2020, 94, 103836. https://doi.org/10.1016/j.engappai.2020.103836.

15. Kundu, R.; Chattopadhyay, S.; Cuevas, E.; Sarkar, R. AItWOA: Altruistic Whale Optimization Algorithm for feature selection on
microarray datasets. Comput. Biol. Med. 2022, 144, 105349. https://doi.org/10.1016/j.compbiomed.2022.105349.

16. Abdel-Basset, M.; Mohamed, R.; Chakrabortty, R.K.; Sallam, K.; Ryan, M.]. An efficient teaching-learning-based optimization

algorithm for parameters identification of photovoltaic models: Analysis and validations. Energy Convers. Manag. 2021,
227,113614. https://doi.org/10.1016/j.enconman.2020.113614.

https://doi.org/10.1504/IJMMNO.2013.055204
https://doi.org/10.1007/s00366-019-00780-7
https://doi.org/10.1007/s00366-019-00780-7
https://doi.org/10.1016/j.eswa.2020.113917
https://doi.org/10.3390/electronics10020101
https://doi.org/10.1016/j.conengprac.2010.03.001
https://doi.org/10.3390/s21051814
https://doi.org/10.3390/s22103652
https://doi.org/10.1007/s00521-020-05210-0
https://doi.org/10.1007/s00521-020-05210-0
https://doi.org/10.1007/s10489-020-01981-0
https://doi.org/10.3390/sym12061046
https://doi.org/10.1007/s00366-019-00882-2
https://doi.org/10.1016/j.engappai.2020.103836
https://doi.org/10.1016/j.compbiomed.2022.105349
https://doi.org/10.1016/j.enconman.2020.113614

Algorithms 2022, 15, 317 24 of 25

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

Abd Elaziz, M.; Yousri, D.; Al-qaness, M.A.A.; AbdelAty, A.M.; Radwan, A.G.; Ewees, A.A. A Grunwald-Letnikov based
Manta ray foraging optimizer for global optimization and image segmentation. Eng. Appl. Artif. Intell. 2021, 98, 104105.
https://doi.org/10.1016/j.engappai.2020.104105.

Naik, M.K; Panda, R.; Abraham, A. An opposition equilibrium optimizer for context-sensitive entropy dependency based multi-
level thresholding of remote sensing images. Swarm Evol. Comput. 2021, 65, 100907. https:/ /doi.org/10.1016/j.swevo.2021.100907.
Yang, Y.; Tao, L.; Yang, H.; Iglauer, S.; Wang, X.; Askari, R.; Yao, J.; Zhang, K.; Zhang, L.; Sun, H. Stress sensitivity of fractured and
vuggy carbonate: An X-Ray computed tomography analysis. J. Geophys. Res. Solid Earth 2020, 125, €2019]B018759.

Lin, S.W.; Cheng, C.Y.; Pourhejazy, P; Ying, K.C. Multi-temperature simulated annealing for optimizing mixed-blocking
permutation flowshop scheduling problems. Expert Syst. Appl. 2021, 165, 113837. https://doi.org/10.1016/j.eswa.2020.113837.
Herndndez-Ramirez, L.; Frausto-Solis, J.; Castilla-Valdez, G.; Gonzalez-Barbosa, J.; Sinchez Hernandez, J.P. Three Hybrid Scatter
Search Algorithms for Multi-Objective Job Shop Scheduling Problem. Axioms 2022,11, 61. https://doi.org/10.3390/axioms11020061.
Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence; MIT Press: Cambridge, MA, USA, 1992.

Rocca, P; Oliveri, G.; Massa, A. Differential evolution as applied to electromagnetics. IEEE Antennas Propag. Mag. 2011, 53, 38—49.
https://doi.org/10.1109/MAP.2011.5773566.

Juste, K.; Kita, H.; Tanaka, E.; Hasegawa,]. An evolutionary programming solution to the unit commitment problem. IEEE Trans.
Power Syst. 1999, 14, 1452-1459. https://doi.org/10.1109/59.801925.

Beyer, H.G.; Schwefel, HP. Evolution strategies—a comprehensive introduction. Nat. Comput. 2002, 1, 3-52.
https://doi.org/10.1023/ A:1015059928466.

Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671-680.
Abedinpourshotorban, H.; Mariyam Shamsuddin, S.; Beheshti, Z.; Jawawi, D.N.A. Electromagnetic field optimization: A physics-
inspired metaheuristic optimization algorithm. Swarm Evol. Comput. 2016, 26, 8-22. https://doi.org/10.1016/j.swevo.2015.07.002.
Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Know!. Based
Syst. 2020, 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190.

Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new
metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531-1551. https://doi.org/10.1007 /s10489-
020-01893-z.

Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51-67.
https://doi.org/10.1016/j.advengsoft.2016.01.008.

Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer
for engineering design problems. Adv. Eng. Softw. 2017, 114, 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002.
Wang, G.G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput.
2018, 10, 151-164. https://doi.org/10.1007/s12293-016-0212-3.

Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila optimizer: A novel meta-
heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. https://doi.org/10.1016/j.cie.2021.107250.

Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46-61.
https://doi.org/10.1016/j.advengsoft.2013.12.007.

Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849-872. https:/ /doi.org/10.1016/j.future.2019.02.028.

Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November-1 December 1995; Volume 4, pp. 1942-1948.

Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput 1997, 1, 67-82.

Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future
Gener. Comput. Syst. 2020, 111, 300-323. https://doi.org/10.1016/j.future.2020.03.055.

Zhao, S.; Wang, P; Heidari, A.A.; Chen, H.; Turabieh, H.; Mafarja, M.; Li, C. Multilevel threshold image segmentation with
diffusion association slime mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease. Comput. Biol. Med.
2021, 134, 104427, https://doi.org/10.1016/j.compbiomed.2021.104427.

Zubaidi, S.L.; Abdulkareem, I.H.; Hashim, K.S.; Al-Bugharbee, H.; Ridha, H.M.; Gharghan, S.K.; Al-Qaim, EF,; Muradov, M.; Kot,
P,; Al-Khaddar, R. Hybridised artificial neural network model with slime mould algorithm: A novel methodology for prediction
of urban stochastic water demand. Water 2020, 12, 2692. https://doi.org/10.3390/w12102692.

Wang, H.J.; Pan,].S.; Nguyen, T.T.; Weng, S. Distribution network reconfiguration with distributed generation based on parallel
slime mould algorithm. Energy 2022, 244, 123011. https://doi.org/10.1016/j.energy.2021.123011.

Tang, A.D.; Tang, S.Q.; Han, T.; Zhou, H.; Xie, L. A modified slime mould algorithm for global optimization. Comput. Intell.
Neurosci. 2021, 2021, 2298215, https:/ /doi.org/10.1155/2021/2298215.

Ornek, B.N,; Aydemir, S.B.; Ditizenli, T,; Ozak, B. A novel version of slime mould algorithm for global optimization
and real world engineering problems: Enhanced slime mould algorithm. Math. Comput. Simul. 2022, 198, 253-288.
https://doi.org/10.1016/j.matcom.2022.02.030.

https://doi.org/10.1016/j.engappai.2020.104105
https://doi.org/10.1016/j.swevo.2021.100907
https://doi.org/10.1016/j.eswa.2020.113837
https://doi.org/10.3390/axioms11020061
https://doi.org/10.1109/MAP.2011.5773566
https://doi.org/10.1109/59.801925
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1016/j.swevo.2015.07.002
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1007/s10489-020-01893-z
https://doi.org/10.1007/s10489-020-01893-z
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1007/s12293-016-0212-3
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.1016/j.compbiomed.2021.104427
https://doi.org/10.3390/w12102692
https://doi.org/10.1016/j.energy.2021.123011
https://doi.org/10.1155/2021/2298215
https://doi.org/10.1016/j.matcom.2022.02.030

Algorithms 2022, 15, 317 25 of 25

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

Kaveh, A.; Biabani Hamedani, K.; Kamalinejad, M. Improved slime mould algorithm with elitist strategy and its application to
structural optimization with natural frequency constraints. Comput. Struct. 2022, 264, 106760.
https:/ /doi.org/10.1016 /j.compstruc.2022.106760.

Pfaff, W.; Hensen, B.].; Bernien, H.; van Dam, S.B.; Blok, M.S.; Taminiau, T.H.; Tiggelman, M.].; Schouten, R.N.; Markham, M.;
Twitchen, D.J.; et al. Unconditional quantum teleportation between distant solid-state quantum bits. Sciernce 2014, 345, 532-535.
https://doi.org/10.1126 /science.1253512.

Xu, B.; Heidari, A.A.; Kuang, F; Zhang, S.; Chen, H.; Cai, Z. Quantum Nelder-Mead Hunger Games Search for optimizing
photovoltaic solar cells. Int. |. Energy Res. 2022, 46, 12417-12466. https:/ /doi.org/10.1002/er.8011.

Tizhoosh, H. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International Conference
on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28-30 November 2005; Volume 1, pp. 695-701.
https://doi.org/10.1109/CIMCA.2005.1631345.

Abualigah, L.; Diabat, A.; Elaziz, M.A. Improved slime mould algorithm by opposition-based learning and Levy flight distribution
for global optimization and advances in real-world engineering problems. J. Ambient. Intell. Humaniz. Comput. 2021, pp. 1-40
1-40. https://doi.org/10.1007 /s12652-021-03372-w.

Naik, M.K,; Panda, R.; Abraham, A. An entropy minimization based multilevel colour thresholding technique for analysis of
breast thermograms using equilibrium slime mould algorithm. Appl. Soft Comput. 2021, 113, 107955.

Gupta, S.; Deep, K.; Mirjalili, S. An efficient equilibrium optimizer with mutation strategy for numerical optimization. Appl. Soft
Comput. 2020, 96, 106542.

Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009,
13, 945-958.

Gupta, S.; Deep, K. A novel random walk grey wolf optimizer. Swarm Evol. Comput. 2019, 44, 101-112.

Garcia, S.; Ferndndez, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 2010, 180, 2044-2064.
Wang, Z.; Luo, Q.; Zhou, Y. Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism
for global optimization problems. Eng. Comput. 2021, 37, 3665-3698.

Chen, H.; Heidari, A.A.; Zhao, X.; Zhang, L.; Chen, H. Advanced orthogonal learning-driven multi-swarm sine cosine
optimization: Framework and case studies. Expert Syst. Appl. 2020, 144, 113113. https://doi.org/10.1016/j.eswa.2019.113113.
Wang, S.; Jia, H.; Abualigah, L.; Liu, Q.; Zheng, R. An improved hybrid aquila optimizer and harris hawks algorithm for solving
industrial engineering optimization problems. Processes 2021, 9, 1551. https://doi.org/10.3390/pr9091551.

Zheng, R.; Jia, H.; Abualigah, L.; Liu, Q.; Wang, S. Deep ensemble of slime mold algorithm and arithmetic optimization algorithm
for global optimization. Processes 2021, 9, 1774. https://doi.org/10.3390/pr9101774.

https://doi.org/10.1016/j.compstruc.2022.106760
https://doi.org/10.1126/science.1253512
https://doi.org/10.1002/er.8011
https://doi.org/10.1109/CIMCA.2005.1631345
https://doi.org/10.1007/s12652-021-03372-w
https://doi.org/10.1016/j.eswa.2019.113113
https://doi.org/10.3390/pr9091551
https://doi.org/10.3390/pr9101774

	Introduction
	Materials and Methods
	Slime Mold Algorithm
	Description of the Quantum Rotation Gate
	Quantum Bit
	Quantum Rotation Gate

	Opposition-Based Learning (OBL)

	Proposed Method
	Improved Quantum Rotation Gate
	OBL
	Improved SMA
	Computational Complexity Analysis

	Experiments and Discussion
	Benchmark Function Validation and Parameter Settings
	Impacts of Components
	Benchmark Function Experiments
	Convergence Analysis

	Engineering Design Problems
	Welded Beam Design Problem
	Tension/Compression Spring Design
	Pressure Vessel Design

	Conclusions
	References

