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Abstract: The slime mold algorithm (SMA) is a swarm-based metaheuristic algorithm inspired
by the natural oscillatory patterns of slime molds. Compared with other algorithms, the SMA is
competitive but still suffers from unbalanced development and exploration and the tendency to
fall into local optima. To overcome these drawbacks, an improved SMA with a dynamic quantum
rotation gate and opposition-based learning (DQOBLSMA) is proposed in this paper. Specifically, for
the first time, two mechanisms are used simultaneously to improve the robustness of the original
SMA: the dynamic quantum rotation gate and opposition-based learning. The dynamic quantum
rotation gate proposes an adaptive parameter control strategy based on the fitness to achieve a
balance between exploitation and exploration compared to the original quantum rotation gate. The
opposition-based learning strategy enhances population diversity and avoids falling into the local
optima. Twenty-three benchmark test functions verify the superiority of the DQOBLSMA. Three
typical engineering design problems demonstrate the ability of the DQOBLSMA to solve practical
problems. Experimental results show that the proposed algorithm outperforms other comparative
algorithms in convergence speed, convergence accuracy, and reliability.

Keywords: slime mold algorithm; metaheuristics algorithm; engineering design problem; dynamic
quantum rotation gate; opposition-based learning

1. Introduction

In the optimization field, solving an optimization problem usually means finding
the optimal value to maximize or minimize a set of objective functions without violating
constraints [1]. Optimization methods can be divided into two main categories: exact algo-
rithms and metaheuristics [2]. While exact algorithms can provide global optima precisely,
they have exponentially increasing execution times in proportion to the number of variables
and are considered less suitable and practical [3]. In contrast, metaheuristic algorithms can
identify the best or near-optimal solution in a reasonable amount of time [4]. During the
last two decades, metaheuristic algorithms have gained much attention, and much devel-
opment and work there have been on them due to their flexibility, simplicity, and global
optimization. Thus, they are widely used for solving optimization problems in almost every
domain, such as big data text clustering [5], tuning of fuzzy control systems [6,7], path plan-
ning [8,9], feature selection [10–12], training neural networks [13], parameter estimation
for photovoltaic cells [14–16], image segmentation [17,18], tomography analysis [19], and
permutation flowshop scheduling [20,21].

Metaheuristic algorithms simulate natural phenomena or laws of physics and are
usually classified into three categories: evolutionary algorithms, physical and chemical
algorithms, and swarm-based algorithms. Evolutionary algorithms are a class of algorithms
that simulate the laws of evolution in nature. The best known is the genetic algorithm
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(GA) [22], which was developed from Darwin’s theory of superiority and inferiority. There
are other algorithms, such as differential evolution (DE) [23], which simulates the crossover
and variation mechanisms of inheritance, evolutionary programming (EP) [24], and evolu-
tionary strategies (ES) [25]. Physical and chemical algorithms search for the optimum by
simulating the universe’s chemical laws or physical phenomena. Algorithms in this cate-
gory include simulated annealing (SA) [26], electromagnetic field optimization (EFO) [27],
equilibrium optimizer (EO) [28], and Archimedes’ optimization algorithm (ArchOA) [29].
Swarm-based algorithms simulate the behavior of social groups of animals or humans.
Examples of such algorithms include the whale optimization algorithm (WOA) [30], salp
swarm algorithm (SSA) [31], moth search algorithm (MSA) [32], aquila optimizer (AO) [33],
grey wolf optimizer (GWO) [34], harris hawks optimization (HHO) [35], and particle swarm
optimization (PSO) [36].

However, the no free lunch (NFL) theorem [37] proves that no single algorithm can
solve all optimization problems well. If an algorithm is particularly effective for a particular
class of problems, it may not be able to solve other classes of optimization problems. This
motivates us to propose new algorithms or improve the existing ones. The slime mold
algorithm (SMA) [38] is a new meta-heuristic algorithm proposed by Li et al. in 2020.
The basic idea of the SMA is based on the foraging behavior of slime mold, which has
different feedback aspects according to the food quality. Different search mechanisms
have been introduced into the SMA to solve various optimization problems. For example,
Zhao et al. [39] introduced a diffusion mechanism and association strategy into the SMA and
applied the proposed algorithm to the image segmentation of CT images. Salah et al. [40]
applied the slime mold algorithm to optimize an artificial neural network model for
predicting monthly stochastic urban water demand. Wang et al. [41] developed a parallel
slime mold algorithm for the distribution network reconfiguration problem with distributed
generation. Tang et al. [42] introduced chaotic opposition-based learning and spiral search
strategies into the SMA and proposed two adaptive parameter control strategies. The
simulation results show that the proposed algorithms outperform other similar algorithms.
Örnek et al. [43] proposed an enhanced SMA that combines the sine cosine algorithm
with the position update of the SMA. Experimental results show that the proposed hybrid
algorithm has a better ability to jump out of local optima with faster convergence.

Although the SMA, as a new algorithm, is competitive with other algorithms, it
also suffers from some shortcomings. The SMA, similarly to many other swarm-based
metaheuristic algorithms, suffers from slow convergence and premature convergence to a
local optimum solution [44]. In addition, the update strategy of SMA reduces exploration
capabilities and reduces population diversity. To improve the above problems, an improved
algorithm based on SMA, called the dynamic-quantum-rotation-gate- and opposition-based
learning SMA (DQOBLSMA), is proposed. In this paper, we introduce two mechanisms,
the dynamic quantum rotation gate (DQGR) and opposition-based learning (OBL), into the
SMA simultaneously. Both mechanisms improve the shortcomings of the original algorithm
in terms of slow convergence and the tendency to fall into local optima. First, DQGR
rotates the search individuals to the direction of the optimum, improving the diversity
of the population and enhancing the global exploration capability of the algorithm. At
the same time, OBL explores the partial solution in the opposite direction, improving the
algorithm’s ability to jump out of local optima. The performance of the DQOBLSMA was
evaluated by comparing it with the original SMA algorithm and with other advanced
algorithms. In addition, three different constraint engineering problems were used to
verify the performance of the DQOBLSMA further: the welded beam design problem, the
tension/compression spring design problem, and pressure vessel design.

The main contributions of this paper are summarized as follows:

1. DQRG and OBL strategies were introduced into SMA to improve the exploration
capabilities of SMA.

2. The DQRG strategy is proposed in order to balance the exploration and exploitation
phases.
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3. By comparing five well-known metaheuristic algorithms, experiments show that the
proposed DQOBLSMA is more robust and effective.

4. Experiments on three engineering design optimization problems show that the
DQOBLSMA can be effectively applied to practical engineering problems.

This paper is organized as follows. Section 2 describes the slime mold algorithm,
quantum rotation gate, and opposition-based learning. Section 3 presents the proposed
improved slime mold algorithm. Section 4 show the experimental study and discussion
using benchmark functions. The DQOBLSMA is applied to solve the three engineering
problems in Section 5. Finally, the conclusion and future work are given in Section 6.

2. Materials and Methods
2.1. Slime Mold Algorithm

The slime mold algorithm (SMA) [38] is a swarm-based metaheuristic algorithm
recently developed by Li et al. The algorithm simulates a range of behaviors for foraging by
the slime mold. The negative and positive feedbacks of the slime mold using a biological
oscillator to propagate waves during foraging for a food source are simulated by the SMA
using adaptive weights. Three special behaviors of the slime mold are mathematically
formulated in the SMA: approaching food, wrapping food, and grabbing food. The process
of approaching food can be expressed as

Xi(t + 1) =
{

Xb(t) + vb · (W · XA(t)− XB(t)), r < p
vc · Xi(t), r ≥ p

(1)

where t is the number of current iterations, Xi(t + 1) is the newly generated position, Xb(t)
denotes the best position found by the slime mold in iteration t, XA(t) and XB(t) are two
random positions selected from the population of slime mold, and r is a random value
in [0, 1].

vb and vs.c are the coefficients that simulate the oscillation and contraction mode of
slime mold, respectively, and vs.c is designed to linearly decrease from one to zero during
the iterations. The range of vb is from −a to a, and the computational formula of a is

a = arctanh
(

1− t
T

)
(2)

where T is the maximum number of iterations.
According to Equations (1) and (2), it can be seen that as the number of iterations

increases, the slime mold will wrap the food.
W is a significantly important factor that indicates the weight of the slime mold, and it

is calculated as follows:

W(Smell Index (i)) =

 1 + rand · log
(

bF−S(i)
bF−wF + 1

)
, i ≤ N/2

1− rand · log
(

bF−S(i)
bF−wF + 1

)
, i > N/2

(3)

Smell Index (i) = Sort(S(i)) (4)

where N is the size of the population, i represents the i-th individual in the population,
i ∈ 1, 2 . . . N, rand denotes the random value in the interval of [0, 1], bF denotes the optimal
fitness obtained in the current iterative process, wF denotes the worst fitness value obtained
in the iterative process currently, S(i) represents the fitness of X, Smell Index denotes the
sequence of fitness values sorted.

p = tanh |S(i)− DF| (5)

where DF denotes the best fitness obtained in all iterations.
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Finally, when the slime mold has found the food, it still has a certain chance z to search
other new food, which is formulated as

X(t + 1) = rand ·(UB− LB) + LB, r2 < z (6)

where UB and LB are the upper and lower limits, respectively, and r2 implies a random
value in the region [0, 1]. z is set to 0.03 in original SMA.

Finally, the pseudo-code of SMA is given in Algorithm 1.

Algorithm 1: Pseudo-code of the slime mold algorithm (SMA)
Input: Population size N, Maximum number of iteration MaxIt.
Output: The best location Xb, the best fitness value bestFitness .

1 Initialize the parameters popsize(N);
2 Initialize the positions of slime mold Xi(i = 1, 2, 3 . . . , N) ;
3 while t < MaxIt do
4 Calculate the fitness of all slime molds;
5 Update bestFitness,Xb;
6 Calculate the W by Equation (3);
7 foreach each slime mold do
8 if r2<z then
9 update the position using Equation (6);

10 else
11 Update p, vb, and vc;
12 Update position by Equation (1);
13 end
14 end
15 t = t + 1;
16 end
17 return bestFitness,Xb

2.2. Description of the Quantum Rotation Gate
2.2.1. Quantum Bit

The fundamental storage unit is a quantum bit in quantum computer systems, com-
munication systems, and other quantum information systems [45]. The difference between
quantum bits and classical bits is that quantum bits can be in a superposition of two states
simultaneously, whereas classical bits can be in only one state at a period of time, which is
defined as Equation (7).

|φ〉 = α|0〉+ β|1〉 (7)

where α and β represent the probability amplitudes of the two superposition states. |α|2
and |β|2 are the e probabilities that the qubit is in two different states of “0” and “1”, and
the relationship between them is shown in Equation (8).

|α|2 + |β|2 = 1 (8)

Thus, a quantum bit can represent one state or be in both states at the same time.

2.2.2. Quantum Rotation Gate

In the DQOBLSMA, the QRG strategy is introduced to update the position of some
search individuals to enhance the exploitation of the algorithm. In the physical discipline
of quantum computing, the quantum rotation gate is used as a state processing technique.
Quantum bits are binary, and the position information generated by the swarm-based
algorithm is floating-point data. In order to process the position information, the discrete
data of the quantum bits need to be turned into the algorithm’s continuous data. The
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information of each dimension of the search agent is rotated in couples and updated by
a quantum rotation gate. The update process and adjustment operation of QRG are as
follows. Equation (9) shows that the 2× 2 matrix represents the quantum rotation gate.

U(θi) =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
(9)

The updating process is as follows:

[
α′i
β′i

]
= U(θi)

[
αi
βi

]
=

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

][
αi
βi

]
(10)

where(αi, βi)
T shows the state of the quantum bit of the i-th quantum bit of the chromosome

before the update of the quantum rotation gate, and
(
α′i, β′i

)T indicates the state of the
quantum bit after the update. θi denotes the rotation angle of the ith quantum bit, the size
and sign of which have been pre-set, and its adjustment strategy is shown in Table 1.

Table 1. Strategies for specifying rotation angle in QRG.

Situation ∆θi s(αi, βi)
αiβi < 0 αi = 0 αiβi > 0 βi = 0

f (xi) = best_ f itness δ 0 0 0 0
f (xi) > best_ f itness δ −1 ±1 +1 0
f (xi) < best_ f itness δ +1 0 −1 ±1

Table 1 shows the rotation angle is labeled by θi = ∆θi · s(αi, βi), where s(αi, βi)
denotes the rotation of the target direction. ∆θi represents the rotation angle of the i-th
rotation, where the position state of the i-th search agent in the population is αi, and the
position state of the optimal search agent in the whole population is βi. By comparing the
fitness values of the current target and the optimal target, the direction of the target with
higher fitness is selected to rotate the individual, thereby expanding the search space. If
f (xi) > best_ f itness, then the algorithm evolves toward the current target. Conversely, let
the quantum bit state vector transform towards the direction where the optimal individual
exists [46]. Figure 1 shows the quantum bit state vector transformation process.

α

β
( )i i

' 'α , β

( )i iα , β

θ

Figure 1. The process of updating the state of a quantum bit.

2.3. Opposition-Based Learning (OBL)

Tizhoosh proposed OBL in 2005 [47]. This technique can increase the convergence
speeds of metaheuristic algorithms by replacing a solution in the population by searching
for a potentially better solution in the opposite direction of the current one. With this
approach, a population with better solutions could be generated after each iteration and
accelerate convergence speed. The OBL strategy has been successfully used in various
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metaheuristic algorithms to improve the ability of local optima stagnation avoidance [48],
and the mathematical expression is as follows:

XOBL(t) = LB + UB− X(t) (11)

In opposition-based learning, for the original solution X(t) and the reverse solution
XOBL(t), according to their fitness, save the better solution among them. Finally, the slime
mold position for the next iteration is updated as follows in the minimization problem:

XOBL(t + 1) =

{
XOBL(t) if f (XOBL(t)) < f (X(t))
X(t) if f (XOBL(t)) ≥ f (X(t))

(12)

3. Proposed Method
3.1. Improved Quantum Rotation Gate

The magnitude of the rotation angle of the QRG significantly affects the convergence
speed. A relatively large amplitude leads to premature convergence. Conversely, smaller
angles lead to slower convergence. In particular, the rotation angle of the original quantum
rotation gate is fixed, which is not conducive to the balance between exploration and
exploitation. Based on this, we propose a new dynamic adaptation strategy to adjust the
rotation angle of the quantum rotation gate. In the early exploration stage, the value of θ
should be increased when the current individual is far from the best. In the exploitation
stage, the value of θ should be decreased. This method allows the search process to adapt
to different solutions and is more conducive to searching for the global optimum. In detail,
this improved method determines the value of the rotation angle by the difference between
the current individual’s fitness and the best fitness that has been obtained so far. The
rotation angle θ is defined as

∆θ = θmin + γi · (θmax − θmin) (13)

where θmax and θmin are the maximum and minimum values of the range of ∆θ, respectively.
The maximum and minimum values take 0.035π and 0.001π, respectively. γ is defined as:

γi = 1− e−4·( bF−S(i)
bF−wF )2

(14)

The pseudo-code of DQRG (Algorithm 2) is as follows:

Algorithm 2: Pseudo-code of the quantum rotation gate (DQRG).
Input: position Xi, fitness values of Xi f itness(i), the best fitness value bF, dim
Output: updated position X.

1 Initialize the parameters α, β, s;
2 while i < dim do
3 Update α, β;
4 Compare the f itness(i) and bF;
5 Update s according to Table 1;
6 Update ∆θ by Equation (13);
7 Perform DQRG by Equation (10);
8 i = i + 1;
9 end

10 return X

3.2. OBL

In this work, an improved method to obtain the opposite solution is proposed further.
Specifically, instead of using only lower and upper bounds to find the opposite point, the
impact of the current better solution, including the optimal, suboptimal, and third optimal
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solutions, is added to the opposite point’s calculation procedure. The new formula of the
opposite point is expressed as follows:

Xm =
Xos + Xss + Xts

3
(15)

where Xm is the average of three better solutions, Xos is the current best solution, Xss is the
suboptimal solution, and Xts is the third optimal solution.

XOBL(t + 1) = LB + UB− Xm(t) + rand · (Xm(t)− X(t)) (16)

where XOBL(t + 1) is the improved opposite solution, rand denotes the random value in
the interval of [0, 1], and UB and LB are the upper and lower limits.

3.3. Improved SMA

To explore the solution space of complex optimization problems more efficiently, we
propose two strategies based on the original SMA algorithm: the DQRG and OBL strategies.
In the proposed method, two main conditions are considered to execute the proposed
policy procedures. The first condition is the execution of SMA or two other strategies. If
r2 < 0.8, then SMA is executed to update the position. Otherwise, the second condition
is checked to determine the strategy to adopt. If r3 < 0.5 in the second condition, the
solution will be updated using the DQRG; otherwise, OBL will be executed for the searched
individual. The pseudo-code of the DQOBLSMA is shown as Algorithm 3:

Algorithm 3: Pseudo-code of the DQOBLSMA
Input: Population size N, Maximum number of iteration MaxIt.
Output: The best location Xb, the best fitness value bF .

1 Initialize the parameters popsize(N), Maxiteraition;
2 Initialize the positions of slime mold Xi(i = 1, 2, 3 . . . , N) ;
3 while t < MaxIt do
4 Calculate the fitness of all slime mold;
5 Update bF, Xb;
6 Calculate the W by Equation (3);
7 foreach slime mold do
8 if r1 < 0.8 then
9 if r2<z then

10 update the position using Equation (6);
11 else
12 Update p, vb, and vc;
13 Update position by Equation (1);
14 end
15 else
16 if r3 < 0.5 then
17 Operate Dynamic quantum rotation gate by Algorithm 2;
18 else
19 Calculate opposition solution XOBL of individual X by

Equation (16);
20 end
21 end
22 end
23 t = t + 1;
24 end
25 return bestFitness,Xb
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3.4. Computational Complexity Analysis

The computational complexity of the DQOBLSMA depends on the population size
(N), dimension size (D), and maximum iterations (T). First, the DQOBLSMA produces the
search agents randomly in the search space, so the computational complexity is O(N × D).
Second, the computational complexity of calculating the fitness of all agents is O(N). The
quick-sort of all search agents is O(N × log N). Moreover, updating the positions of agents
in the original SMA is (N × D). Therefore, the total computational complexity of original
SMA is O(N × D + N × T × (1 + D + log N) ).

Updating the positions through the DQRG is O(N × D) (maximum), and the OBL is
O(N) (maximum). Updating the position using DQRG and the original SMA will not be
done simultaneously. In summary, the final time complexity is O(DQOBLSMA) = O(N ×
D + N × T× (1 + D + log N))(maximum). In summary, the improved strategy proposed
in this paper does not increase the computational complexity when compared with the
original SMA.

4. Experiments and Discussion

We conducted a series of experiments to verify the performance of the DQOBLSMA.
The classical benchmark functions are introduced in Section 4.1. In the experiments of test
functions, the impacts of two mechanisms were analyzed; see Section 4.2. In Section 4.3,
the DQOBLSMA is compared with several advanced algorithms. In Section 4.4, the conver-
gence of the algorithms is analyzed.

The performance of the DQOBLSMA was investigated using the mean result (Mean)
and standard deviation (Std). In order to accurately make statistically reasonable conclu-
sions, the results of the benchmark test functions were ranked using the Friedman test. In
addition, the Wilcoxon’s rank-sum test was used to assess the average performances of
the algorithms in a statistical sense. In this study, it was used to test whether there was
a difference in the effect of the DQOBLSMA compared with those of other algorithms in
pairwise comparisons. When the p-value is less than 0.05, the result is significantly different
from the other methods. The symbols “+”, “−”, and “=” indicate if the DQOBLSMA is
better than, inferior to, or equal to the other algorithms, respectively.

4.1. Benchmark Function Validation and Parameter Settings

In this study, the test set for the DQOBLSMA comparison experiment was the 23 classi-
cal test functions that had been used in the literature [34]. The details are shown in Table 2.
These classical test functions are divided into unimodal functions, multimodal functions,
and fixed-dimension multimodal functions. The unimodal functions (F1–F7) have only
one local solution and one optimal global solution and are usually used to evaluate the
local exploitation ability of the algorithm. Multimodal functions (F8–F13) are often used to
test the exploration ability of the algorithm. F14–F23 are fixed-dimensional multimodal
functions with many local optimal points and low dimensionality, which can be used to
evaluate the stability of the algorithm.
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Table 2. The classic benchmark functions.

Function Type Function Name Dimension Range Theoretical Value

Unimodal
test functions

F1 Sphere 30 [−100, 100] 0
F2 Schwefel 2.22 30 [−10, 10] 0
F3 Schwefel 1.2 30 [−100, 100] 0
F4 Schwefel 2.21 30 [−100, 100] 0
F5 Rosenbrock 30 [−30, 30] 0
F6 Step 30 [−100, 100] 0

Multimodal
test functions

F7 Quartic 30 [−1.28, 1.28] 0
F8 Schwefel 2.26 30 [−500, 500] −418.9829× D
F9 Rastrigin 30 [−5.12, 5.12] 0
F10 Ackley 30 [−32, 32] 0
F11 Griewank 30 [−600, 600] 0
F12 Penalized 30 [−50, 50] 0
F13 Penalized2 30 [−50, 50] 0

Fixed-dimension multimodal
test functions

F14 Foxholes 2 [−65, 65] 0.998004
F15 Kowalik 4 [−5, 5] 0.0003075
F16 Six-Hump Camel Back 2 [−5, 5] −1.03163
F17 Branin 2 [−5, 5] 0.398
F18 Goldstein Price 2 [−2, 2] 3
F19 Hartman 3 3 [−1, 2] −3.8628
F20 Hartman 6 6 [0, 1] −3.322
F21 Shekel 5 4 [0, 10] −10.1532
F22 Shekel 7 4 [0, 10] −10.4028
F23 Shekel 10 4 [0, 10] −10.5363

The DQOBLSMA has been compared to the original SMA and five other algorithms:
the slime mold algorithm improved by opposition-based learning and Levy flight distribu-
tion (OBLSMAL) [48], the equilibrium slime mold algorithm (ESMA) [49], the equilibrium
optimizer with a mutation strategy (MEO) [50], the adaptive differential evolution with
an optional external archive (JADE) [51], and the gray wolf optimizer based on random
walk (RWGWO) [52]. The parameter settings of each algorithm are shown in Table 3, and
the experimental parameters for all optimization algorithms were chosen to be the same as
those reported in the original works.

Table 3. Parameter settings for the comparative algorithms.

Algorithm Parameter

OBLSMAL z = 0.03, p1 = 0.5, p2 = 0.5
ESMA z = 0.03
MEO a1 = 2, a2 = 1, GP = 0.5
JADE µF = 0.5, µCR = 0.5, p = 0.1, c = 0.1

RWGWO Control parameter a, b decrease linearly from 2 to 0
SMA z = 0.03

In order to maintain a fair comparison, each algorithm was independently run 30 times.
The population size (N) and the maximum function evaluation times (FEs) of all experi-
mental methods were fixed at 30 and 15,000, respectively. The comparative experiment was
run under the same test conditions to keep the experimental conditions consistent. The
proposed method was coded in Python3.8 and tested on a PC with an AMD R5-4600 Hz,
3.00 GHz of memory, 16 GB of RAM, and the Windows 11 operating system.



Algorithms 2022, 15, 317 10 of 25

4.2. Impacts of Components

In this section, different versions of the improvement are investigated. The proposed
DQOBLSMA adds two different mechanisms to the original SMA. To verify their respective
effects, they are compared when separated. Different combinations between SMA and two
mechanisms are listed below:

• SMA combined with DQRG and OBL (DQOBLSMA);
• SMA combined with DQRG (DQSMA);
• SMA combined with OBL(OBLSMA);
• Original SMA;

Table 4 gives the comparison results between the original SMA and the improved
algorithm after adding the mechanism. The ranking of the four algorithms is given at the
end of the table, and it can be seen that the first-ranked algorithm is the DQOBLSMA. This
ranking was obtained using the Friedman ranking test [53] and reveals the overall perfor-
mance rankings of the compared algorithms against the tested functions. In these cases, the
ranking from best to worst was roughly as follows: DQOBLSMA > OBLSMA > SMA >
DQSMA. With the addition of both mechanisms, the performance of the DQOBLSMA is
more stable, and the global search capability is much improved. When comparing DQSMA
with OBLSMA, we can see that OBLSMA is much stronger than DQSMA, indicating that
the contribution of OBL to the performance of SMA is more significant than the contribution
of DQRG to the performance of SMA. When comparing DQSMA with SMA, we can see
that DQSMA becomes worse on unimodal functions but stronger on most multimodal and
fixed-dimensional multimodal functions than the original SMA in terms of optimization.

Wilcoxon’s rank-sum test was used to verify the significance of the DQOBLSMA
against the original SMA and SMA with the addition of one mechanism. The results
are shown in Table 5. Based on these results and those in Table 4, the DQOBLSMA
outperformed SMA on 13 benchmark functions, DQSMA on 17 benchmark functions,
and OBLSMA on 8 benchmark functions. Thus, the DQOBLSMA algorithm proposed in
this paper combines DQRG with OBL. Although DQSMA and OBLSMA can both find
the solutions, there are more benefits to be gained by combining the two strategies. In
conclusion, the DQOBLSMA offers better optimization performance and is significantly
better than SMA, DQSMA, and OBLSMA.



Algorithms 2022, 15, 317 11 of 25

Table 4. Search results (comparisons of the DQOBLSMA, DQSMA, OBLSMA, SMA).

Function
DQOBLSMA DQSMA OBLSMA SMA

Mean Std Mean Std Mean Std Mean Std

F1 0.0000 × 10+00 0.0000 × 10+00 1.0891 × 10−02 4.3266 × 10−03 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00

F2 2.9368 × 10−231 0.0000 × 10+00 5.1658 × 10−02 1.7908 × 10−02 2.7971 × 10−244 0.0000 × 10+00 7.2130 × 10−164 0.0000 × 10+00

F3 0.0000 × 10+00 0.0000 × 10+00 3.8217 × 10−02 5.9525 × 10−02 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00

F4 1.4919 × 10−224 0.0000 × 10+00 1.5620 × 10−02 8.3506 × 10−03 3.1204 × 10−229 0.0000 × 10+00 5.3508 × 10−168 0.0000 × 10+00

F5 1.4718 × 10−01 1.5834 × 10−01 5.1129 × 10+00 1.1125 × 10+01 6.4059 × 10+00 1.1204 × 10+01 2.8202 × 10+01 2.6986 × 10−01

F6 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00

F7 8.8202 × 10−05 7.2479 × 10−05 5.8003 × 10−04 3.1965 × 10−04 1.3372 × 10−04 8.9724 × 10−05 2.3852 × 10−04 2.0182 × 10−04

F8 −1.2569 × 10+04 1.0234 × 10−01 −1.1726 × 10+04 1.0829 × 10+03 −1.2569 × 10+04 5.6297 × 10−02 −9.1620 × 10+03 7.0236 × 10+02

F9 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00

F10 4.4409 × 10−16 0.0000 × 10+00 4.4409 × 10−16 0.0000 × 10+00 4.4409 × 10−16 0.0000 × 10+00 4.4409 × 10−16 0.0000 × 10+00

F11 0.0000 × 10+00 0.0000 × 10+00 2.2635 × 10−02 1.0138 × 10−02 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00

F12 8.9207 × 10−04 1.0608 × 10−03 5.0820 × 10−03 1.4513 × 10−02 3.5431 × 10−03 9.2857 × 10−03 2.4763 × 10−02 9.4810 × 10−03

F13 1.4921 × 10−03 3.6813 × 10−03 4.2575 × 10−02 7.6342 × 10−02 2.2321 × 10−03 8.3069 × 10−03 5.0605 × 10−02 3.4525 × 10−02

F14 9.9800 × 10−01 3.4807 × 10−13 1.1634 × 10+00 5.9405 × 10−01 9.9800 × 10−01 2.0372 × 10−13 9.9800 × 10−01 2.0923 × 10−12

F15 3.8029 × 10−04 9.0820 × 10−05 4.4014 × 10−04 1.0909 × 10−04 4.7568 × 10−04 1.7299 × 10−04 5.3389 × 10−04 2.7098 × 10−04

F16 −1.0316 × 10+00 4.1555 × 10−10 −1.0316 × 10+00 5.1500 × 10−06 −1.0316 × 10+00 8.8268 × 10−10 −1.0316 × 10+00 1.4953 × 10−09

F17 3.9789 × 10−01 3.2851 × 10−08 3.9794 × 10−01 1.2457 × 10−04 3.9789 × 10−01 1.3247 × 10−07 3.9789 × 10−01 3.4597 × 10−07

F18 3.0000 × 10+00 4.3415 × 10−07 3.0006 × 10+00 5.3604 × 10−04 3.0000 × 10+00 5.3937 × 10−08 3.0000 × 10+00 3.3742 × 10−08

F19 −3.8628 × 10+00 6.0439 × 10−07 −3.8628 × 10+00 2.6271 × 10−05 −3.8627 × 10+00 3.4507 × 10−04 −3.8628 × 10+00 3.3028 × 10−07

F20 −3.2821 × 10+00 5.7002 × 10−02 −3.2375 × 10+00 6.5585 × 10−02 −3.2615 × 10+00 6.0657 × 10−02 −3.2582 × 10+00 5.9773 × 10−02

F21 −1.0153 × 10+01 2.1496 × 10−04 −1.0152 × 10+01 1.8979 × 10−03 −1.0153 × 10+01 8.5453 × 10−05 −8.7668 × 10+00 2.7426 × 10+00

F22 −1.0403 × 10+01 1.8317 × 10−04 −1.0402 × 10+01 1.0712 × 10−03 −1.0403 × 10+01 1.2865 × 10−04 −8.5645 × 10+00 2.8449 × 10+00

F23 −1.0536 × 10+01 2.0415 × 10−04 −1.0534 × 10+01 3.6030 × 10−03 −1.0536 × 10+01 1.2450 × 10−04 −8.5593 × 10+00 2.8800 × 10+00

Friedman test average rank 1.74 3.33 1.91 3.02
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Table 5. Test statistical results of Wilcoxon’s rank-sum test.

Benchmark
DQOBLSMA vs. DQSMA DQOBLSMA vs. OBLSMA DQOBLSMA vs. SMA

p-Value Winner p-Value Winner p-Value Winner

F1 2.87 × 10−11 + NaN = NaN =
F2 2.87 × 10−11 + 5.22 × 10−09 − 1.94 × 10−09 +
F3 2.87 × 10−11 + NaN = NaN =
F4 2.87 × 10−11 + 5.22 × 10−09 − 1.48 × 10−09 +
F5 NaN + 6.24 × 10−03 + 2.87 × 10−11 +
F6 NaN = NaN = NaN =
F7 1.63 × 10−08 + 2.37 × 10−02 + 1.73 × 10−04 +
F8 2.87 × 10−11 + 5.96 × 10−03 = 2.87 × 10−11 +
F9 2.87 × 10−11 = NaN = NaN =

F10 2.87 × 10−11 = NaN = 2.87 × 10−11 =
F11 2.87 × 10−11 + NaN = NaN =
F12 NaN + 4.59 × 10−02 + 2.87 × 10−11 +
F13 7.90 × 10−05 + NaN + 3.88 × 10−11 +
F14 2.87 × 10−11 + NaN = 2.87 × 10−11 =
F15 6.8 × 10−3 + 3.09 × 10−02 + 2.82 × 10−03 +
F16 2.87 × 10−11 = NaN = 5.10 × 10−05 +
F17 2.87 × 10−11 + NaN = 6.37 × 10−04 =
F18 2.87 × 10−11 = NaN + NaN =
F19 1.31 × 10−07 = 5.12 × 10−04 + 3.50 × 10−08 =
F20 1.15 × 10−06 + NaN + 3.76 × 10−03 +
F21 6.81 × 10−09 + 1.41 × 10−03 = 2.33 × 10−09 +
F22 8.12 × 10−09 + 4.44 × 10−02 = 6.26 × 10−08 +
F23 1.54 × 10−10 + 1.72 × 10−03 = 1.55 × 10−06 +

+/−/= 17/0/6 8/2/13 f13/0/10

4.3. Benchmark Function Experiments

As seen from Table 6, on unimodal benchmark functions (F1–F7), the DQOBLSMA
can achieve better results than other optimization algorithms. For F1, F3, and F6, the
DQOBLSMA could find the theoretical optimal value. For all unimodal functions, the
DQOBLSMA obtained the smallest mean values and standard deviations compared to
other algorithms, showing the best accuracy and stability.

From the results shown in Tables 7 and 8, the DQOBLSMA outperformed the other
algorithms for most of the multimodal and fixed-dimensional multimodal functions. For
the multimodal functions F8–F13, the DQOBLSMA obtained almost all the best mean and
standard deviation values, and obtainedthe global optimal solution for four functions
(F8–F11). As shown in Table 8, the DQOBLSMA obtained theoretically optimal values in
8 of the 10 fixed-dimensional multimodal functions (F14–F23). Although the DQOBLSMA
did not outperform JADE in F14–F23, it exceeded ESMA and OBLSMAL in overall per-
formance. These results show that the DQOBLSMA also provides powerful and robust
exploitation capabilities.

In addition, Table 9 presents Wilcoxon’s rank-sum test results to verify the significant
differences between the DQOBLSMA and the other five algorithms. It is worth noting
that p-values less than 0.05 mean significant differences between the respective pairs of
compared algorithms. The DQOBLSMA outperformed all other algorithms to varying
degrees, and outperformed OBLSMAL, ESMA, MEO, JADE, and RWGWO, on 14, 15, 16,
15, and 18 benchmark functions, respectively. Table 10 shows the statistical results of the
Friedman test, where the DQOBLSMA ranked first in F1–F7 and F8–F13 and second after
JADE by a small margin in F14–F23. The DQOBLSMA received the best ranking overall. In
summary, the DQOBLSMA provided better results on almost all benchmark functions than
the other algorithms.
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Table 6. Results of unimodal benchmark test functions.

Func Criteria DQOBLSMA OBLSMAL ESMA MEO JADE RWGWO

F1

Best 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 1.0936 × 10−54 7.1160 × 10−14 7.2435 × 10−73

Mean 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 1.3473 × 10−51 1.3924 × 10−12 9.9351 × 10−65

Worst 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 1.1718 × 10−50 8.3623 × 10−12 2.8903 × 10−63

Std 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 3.4983 × 10−51 2.2303 × 10−12 6.9913 × 10−64

F2

Best 1.6860 × 10−280 1.8971 × 10−126 1.2829 × 10−179 1.2944 × 10−32 8.7945 × 10−08 8.4261 × 10−52

Mean 2.9368 × 10−231 7.4709 × 10−113 4.1210 × 10−175 6.2425 × 10−31 4.5037 × 10−06 1.2077 × 10−47

Worst 8.8104 × 10−230 2.1489 × 10−111 8.3686 × 10−174 2.2747 × 10−30 7.1303 × 10−05 7.7841 × 10−47

Std 0.0000 × 10+00 5.1975 × 10−112 0.0000 × 10+00 7.6873 × 10−31 1.7166 × 10−05 2.3314 × 10−47

F3

Best 0.0000 × 10+00 0.0000 × 10+00 1.3923 × 10−278 3.5006 × 10−21 3.4830 × 10+00 2.2232 × 10+03

Mean 0.0000 × 10+00 0.0000 × 10+00 7.5255 × 10−205 1.7481 × 10−17 2.1172 × 10+01 6.0553 × 10+03

Worst 0.0000 × 10+00 0.0000 × 10+00 2.2576 × 10−203 1.1762 × 10−16 5.6794 × 10+01 1.1356 × 10+04

Std 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 3.4991 × 10−17 1.6585 × 10+01 2.4311 × 10+03

F4

Best 2.2279 × 10−273 9.2369 × 10−122 8.7764 × 10−173 6.6498 × 10−15 1.2412 × 10−01 8.3027 × 10−07

Mean 1.4919 × 10−224 1.3337 × 10−106 1.4870 × 10−162 5.1881 × 10−13 6.6358 × 10−01 2.1528 × 10+00

Worst 4.4756 × 10−223 3.9116 × 10−105 4.2072 × 10−161 5.2753 × 10−12 1.7608 × 10+00 2.9139 × 10+01

Std 0.0000 × 10+00 9.4644 × 10−106 1.0186 × 10−161 1.2870 × 10−12 4.2471 × 10−01 7.2432 × 10+00

F5

Best 4.8100 × 10−04 2.6149 × 10+01 2.3534 × 10+01 2.5670 × 10+01 1.5204 × 10+01 2.8626 × 10+01

Mean 1.4718 × 10−01 2.7476 × 10+01 2.7593 × 10+01 2.6755 × 10+01 3.4093 × 10+01 2.8807 × 10+01

Worst 5.6207 × 10−01 2.8866 × 10+01 2.8973 × 10+01 2.8759 × 10+01 9.3404 × 10+01 2.8898 × 10+01

Std 1.5834 × 10−01 8.0237 × 10−01 1.5217 × 10+00 7.3628 × 10−01 2.4394 × 10+01 6.2979 × 10−02

F6

Best 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00

Mean 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 6.6667 × 10−02 0.0000 × 10+00

Worst 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 1.0000 × 10+00 0.0000 × 10+00

Std 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 2.9152 × 10−01 0.0000 × 10+00

F7

Best 3.2865 × 10−07 5.4366 × 10−07 3.6036 × 10−05 8.8161 × 10−06 9.3734 × 10−03 2.1106 × 10−05

Mean 8.8202 × 10−05 2.1700 × 10−04 2.0721 × 10−04 3.7390 × 10−04 1.8194 × 10−02 1.7522 × 10−02

Worst 2.6899 × 10−04 1.0933 × 10−03 6.4167 × 10−04 1.5364 × 10−03 2.6649 × 10−02 1.8120 × 10−01

Std 7.2479 × 10−05 2.6392 × 10−04 1.7316 × 10−04 4.1133 × 10−04 4.8117 × 10−03 4.3922 × 10−02

Table 7. Results of multi-modal benchmark functions.

Func Criteria DQOBLSMA OBLSMAL ESMA MEO JADE RWGWO

F8

Best −1.2569 × 10+04 −8.8602 × 10+03 −9.8908 × 10+03 −5.4647 × 10+03 −1.1856 × 10+04 −9.3674 × 10+03

Mean −1.2569 × 10+04 −7.0233 × 10+03 −8.5070 × 10+03 −3.7623 × 10+03 −1.0905 × 10+04 −8.8801 × 10+03

Worst −1.2569 × 10+04 −5.4879 × 10+03 −6.4963 × 10+03 −3.0199 × 10+03 −6.8045 × 10+03 −8.0571 × 10+03

Std 1.0234 × 10−01 7.7253 × 10+02 8.5477 × 10+02 5.5378 × 10+02 1.6276 × 10+03 3.2772 × 10+02

F9

Best 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00

Mean 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 9.4739 × 10−15 0.0000 × 10+00

Worst 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 1.4744 × 10−13 0.0000 × 10+00

Std 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 3.7368 × 10−14 0.0000 × 10+00

F10

Best 4.4409 × 10−16 4.4409 × 10−16 4.4409 × 10−16 4.4409 × 10−16 7.7624 × 10−08 4.4409 × 10−16

Mean 4.4409 × 10−16 4.4409 × 10−16 4.4409 × 10−16 4.4409 × 10−16 3.8505 × 10−02 3.5231 × 10−15

Worst 4.4409 × 10−16 4.4409 × 10−16 4.4409 × 10−16 4.4409 × 10−16 1.1551 × 10+00 3.9968 × 10−15

Std 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 2.7968 × 10−01 1.2900 × 10−15

F11

Best 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 7.2387 × 10−14 0.0000 × 10+00

Mean 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 4.3486 × 10−03 0.0000 × 10+00

Worst 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 3.6770 × 10−02 0.0000 × 10+00

Std 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 0.0000 × 10+00 9.9297 × 10−03 0.0000 × 10+00

F12

Best 5.8098 × 10−08 1.7590 × 10−02 2.8002 × 10−02 1.1540 × 10−02 4.4220 × 10−14 2.9591 × 10−02

Mean 8.9207 × 10−04 4.3823 × 10−02 9.0114 × 10−02 4.6612 × 10−02 4.4934 × 10−02 1.0348 × 10−01

Worst 3.6337 × 10−03 1.2371 × 10−01 4.2696 × 10−01 8.6796 × 10−02 4.1469 × 10−01 7.3880 × 10−01

Std 1.0608 × 10−03 2.4564 × 10−02 1.0394 × 10−01 2.0035 × 10−02 1.2955 × 10−01 1.6264 × 10−01

F13

Best 7.3229 × 10−06 2.4407 × 10−01 2.5338 × 10−01 4.5254 × 10−01 4.1497 × 10−14 5.6485 × 10−01

Mean 1.4921 × 10−03 1.0518 × 10+00 7.9118 × 10−01 8.9529 × 10−01 2.3516 × 10−10 1.1565 × 10+00

Worst 1.1660 × 10−02 2.6596 × 10+00 1.4767 × 10+00 1.2682 × 10+00 2.9604 × 10−09 2.3763 × 10+00

Std 3.6813 × 10−03 6.9507 × 10−01 3.3716 × 10−01 2.2110 × 10−01 7.8166 × 10−10 4.1169 × 10−01
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Table 8. Results of fixed-dimension multi-modal benchmark functions.

Func Criteria DQOBLSMA OBLSMAL ESMA MEO JADE RWGWO

F14

Best 9.9800 × 10−01 9.9800 × 10−01 9.9800 × 10−01 1.0937 × 10+00 9.9800 × 10−01 9.9800 × 10−01

Mean 9.9800 × 10−01 1.1304 × 10+00 1.0641 × 10+00 5.7783 × 10+00 9.9800 × 10−01 1.7229 × 10+00

Worst 9.9800 × 10−01 2.9821 × 10+00 2.9821 × 10+00 1.2671 × 10+01 9.9800 × 10−01 5.9288 × 10+00

Std 3.4807 × 10−13 5.2272 × 10−01 4.8038 × 10−01 3.9055 × 10+00 2.7756 × 10−17 1.6192 × 10+00

F15

Best 3.0958 × 10−04 3.0772 × 10−04 5.8084 × 10−04 3.0894 × 10−04 3.0749 × 10−04 4.1151 × 10−04

Mean 3.8029 × 10−04 8.3277 × 10−04 8.3114 × 10−04 3.4423 × 10−03 1.7361 × 10−03 1.1214 × 10−03

Worst 6.3781 × 10−04 1.2548 × 10−03 1.2249 × 10−03 2.0363 × 10−02 2.0363 × 10−02 2.6665 × 10−03

Std 9.0820 × 10−05 3.3167 × 10−04 2.1318 × 10−04 7.2217 × 10−03 5.8251 × 10−03 5.9580 × 10−04

F16

Best −1.0316 × 10+00 −1.0316 × 10+00 −1.0316 × 10+00 −1.0316 × 10+00 −1.0316 × 10+00 −1.0316 × 10+00

Mean −1.0316 × 10+00 −1.0316 × 10+00 −1.0316 × 10+00 −1.0316 × 10+00 −1.0316 × 10+00 −1.0316 × 10+00

Worst −1.0316 × 10+00 −1.0316 × 10+00 −1.0316 × 10+00 −1.0316 × 10+00 −1.0316 × 10+00 −1.0307 × 10+00

Std 4.1555 × 10−10 3.1460 × 10−08 2.6995 × 10−10 1.7352 × 10−10 6.5564 × 10−16 2.3316 × 10−04

F17

Best 3.9789 × 10−01 3.9789 × 10−01 3.9789 × 10−01 3.9789 × 10−01 3.9789 × 10−01 3.9789 × 10−01

Mean 3.9789 × 10−01 3.9789 × 10−01 3.9789 × 10−01 3.9789 × 10−01 3.9789 × 10−01 3.9792 × 10−01

Worst 3.9789 × 10−01 3.9789 × 10−01 3.9789 × 10−01 3.9789 × 10−01 3.9789 × 10−01 3.9803 × 10−01

Std 3.2851 × 10−08 1.4951 × 10−07 3.3940 × 10−08 5.0177 × 10−09 0.0000 × 10+00 4.2346 × 10−05

F18

Best 3.0000 × 10+00 3.0000 × 10+00 3.0000 × 10+00 3.0000 × 10+00 3.0000 × 10+00 3.0000 × 10+00

Mean 3.0000 × 10+00 3.0000 × 10+00 3.0000 × 10+00 3.0000 × 10+00 3.0000 × 10+00 3.0029 × 10+00

Worst 3.0000 × 10+00 3.0000 × 10+00 3.0000 × 10+00 3.0000 × 10+00 3.0000 × 10+00 3.0315 × 10+00

Std 4.3415 × 10−07 7.5551 × 10−07 4.5784 × 10−11 1.0614 × 10−05 1.5740 × 10−15 8.2802 × 10−03

F19

Best −3.8628 × 10+00 −3.8628 × 10+00 −3.8628 × 10+00 −3.8626 × 10+00 −3.8628 × 10+00 −3.8628 × 10+00

Mean −3.8628 × 10+00 −3.8628 × 10+00 −3.8627 × 10+00 −3.8589 × 10+00 −3.8628 × 10+00 −3.8520 × 10+00

Worst −3.8628 × 10+00 −3.8628 × 10+00 −3.8616 × 10+00 −3.8549 × 10+00 −3.8628 × 10+00 −3.7967 × 10+00

Std 6.0439 × 10−07 7.0025 × 10−06 2.8826 × 10−04 2.7955 × 10−03 2.6226 × 10−15 1.7232 × 10−02

F20

Best −3.3220 × 10+00 −3.3220 × 10+00 −3.3220 × 10+00 −3.3220 × 10+00 −3.3220 × 10+00 −3.2948 × 10+00

Mean −3.2821 × 10+00 −3.2220 × 10+00 −3.2313 × 10+00 −3.2590 × 10+00 −3.2903 × 10+00 −3.1655 × 10+00

Worst −3.1999 × 10+00 −3.1985 × 10+00 −3.0851 × 10+00 −3.0633 × 10+00 −3.2031 × 10+00 −2.9487 × 10+00

Std 5.7002 × 10−02 4.6895 × 10−02 6.8225 × 10−02 9.1478 × 10−02 5.3456 × 10−02 1.0946 × 10−01

F21

Best −1.0153 × 10+01 −1.0153 × 10+01 −1.0153 × 10+01 −5.1609 × 10+00 −1.0153 × 10+01 −1.0148 × 10+01

Mean −1.0153 × 10+01 −9.9934 × 10+00 −9.3978 × 10+00 −5.0587 × 10+00 −9.3166 × 10+00 −7.0389 × 10+00

Worst −1.0152 × 10+01 −7.5756 × 10+00 −2.6300 × 10+00 −5.0552 × 10+00 −2.6305 × 10+00 −5.0064 × 10+00

Std 2.1496 × 10−04 6.7461 × 10−01 2.4872 × 10+00 2.5592 × 10−02 2.4162 × 10+00 2.4611 × 10+00

F22

Best −1.0403 × 10+01 −1.0403 × 10+01 −1.0403 × 10+01 −8.1136 × 10+00 −1.0403 × 10+01 −1.0391 × 10+01

Mean −1.0403 × 10+01 −9.1689 × 10+00 −9.3977 × 10+00 −5.2039 × 10+00 −9.7170 × 10+00 −7.0943 × 10+00

Worst −1.0402 × 10+01 −2.7484 × 10+00 −2.7495 × 10+00 −2.5429 × 10+00 −2.7496 × 10+00 −2.7426 × 10+00

Std 1.8317 × 10−04 2.8605 × 10+00 2.6374 × 10+00 1.0562 × 10+00 2.3627 × 10+00 2.9401 × 10+00

F23

Best −1.0536 × 10+01 −1.0536 × 10+01 −1.0536 × 10+01 −1.0536 × 10+01 −1.0536 × 10+01 −1.0536 × 10+01

Mean −1.0536 × 10+01 −8.8867 × 10+00 −9.2412 × 10+00 −7.4582 × 10+00 −1.0536 × 10+01 −6.4373 × 10+00

Worst −1.0536 × 10+01 −2.4177 × 10+00 −2.4216 × 10+00 −5.1285 × 10+00 −1.0536 × 10+01 −2.4270 × 10+00

Std 2.0415 × 10−04 3.1383 × 10+00 3.0570 × 10+00 2.5657 × 10+00 1.9610 × 10−15 2.5968 × 10+00
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Table 9. Test statistical results of Wilcoxon’s rank-sum test.

Benchmark
DQOBLSMA vs. OBLSMAL DQOBLSMA vs. ESMA DQOBLSMA vs. MEO DQOBLSMA vs. JADE DQOBLSMA vs. RWGWO

p-Value Winner p-Value Winner p-Value Winner p-Value Winner p-Value Winner

F1 NaN = NaN = 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 +
F2 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 +
F3 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 +
F4 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 +
F5 1.73 × 10−06 + 1.73 × 10−06 + 7.04 × 10−01 + 1.73 × 10−06 + 1.73 × 10−06 +
F6 NaN = NaN = NaN = NaN + NaN =
F7 2.41 × 10−03 + 4.20 × 10−04 + 1.73 × 10−06 + 1.73 × 10−06 + 9.32 × 10−06 +
F8 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 + 1.73 × 10−06 +
F9 NaN = NaN = NaN = 1.20 × 10−02 + NaN =
F10 NaN = NaN = NaN = 1.73 × 10−06 + 6.39 × 10−07 +
F11 NaN = NaN = NaN = 1.73 × 10−06 + NaN =
F12 1.73 × 10−06 + 1.73 × 10−06 + 2.61 × 10−04 + NaN + 1.73 × 10−06 +
F13 1.73 × 10−06 + 1.73 × 10−06 + 2.07 × 10−02 + 1.73 × 10−06 − 1.73 × 10−06 +
F14 2.61 × 10−04 + 2.71 × 10−01 + 1.73 × 10−06 + 1.73 × 10−06 − 1.73 × 10−06 +
F15 6.34 × 10−06 + 1.73 × 10−06 + 3.00 × 10−02 + NaN + 1.73 × 10−06 +
F16 4.29 × 10−06 = 1.17 × 10−02 − 4.73 × 10−06 − 1.73 × 10−06 = 1.73 × 10−06 =
F17 7.51 × 10−05 = NaN = 4.86 × 10−05 − 1.73 × 10−06 = 1.73 × 10−06 −
F18 3.88 × 10−04 = 9.32 × 10−06 − 5.75 × 10−06 = 1.73 × 10−06 − 1.73 × 10−06 +
F19 7.71 × 10−04 = 1.74 × 10−04 + 1.73 × 10−06 + 1.73 × 10−06 − 1.73 × 10−06 +
F20 1.89 × 10−04 + 8.94 × 10−04 + 1.73 × 10−06 + 1.75 × 10−02 − 1.74 × 10−04 +
F21 1.73 × 10−06 + 4.29 × 10−06 + 1.73 × 10−06 + 1.48 × 10−02 + 1.73 × 10−06 +
F22 5.22 × 10−06 + 1.02 × 10−05 + 1.73 × 10−06 + 2.77 × 10−03 + 1.73 × 10−06 +
F23 5.22 × 10−06 + 1.38 × 10−03 + 1.73 × 10−06 + 1.73 × 10−06 − 1.73 × 10−06 +

+/−/= 14/0/9 15/2/6 16/2/5 15/6/2 18/1/4
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Table 10. Test statistical results of the Friedman test.

Func DQOBLSMA OBLSMAL ESMA MEO JADE RWGWO

F1–F7 1.36 3 2.36 3.86 5.71 4.71
F8–F13 2.08 3.42 3.42 3.75 4 4.33
F14–23 2.45 3.7 3 4.5 1.85 5.5
F1–F23 2.02 3.41 2.91 4.11 3.59 4.96

4.4. Convergence Analysis

To demonstrate the effectiveness of the proposed DQOBLSMA, Figure 2 shows the
convergence curves of the DQOBLSMA, SMA, ESMA, AEO, JADE, and RWGWO for the
classical benchmark functions. The convergence curves show that the initial convergence
of the DQOBLSMA was the fastest in most cases, except for F6, F9, F10, and F11; and
RWGWO had faster initial convergence for these functions. For F16–F20, all comparison
algorithms converged quickly to the global optimum, and the DQOBLSMA did not show a
significant advantage. In Figure 2, a step or cliff drop in the DQOBLSMA’s convergence
curve can be observed, which indicates outstanding exploration capability. In almost all
test cases, the DQOBLSMA had a better convergence rate than SMA and SMA variants,
indicating that the SMA’s convergence results can be significantly improved when applying
the proposed search strategies. In conclusion, the DQOBLSMA is not only robust and
effective at producing the best results, but also has a higher convergence speed than the
other algorithms.
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Figure 2. Convergence figures on test functions F1–F23.

5. Engineering Design Problems

In this section, the DQOBLSMA is evaluated using three engineering design problems:
the welded beam design problem, tension/compression springs, and the pressure vessel
design problem. These engineering problems are well known and have been widely used
to verify the effectiveness of methods for solving complex real-world problems [54]. The
proposed method is compared with the state-of-the-art algorithms: OBLSMAL, ESMA,
MEO, JADE, and RWGWO. The population size (N) and the maximum number of iterations
were fixed at 30 and 500 for all comparison algorithms.

5.1. Welded Beam Design Problem

The design diagram for the structural problem of a welded beam [55] is shown in
Figure 3. The objective of structural design optimization of welded beams is to minimize
the total cost, subject to certain constraints, which are the shear stress τ, the bending stress
σ on the beam, the buckling load Pc, and the deflection δ of beam. Four variables are
considered in this problem, welded thickness (h), the bar length (l), bar height (t), and the
thickness of the bar (b).

The mathematical equations of this problem are shown below:
Consider:

x = [x1 x2 x3 x4] = [h l t b];

minimize:

f (x) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2);
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subject to:

g1(x) =
√
(τ′)2 + 2τ′τ′′

x2

2R
+ (τ′′)2 − τmax ≤ 0;

g2(x) =
6PL
x2

3x4
− σmax ≤ 0;

g3(x) = x1 − x4 ≤ 0;

g4(x) = 0.10471x2
1 + 0.04811x3x4(14 + x2)− 5 ≤ 0;

g5(x) = 0.125− x1 ≤ 0;

g6(x) =
4PL3

Ex3
3x4
− δmax ≤ 0;

g7(x) = P− 4.013Ex3x3
4

6L2

(
1− x3

2L

√
E

4G

)
≤ 0;

where:

τ′ =
P

2x1x2
, τ′′ = MRJ, M = P(L +

x2

2
),

J = 2

{√
2x1x2

[
x2

2
12

+

(
x1 + x3

2

)2
]}

,

R =

√
x2

2
4

+

(
x1 + x3

2

)2
, P = 6000lb,

L = 14in, E = 30× 106 psi, G = 12× 106 psi,

τmax = 13600psi, σmax = 30000psi,

δmax = 0.25in;

range of variables:

0.1 ≤ x1, x4 ≤ 2.0 and 0.1 ≤ x2, x3 ≤ 10.0

l

h

b

t

P

L

Figure 3. Welded beam design problem.
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In Table 11, the results of the proposed DQOBLSMA and other well-known com-
parative optimization algorithms are given. It is clear from Table 11 that the proposed
DQOBLSMA provides promising results for the optimal variables compared to other well-
known optimization algorithms. The DQOBLSMA obtained a minimum cost of 1.695436
when h = 0.205598, l = 3.255605 , t = 9.036367, and b = 0.205741.

Table 11. Comparison in welded beam design.

Algorithm
Optimal Values for Variables

Optimal Cost
h l t b

DQOBLSMA 0.205598 3.255605 9.036367 0.205741 1.695436
OBLSMAL 0.253062 1.842203 8.270240 0.253229 1.726511
ESMA 0.201567 3.357515 8.983361 0.208407 1.712227
SMA 0.197433 3.407377 9.036868 0.205729 1.703704
MEO 0.194411 3.487386 9.040436 0.205984 1.712024
JADE 0.205734 3.253036 9.036624 0.205730 1.695245
RWGWO 0.247585 3.000055 8.090046 0.256700 1.901643

5.2. Tension/Compression Spring Design

The design goal for extension/compression springs [56] is to obtain the minimum
optimum weight under four constraints: deviation (g1), shear stress (g2), surge frequency
(g3), and deflection (g4). As shown in Figure 4, three variables need to be considered. They
are the wire diameter (d), the mean coil diameter (D), and the number of active coils (N).
The mathematical description of this problem is given below:

Consider:

x = [x1 x2 x3] = [d D N];

minimize:

f (x) = x2
1x2(2 + x3);

subject to:

g1(x) = 1− x3
2x3

71785x4
1
≤ 0;

g2(x) =
4x2

2 − x1x2

12566(x2x3
1 − x4

1)
+

1
5108x2

1
≤ 0;

g3(x) = 1− 140.45x1

x2
2x3

≤ 0;

g4(x) =
x1 + x2

1.5
− 1 ≤ 0;

range of variables:

0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3, and 2.0 ≤ x3 ≤ 15.0.
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Figure 4. Tension/compression spring design problem.

The results of the DQOBLSMA and other comparative algorithms are presented in
Table 12. The proposed DQOBLSMA achieved the best solution to the problem. The
DQOBLSMA obtained a minimum cost of 0.012719 when d = 0.050000, D = 0.317425, and
N = 14.028013.

Table 12. Comparison for the tension/compression spring design problem.

Algorithm
Optimal Values for Variables

Optimal Cost
d D N

DQOBLSMA 0.050000 0.317425 14.028013 0.012719
OBLSMAL 0.050000 0.317409 14.030650 0.012721
ESMA 0.051458 0.353086 12.050995 0.012739
SMA 0.050000 0.317317 14.042338 0.012726
MEO 0.057203 0.514683 7.661607 0.014002
JADE 0.055015 0.442128 7.613118 0.012864
RWGWO 0.056389 0.480684 6.712235 0.013316

5.3. Pressure Vessel Design

The pressure vessel design problem is a four-variable, four-constraint problem in the
industry field that aims to reduce the total cost of a given cylindrical pressure vessel [57].
The four variables studied include the width of the shell (Ts), the width of the head (Th),
the inner radius (R), and the length of the cylindrical section (L), as shown in Figure 5. The
formulation of objective functions and four optimization constraints can be described as
follows:

Consider:

x = [x1 x2 x3 x4] = [Ts Th R L];

minimize:

f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3;

subject to:

g1(x) = −x1 + 0.0193x3 ≤ 0

g2(x) = −x3 + 0.00954x3 ≤ 0

g3(x) = −πx2
3x4 −

4
3

πx3
3 + 1296000 ≤ 0

g4(x) = x4 − 240 ≤ 0;
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range of variables:

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200

Th

2R

L

TsTs
Th

2R

L

Ts

Figure 5. Pressure vessel design problem.

Table 13 shows how the DQOBLSMA compares with other competitor algorithms.
The results shows the DQOBLSMA is able to find the optimal solution at the lowest cost,
obtaining an optimal spend of 5885.623524 when Ts = 0.778246, Th = 0.384708, R = 40.323469,
and L = 199.950065.

Table 13. Comparison in pressure vessel design.

Algorithm
Optimal Values for Variables

Optimal Cost
Ts Th R L

DQOBLSMA 0.778246 0.384708 40.323469 199.950065 5885.623524
OBLSMAL 0.865273 0.427877 44.832637 145.769573 6060.212044
ESMA 0.974581 0.481740 50.496415 112.689545 6417.418230
SMA 0.814081 0.402437 42.180339 175.629283 5949.827184
MEO 0.850407 0.425437 44.051816 154.133369 6046.777664
JADE 0.788821 0.389961 40.870447 192.471633 5904.076066
RWGWO 0.877511 0.432390 45.308765 140.703767 6095.405916

6. Conclusions

In this paper, an enhanced SMA (DQOBLSMA) was proposed by introducing two
mechanisms, DQRG and OBL, into the original SMA. In the DQOBLSMA, these two
strategies further enhance the global search capability of the original SMA: DQRG enhances
the exploration capability of the original SMA, and OBL increases the population diversity.
The DQOBLSMA overcomes the weaknesses of the original search method and avoids
premature convergence. The performance of the proposed DQOBLSMA was analyzed by
using 23 classical mathematical benchmark functions.

First, the DQOBLSMA and the individual combinations of these two strategies were
analyzed and discussed. The results showed that the proposed strategies are effective, and
SMA achieved the best performance with the combination of the two mechanisms. Sec-
ondly, the results of the DQOBLSMA were compared with five state-of-the-art algorithms
ESMA, AEO, JADE, OBLSMAL, and RWGWO. The results show that the DQOBLSMA is
competitive with other advanced metaheuristic algorithms. To further validate the superi-
ority of the DQOBLSMA, it was applied to three industrial engineering design problems.
The experimental results show that the DQOBLSMA also achieves better results when
solving engineering problems and significantly improves the original solutions.

As a future perspective, a multi-objective version of the DQOBLSMA will be consid-
ered. The proposed algorithm has promising applications in scheduling problems, image
segmentation, parameter estimation, multi-objective engineering problems, text clustering,
feature selection, test classification, and web applications.
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