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Abstract: Since cyber-attacks are ever-increasing in number, intensity, and variety, a strong need for a
global, standardized cyber-security knowledge database has emerged as a means to prevent and fight
cybercrime. Attempts already exist in this regard. The Common Vulnerabilities and Exposures (CVE)
list documents numerous reported software and hardware vulnerabilities, thus building a community-
based dictionary of existing threats. The MITRE ATT&CK Framework describes adversary behavior
and offers mitigation strategies for each reported attack pattern. While extremely powerful on their
own, the tremendous extra benefit gained when linking these tools cannot be overlooked. This paper
introduces a dataset of 1813 CVEs annotated with all corresponding MITRE ATT&CK techniques and
proposes models to automatically link a CVE to one or more techniques based on the text description
from the CVE metadata. We establish a strong baseline that considers classical machine learning
models and state-of-the-art pre-trained BERT-based language models while counteracting the highly
imbalanced training set with data augmentation strategies based on the TextAttack framework. We
obtain promising results, as the best model achieved an F1-score of 47.84%. In addition, we perform a
qualitative analysis that uses Lime explanations to point out limitations and potential inconsistencies
in CVE descriptions. Our model plays a critical role in finding kill chain scenarios inside complex
infrastructures and enables the prioritization of CVE patching by the threat level. We publicly release
our code together with the dataset of annotated CVEs.

Keywords: MITRE ATT&CK Matrix; techniques classification; BERT-based multi-labeling

1. Introduction

Cyberspace has become a fundamental component of everyday activities, being the
core of most economic, commercial, cultural, social, and governmental interactions [1]. As a
result, the ever-growing threat of cyber-attacks not only implies a financial loss, but also
jeopardizes the performance and survival of companies, organizations, and governmental
entities [2]. It is vital to recognize the increasing pace of cybercrime as the estimated
monetary cost of cybercrime skyrocketed from approximately $600 billion in 2018 to over $1
trillion in 2020 [3]. This effect has increased even further due to the COVID-19 pandemic [4].

In this context, the necessity for better cyber information sources and a standardized
cybersecurity knowledge database is of paramount importance, as a means to identify and
combat the emerging cyber-threats [5]. Efforts to build such globally accessible knowledge
bases already exist. MITRE Corporation set up two powerful public sources of cyber threat
and vulnerability information, namely the Common Vulnerabilities and Exposures list and
the MITRE ATT&CK Enterprise Matrix.

The Common Vulnerabilities and Exposures list is a community-based dictionary of
standardized names for publicly known cybersecurity vulnerabilities. Its effort converges
toward making the process of identifying, finding, and fixing software vulnerabilities more
efficient, by providing a unified naming system [6]. Despite their benefits and widespread
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usage, CVE entries offer little to no information regarding mitigation techniques or existing
defense strategies that could be employed to address a specific vulnerability. Moreover,
the meta-information of a CVE does not include sufficient classification qualities, resulting
in sub-optimal usage of this database. Better classification would translate to mitigating a
larger set of vulnerabilities since they can be grouped and addressed together [7].

The MITRE ATT&CK Enterprise Matrix links techniques to tangible configurations,
tools, and processes that can be used to prevent a technique from having a malicious
outcome [8]. By associating an ATT&CK technique to a given CVE, more context and
valuable information for the CVE can be extracted, since CVEs and MITRE ATT&CK
techniques have complementary value. Furthermore, security analysts could discover and
deploy the necessary measures and controls to monitor and avert the intrusions pointed
out by the CVE and cluster the CVEs by technique [9].

Even though linking CVEs to the MITRE ATT&CK Enterprise Matrix would add
massive value to the cybersecurity community, these two powerful tools are currently
separated. However, manually mapping all 189,171 [10] CVEs currently recorded to one
or more of the 192 different techniques in the MITRE ATT&CK Enterprise Matrix is a
non-trivial task and the need for automated models emerges to map all existing entries
to corresponding techniques. In addition, even if new CVEs would be manually labeled,
an initial pre-labeling using a machine learning model before expert validation would be
time effective and beneficial. Moreover, the model would provide technique labeling for
zero-day vulnerabilities, which would be extremely helpful for security teams.

The ATT&CK matrix supports a better understanding of vulnerabilities and what an
attacker could achieve by exploiting a certain vulnerability. ATT&CK technique details,
such as detection and mitigation, are useful for system administrators, SecOps, or DevSec-
Ops teams to obtain an assessment risk report in a short period of time while generating a
remediation plan for discovered vulnerabilities. The Center for Threat-Informed Defense
team has created a very useful methodology [11] that helps the community build a more
powerful threat intelligence database. The organization’s defender team has to understand
how important it is to bridge vulnerability and threat management with the adoption of this
methodology as more reliable and consistent risk assessment reports will be obtained [12].

Baker [12] highlights the importance of combining CVEs with the ATT&CK framework
to achieve threat intelligence. Years ago, it was considerably harder for security teams
to understand the attack surface, thus reducing their capacity to protect the organization
against cyber attacks. With the emergence of the ATT&CK project, the security teams have
a better overview of the CVEs based on known attack techniques, tactics, and procedures.

Vulnerability management can be divided into three categories, namely: the “Find
and fix” game, the “Vulnerability risk” game, and the “Threat vector” game. The first one
is a traditional approach where the vulnerabilities are prioritized by CVSS Score; this is
applicable for small organizations with less dynamic assets. The second category consists of
risk-based vulnerability management where organizational context and threat intelligence
(such as CVE exploited in the wild properties) are considered; this applies to organizations
that have security teams, but the number of CVEs is too large. The “Threat Vector” game
includes the understanding of how the hackers might exploit the vulnerabilities while
accounting for the MITRE ATT&CK framework mappings between CVEs and techniques,
tactics, and procedures. The third category is the most efficient model of threat intelligence,
with inputs delivered to the vulnerability risk management process from cyber attacks
that have occurred and are trending. As such, security teams should take into account
risks for building the vulnerability management program, but also threat intelligence to
have a better understanding of vulnerabilities and to discover the attack chains within the
network [13].

The aim of this paper is to develop a model that leverages the textual description found
in CVE metadata to create strong correlations with the MITRE ATT&CK Enterprise Matrix
techniques. To achieve this goal, a data collection methodology is developed to build our
manually labeled CVE corpus containing more than 18,100 entries. Moreover, state-of-the-



Algorithms 2022, 15, 314 3 of 22

art Natural Language Processing (NLP) techniques that consider BERT-based architectures
are employed to create robust models. We also target addressing the problem of a severely
imbalanced dataset by developing an oversampling method based on adversarial attacks.

Efforts have been already undertaken to interconnect CVEs to the MITRE ATT&CK
Framework. However, we identified limitations of existing solutions based on the research
gap in the literature regarding the identification of correspondences between CVEs to the
corresponding techniques from the MITRE ATT&CK Enterprise Matrix. The following
subsections details existing state-of-the-art techniques relevant for our task.

1.1. BRON

BRON [9] is a bi-directional aggregated data graph which allows relational path tracing
between MITRE ATT&CK Enterprise Matrix tactics and techniques, Common Weakness
Enumerations (CWE), Common Vulnerabilities and Exposures (CVE), and Common Attack
Pattern Enumeration and Classification list (CAPEC). BRON creates a graph framework that
unifies all scattered data through inquiries performed of the resulted graph representation
by data-mining the relational links between all these cyber-security knowledge sources.
In this manner, it connects the CVE list to MITRE ATT&CK by traversing the relational
links in the resulted graph.

Each information source has a specific node type, interconnected by external linkages
as edges. MITRE ATT&CK techniques are linked to Attack Patterns. Attack Patterns are
connected to CWE Weaknesses, which have relational links to a CVE entry. Thus, BRON
can respond to several different queries, including linking the CVE list to the MITRE
ATT&CK Framework.

However, the model falls short as it does not connect new CVEs to MITRE ATT&CK
Enterprise Matrix techniques, but it uses already existing information and links to create a
more holistic overview of the already available knowledge. It does not solve our problem,
since the main aim is to correctly label new emergent samples.

1.2. CVE Transformer (CVET)

The CVE Transformer (CVET) [14] is a model that combines the benefits of using
the pre-trained language model RoBERTa with a self-knowledge distillation design used
for fine-tuning. Its main aim is to correctly associate a CVE with one of 10 tactics from
the MITRE ATT&CK Enterprise Matrix. Although the CVET approach obtains increased
performance in F1-score, it is unable to identify all 14 tactics from the MITRE ATT&CK
Matrix on the training knowledge base.

Moreover, the problem of technique labeling is much more complex than tactic map-
ping, since the number of available techniques is ten times higher (i.e., there are 14 tactics
and 192 different techniques in the MITRE ATT&CK Enterprise Matrix). Additionally,
tactic labeling can be viewed as a subproblem of our main goal given the correlation
between tactics and techniques. Overall, technique labeling is out of scope for the CVE
Transformer project.

1.3. Unsupervised Labeling Technique of CVEs

The unsupervised labeling technique introduced by Kuppa et al. [15] considers a multi-
head deep embedding neural network model that learns the association between CVEs
and MITRE ATT&CK techniques. The proposed representation identifies specific regular
expressions from the existing threat reports and then uses the cosine distance to measure
the similarity between ATT&CK technique vectors and the text description provided in the
CVE metadata. This technique manages to map only 17 techniques out of the existing 192.
As such, multiple techniques are not covered by the proposed model. Thus, a supervised
approach for technique labeling might improve the recognition rate among techniques.
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1.4. Automated Mapping to ATT&CK: The Threat Report ATT&CK Mapper (TRAM) Tool

Threat Report ATT&CK Mapping (TRAM) [16] is an open-source tool developed by The
Center for Threat-Informed Defense that automates the process of mapping MITRE ATT&CK
techniques on cyber-threat reports. TRAM utilizes classical pre-processing techniques (i.e.,
tokenization, stop-words removal, lemmatization) [17] and applies Logistic Regression
on the bag-of-words representations. Since the tool maps any textual input on MITRE
ATT&CK techniques, it could, in theory, be adapted to link the CVE list to the MITRE
ATT&CK Framework by simply using it on the CVE textual description. However, due
to its simplicity, the tool has serious limitations when it comes to its capacity to learn the
right association between text descriptions and techniques. In addition, TRAM labels each
sentence individually, failing to capture dependencies in textual passages. In this way,
the overall meaning of the text is lost.

The main contributions of this paper are as follows:

• Introducing a new publicly available dataset of 1813 CVEs annotated with all corre-
sponding MITRE ATT&CK techniques;

• Experiments with classical machine learning and Transformer-based models, coupled
with data augmentation techniques, to establish a strong baseline for the multi-label
classification task;

• A qualitative analysis of the best performing model, coupled with error analysis that
considers Lime explanations [18] to point out limitations and future research directions.

We open-source our dataset on TagTog [19] and the code on GitHub [20].

2. Method

This section provides an overview of our proposed methodology, focusing on: (1) data
collection and building the corpus needed for training the models; and (2) exploring various
neural architecture for mapping CVEs to ATT&CK techniques.

2.1. Our Labeled CVE Corpus
2.1.1. Data Collection

Since no public datasets exist that map a CVE to all corresponding ATT&CK techniques,
the first step consisted of building our own labeled corpus of 1813 CVEs, which was
obtained using two different methods.

First, we manually created a knowledge base of 993 labeled CVEs by individually
mapping each CVE to tactics and techniques from MITRE ATT&CK Enterprise Matrix.
We extracted CVEs that were published between 2020 to 2022 for relevance. The labeling
process was performed by 4 experts to ensure consistency, following the standardized
approach proposed by the Mapping MITRE ATT&CK to CVEs for Impact methodology [11]
and a set of common general guidelines.

The Mapping MITRE ATT&CK to CVEs for Impact methodology consists of three steps.
The first one is to identify the type of vulnerability (e.g., cross-site scripting, buffer overflow,
SQL injection) based on the vulnerability type mappings. The next step is to find the
functionality to which the attacker gains access by exploiting the CVE. The final step refers
to determining the exploitation technique using the provided tips that offer details about
the necessary steps to exploit a vulnerability. Our methodology started from these steps and
added other common general guidelines before labeling the tactics and techniques, such as
searching for more details about a CVE on security blogs to obtain more relevant insights,
or analyzing databases (e.g., the Vulnerability Database [21] and the Exploit Database—
Exploits for Penetration Testers, Researchers, and Ethical Hackers [22]) for useful inputs
about CVEs.

The labeling was performed by three 4th year undergraduate students in Computer
Science with background courses in security, networking, and operating systems, and one
Ph.D. student in Computer Science with 5+ years of experience in information security in
the industry who provided guidance and helped reach consensus. The entire annotation
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process was overseen by a professor in cyber security. The dataset can be found on
TagTog [19] and is split into the following collections:

1. Inter-rater—A collection of 24 CVEs evaluated by all experts to ensure high agreement
and consistent annotations; this collection was used for training the raters until perfect
consensus was achieved;

2. Double-rater—A collection of 295 CVE evaluated by pairs of two raters; this collection
was created after some experience was accumulated and consensus among raters was
achieved using direct discussions;

3. Individual—A collection of 674 CVE evaluated by only one rater; this collection was
annotated after the initial training phase was complete and raters gained experience.

Second, besides the manual labeling process, we automatically extracted 820 already
labeled CVEs provided by Mapping MITRE ATT&CK to CVEs for Impact [11] and imported
them in our TagTog project. The provided CVEs date from 2014 to 2019; thus, there is no
overlap with the manually annotated CVEs.

Each CVE entry has associated the corresponding ID, the rich text description, and 14 la-
bels denoting the possible tactics found in the MITRE ATT&CK Enterprise Matrix where the
corresponding techniques are annotated. Extracting the data from TagTog can be performed
automatically, using the TagTog API [23].

2.1.2. Data Analysis

The size of our corpus can be argued by the increased difficulty when annotating a
CVE and the impossibility to find other previously build repositories consisting of CVEs
mapped on MITRE ATT&CK Enterprise Matrix both tactics and techniques. As discussed
previously, more than 189,171 CVEs currently exist and our dataset only captures a fraction
of them. Moreover, the distribution of CVEs based on technique is highly imbalanced
(see Figure 1) because the CVEs were collected based on their release date, without any
other further considerations. About 77% of the collected CVEs cover 5 techniques (Exploit
Public-Facing Application, Exploitation for Client Execution, Command and Scripting Interpreter,
Endpoint Denial of Service and Exploitation for Privilege Escalation).

Figure 1 also shows that a large number of techniques contain a far too small number
of examples for effective learning. As such, a threshold of a minimum of 15 examples per
technique was imposed. In this manner, out of the 192 different techniques from the MITRE
ATT&CK Enterprise Matrix, only 31 were considered in follow-up experiments. The CVEs
that are not mapped to any of the 31 considered techniques were also discarded, leaving a
total of 1665 annotated examples in the dataset. Figure 2 depicts the new distribution of
CVEs based on technique after applying the threshold.

2.1.3. Data Augmentation

The severe data imbalance which characterizes our CVE dataset can potentially de-
grade the performance of many machine learning models since few techniques have high
prevalence, while the others have low or very low frequencies [24].

One scheme for dealing with class imbalance is oversampling [24]. This data-level
approach consists of randomly oversampling duplicate examples from low-frequency
classes to rebalance the class distribution. However, this can result in overfitting and
we opted to use the TextAttack Framework [25] for generating adversarial examples.
TextAttack is a Python framework designed for adversarial attacks, data augmentation,
and adversarial training in NLP. The adversarial attack finds a sequence of transformations
to perform on an input text such that the perturbations adhere to a set of grammar and
semantic constraints and the attack is successful [26]. These transformations performed can
be reused to expand the training dataset by producing perturbed versions of the existing
samples. As such, TextAttack Framework offers various pre-packaged recipes for data
augmentation [27].
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Figure 1. The distribution of CVEs among techniques.
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Figure 2. The distribution of CVEs among the 31 considered techniques after applying the threshold.

We chose the EasyDataAugmenter (EDA) for augmenting the CVE dataset, which
performs four simple but powerful operations on the input texts: synonym replacement,
random insertion, random swap, and random deletion. EDA significantly boosts perfor-
mance and shows particularly strong results for smaller datasets [28], which makes it the
perfect candidate for oversampling our labeled CVE corpus. Moreover, EDA does not
perform major alterations of the content and is not as computationally expensive as other
recipes, such as CLAREAugmenter, while providing satisfactory results on our CVE corpus.

Since one CVE can be mapped to multiple techniques at the same time, rare techniques
among the dataset are usually found in combination with highly prevalent techniques.
Using all CVEs that are mapped to a specific technique for augmentation would only
preserve the class imbalance, generating new samples for both low-frequency and high-
frequency techniques. To counter this undesired effect, EasyDataAugumenter was fed only
with CVEs that were particular to only one technique and were mapped to that technique
only, thus producing new samples only for the desired class.

Figure 3 displays the distribution of CVEs per technique after performing the data
augmentation. The initial severe imbalance among techniques was scaled down, but still
exists, due to the reduced number of particular CVEs for low-frequency techniques.

2.2. Machine Learning and Neural Architectures

Our main goal is to create a model that can accurately predict all the techniques that
can be mapped to a specific CVE while using its text description. We tacked this task as a
multi-label learning problem as each CVE may be assigned to a subset of techniques. Given
the challenging nature of the multi-label paradigm [29], we experimented with multiple
state-of-the-art machine learning models to find the most predictive architecture.



Algorithms 2022, 15, 314 8 of 22

Figure 3. The distribution of CVEs among the 31 considered techniques after data augmentation.

2.2.1. Classical Machine Learning

In order to establish a strong baseline we also considered classical machine learning
algorithms applied on bag-of-words representations. All CVE descriptions were pre-
processed to remove noise and retain only the relevant words. The pipeline from the
spaCy [30] NLP open-source library was employed which included the following steps: text
tokenization, removal of stopwords, punctuation, and numbers, followed by lemmatization
of remaining tokens. The tokens are afterward converted to bag-of-words representations
using Term Frequency-Inverse Document Frequency (TF-IDF).

Multi-Label Learning

The aim of problem transformation methods is to reduce the complexity of the multi-
label learning by converting the multi-label problem into one or more single-label classifi-
cation tasks [31].

Given that the interconnection between techniques is worth taking into account when
labelling a CVE since it can provide further insights on general adversarial patterns, we
experimented with different problem transformation methods to find the one that captures
best the relations between labels:

• One versus Rest. This method splits the multi-label problem into multiple binary
classification tasks, one for each label, treated independently. The N different binary
classifiers are separately trained to distinguish the examples of a single class from all
the examples from the other labels [32];

• Label Powerset. This method considers every unique combination of labels as a single
class, reducing the multi-label problem to a multi-class classification problem [29].
The real advantage of this strategy is that correlations between labels are exploited for
a more accurate labelling process;

• Binary Relevance. This linear strategy groups all positive and negative examples
within a label into a set, later training a classifier for each resulted set. The final
prediction is then computed by merging all the intermediary predictions of the trained
classifiers [29]. An advantage of this strategy consists of the possibility to perform
parallel executions;

• RaKEL(Random k-Labelsets). This state-of-the-art approach builds an ensemble of Label
Powerset classifiers trained on a different subset of the labels [33].
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Naive Bayes Classifiers

The Naive Bayes classifier makes the simplifying assumption that features are con-
ditionally independent, given a class. Even though the assumption of independence is
generally unrealistic, Naive Bayes performs well in practice, competing with more sophisti-
cated classifiers models especially for text classification [34]. We chose to experiment with
a Naive Bayes variant for multinomial distributed data because of the model’s simplicity
and relatively good results.

Support Vector Machines

A Support Vector Machine (SVM) searches for the maximum margin hyperplane that
separates two classes of examples. Because SVMs have shown efficiency to capture high
dimensional spaces and performed successfully on a number of distinctive classification
tasks [35], we decided to use it in our experiments for CVE technique labelling. We
performed an exhaustive search over specified parameters values using GridSearchCV [36]
to determine the optimum configuration of parameters.

2.2.2. Convolutional Neural Network (CNN) with Word2Vec

Convolutional Neural Networks (CNNs) consist of multiple layers designed to extract
local features in the form of a feature map. Since CNN uses back-propagation to update its
weights in the convolutional layers, the CNN feature extractors are self-determined through
continuous tuning of the model [37]. In the field of NLP, CNNs have proved to be extremely
effective in several tasks, such as semantic parsing [38] and sentence modeling [39]. This
intuition pointed in the direction to experiment with CNN for our model since CNNs
with Word2Vec embeddings are robust even on small datasets. In addition, we considered
SecVuln_WE [40] that includes word representation especially designed for the cyber-
security vulnerability domain. SecVuln_WE was trained on security-related sources such
as Vulners, English Wikipedia (Security category), Information Security Stack Exchange
Q&As, Common Weakness Enumeration (CWE) and Stack Overflow.

Figure 4 presents the architecture in which the pre-trained SecVuln_WE embeddings
are passed through the convolutional layer containing 100 filters with a kernel size of 4.
In this way, each convolution will consider a window of 4 word embeddings. Afterward,
we perform batch normalization of the activations of the previous layer at each batch.
Next comes the MaxPool and the Dropout layers, followed by a dense layer with sigmoid
activation. Since we are dealing with a multi-label classification problem, the output layer
has a designated node for each technique and each output indicates the binary probability
to have a specific technique mapped to the considered CVE.

Figure 4. Architecture of the CNN with Word2Vec embeddings.

2.2.3. BERT-Based Architecture with Multiple Output Layers

Reducing the considerable complexity of the multi-label problem was first among our
considerations when designing this architecture. Converting our multi-labeling problem
into multiple binary classification tasks following the One versus Rest method has the
advantage of conceptual simplicity; yet, having a distinct BERT layer for contextualized
embeddings for each one of the 31 techniques was redundant.
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The proposed architecture from Figure 5 considers a pre-trained BERT encoder,
a Dropout layer, and an individual dense layer for each technique, which outputs the
probability that a particular CVE points to that particular technique. The model is consis-
tent with the considerations of the One VS Rest method, while also taking advantage of the
shared embeddings layer.

Figure 5. BERT-based architecture with multiple output layers.

2.2.4. BERT-Based Architecture Adapted for Multi-Labeling

Analyzing each label separately might overlook the strong correlation between tech-
niques. This correspondence has multiple roots, as techniques in a given tactic are connected
through their attack behavior pattern, whereas techniques across multiple tactics are con-
nected through the attack vector of the vulnerability. Thus, we explored creating a model
capable of exploiting the link between multiple techniques.

The specific architectural decision taken for this last design was to have only one
output layer, with one individual node for each technique. In this manner, we aim to
capture the specifics for each technique, while also considering how subsets of techniques
are interconnected.

Figure 6 details the proposed model which considers 768-dimensional contextual em-
beddings from various BERT-based models (i.e., BERT [41], SciBERT [42], and SecBERT [43])
passed through a Dropout layer. The Dropout layer output goes through a Linear layer with
768 input features and 31 output nodes, one for each technique. We considered BCEWith-
LogitsLoss [44] (the combination of a Sigmoid layer and the BCELoss) as a loss function,
the most commonly used for multi-label classification tasks, because each output node
reveals the probability of a technique to be tagged for a specific CVE (i.e., the probabilities
need to be treated independently).

Figure 6. The design of the multi-labeling BERT-based architecture.
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2.3. Performance Assessment

For a predicted technique, we wanted to make sure that our mapping was correct (i.e.,
high precision—P) and we wanted to correctly classify as many examples as possible for a
given class (i.e., high recall—R). Thus, we considered the F1-score as a performance metric
for all models, defined as the harmonic mean of the P and R per class. Moreover, we used
the weighted version of the F1-score given the imbalance between classes, which calculated
a general F1-score per model by proportionally combining the F1-scores obtained for each
label separately. We also computed the weighted precision and recall for the tested models.

3. Results

This section analyses the results of the empirical experiments performed using the
previously detailed models. First, it compares the performance of various models. Second,
it assesses the impact of data augmentation on performance and investigates the metrics
obtained by the best model.

Multiple observations can be made based on the results of our experiments shown in
Table 1. From the classical machine learning models, LabelPowerset is the best multi-label
strategy and SVC with a linear kernel and C = 32 has the higher F1-score, competing even
with our deep-learning models. The SecBERT model has the highest F1-score (42.34%)
among all considered models, proving to be the most powerful solution to labeling a
CVE. An important observation is that the CNN + Word2Vec architecture obtained better
results than those using simple BERT. Thus, domain-related pre-training on large secu-
rity databases leads to increased performance by providing better contextualization and
partially compensating for the scarce training set.

Table 1. Results for the proposed models (italics marks the best multi-label strategy for classical ML,
while bold marks the best model).

Model Type Model Multi-Label Strategy Weighed P Weighed R Weighed F1-Score

Classical ML

Naive Bayes

OneVsRestClassifier 57.35% 9.18% 14.47%
LabelPowerset 31.40% 24.59% 24.76%
BinaryRelevance 57.35% 9.18% 14.47%
RakelD 53.71% 9.83% 15.31%

SVC

OneVsRestClassifier 31.97% 35.57% 33.32%
LabelPowerset 46.73% 34.75% 37.98%
BinaryRelevance 33.45% 34.91% 33.75%
RakelD 36.20% 33.77% 34.50%

Deep Learning

CNN + Word2Vec - 48.32% 35.40% 39.39%
Multi-Output BERT - 46.85% 31.47% 35.92%
Multi-label BERT - 55.25% 30.98% 37.43%
Multi-label SciBERT - 59.26% 34.42% 41.87%
Multi-label SecBERT - 57.66% 35.40% 42.34%

Table 2 points out the appropriateness of employing data augmentation techniques
on our dataset for deep learning models (approximately 6% performance gain). Only
the best multi-label strategy for classical machine learning algorithms was considered.
The F1-score falls considerably by 10% for Naive Bayes, in particular, since Naive Bayes
places great importance on the number of appearances of a word in a document; however,
swapping a relevant word with synonyms and performing random insertions or deletions
(i.e., the strategies employed by the EasyDataAugmenter [28]) only confuse the model.
The SVC model had a similar performance, whereas the BERT-based models take advantage
of the increased sample size/the decreased class imbalance, and generalize better. Not only
is performance increased, but the models also tend to learn faster (see faster convergence in
Figure 7 in terms of training loss for each output layer associated with a technique in the
multi-output BERT model). Moreover, Figure 7 denotes which techniques are more easily
learned by the model.
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Table 2. Side-by-side comparison of performance with and without data augmentation (bold denotes
the best model).

Model Data Aug-
mentation Weighted P Weighted R Weighted

F1-Score

Naive Bayes (LabelPowerset) No 31.40% 24.59% 24.76%
Yes 29.40% 14.42% 14.42%

SVC (LabelPowerset) No 46.73% 34.75% 37.98%
Yes 45.90% 34.09% 36.79%

CNN + Word2Vec No 48.32% 35.40% 39.39%
Yes 50.48% 35.59% 41.59%

Multi-Output BERT No 46.85% 31.47% 35.92%
Yes 49.81% 35.57% 39.66%

Multi-label SciBERT No 59.26% 34.42% 41.87%
Yes 52.52% 45.90% 47.84%

Multi-label SecBERT No 57.66% 35.40% 42.34%
Yes 54.70% 42.45% 46.54%

(a) (b)
Figure 7. Comparison of training loss for the multi-output BERT architecture. (a) Without data aug-
mentation; (b) With data augmentation.

Since Table 2 only provides a global overview of the average performance of the
SciBERT model trained on the augmented data, exploring the particular difference between
how the model handles different techniques provides additional insights into our model’s
behavior. Figure 8 plots the F1-score obtained for each individual technique, for both the
original model and the one trained on the augmented dataset. Apart from four exceptions
(Data from Local System, Hijack Execution Flow, User Execution and File and Directory Discovery),
the model obtains considerably higher or at least equal scores for all the other 27 techniques.
Moreover, the difference between models is minimal (close to 0) for the techniques where
the initial model obtains a better F1-score.
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Figure 8. Comparing F1-score per technique between SciBERT model trained on initial and aug-
mented dataset.

The added gain of the multi-label SciBERT model trained on the augmented dataset
resides in its ability to maximize the F1-score for techniques where the initial model
performed poorly. One such example is Forge Web Credentials. The initial model obtained
an F1-score of 0% since both recall and precision were 0%. However, the improved version
of the model obtained an F1-score of 66.66%, with a recall of 50% and precision of 100%
after data augmentation; similarly, data augmentation tuned the model to predict the Forge
Web Credentials technique with 100% precision. Overall, the number of techniques with
which the model had difficulty in learning has decreased substantially.

Figure 9 shows the correlation between the CVE distribution and the F1-score ob-
tained for the SciBERT models, both using the initial dataset and the one trained after
augmentation. The techniques are displayed on both graphs in the same order to indicate
how the CVE distribution changed after performing the process of data augmentation
and how the adjustments in CVE distribution impacted the F1-score. We observe that
not only the techniques initially associated with a small number of CVEs benefited from
the augmentation method, but also the techniques associated with a high distribution of
samples—for example, the F1-score for the Command and Scripting Interpreter technique
increased from the initial 58.92% to 64.12%.
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(a) (b)
Figure 9. Comparing the F1-score over the CVE distribution for the SciBERT model. (a) Without aug-
mentation; (b) With augmentation.

Table 3. Precision, Recall and F1-Scores for the best model.

Technique Weighted P Weighted R Weighted
F1-Score

Endpoint Denial of Service 77.58% 83.33% 80.35%
Forge Web Credentials 100.00% 50.00% 66.66%
Unsecured Credentials 60.00% 75.00% 66.66%
Command and Scripting Interpreter 60.00% 68.85% 64.12%
Exploitation for Privilege Escalation 56.45% 70.00% 62.50%
Adversary-in-the-Middle 80.00% 50.00% 61.53%
Brute Force 100.00% 42.85% 60.00%
Exploitation for Client Execution 50.87% 50.81% 58.49%
User Execution 58.33% 46.67% 51.85%
Drive-by Compromise 64.70% 40.74% 50.00%
Data Manipulation 44.44% 47.05% 45.71%
Exploit Public-Facing Application 48.27% 43.07% 45.52%
Hijack Execution Flow 50.00% 37.03% 42.55%
Valid Accounts 41.37% 36.36% 38.70%
Data from Local System 41.66% 34.48% 37.73%
Browser Session Hijacking 42.85% 27.27% 33.33%
Phishing 42.85% 27.27% 33.33%
Archive Collected Data 50.00% 20.00% 28.57%
File and Directory Discovery 40.00% 22.22% 28.57%
Server Software Component 50.00% 16.66% 25.00%
External Remote Services 50.00% 8.33% 14.28%
Process Injection 25.00% 8.33% 12.50%
Exploitation for Defense Evasion (26) 0.00% 0.00% 0.00%
Create Account (19) 0.00% 0.00% 0.00%
Access Token Manipulation(18) 0.00% 0.00% 0.00%
Exploitation of Remote Services (22) 0.00% 0.00% 0.00%
Stage Capabilities (22) 0.00% 0.00% 0.00%
Abuse Elevation Control Mechanism (44) 0.00% 0.00% 0.00%
Exploitation for Credential Access (17) 0.00% 0.00% 0.00%
Data Destruction (34) 0.00% 0.00% 0.00%
Network Sniffing (18) 0.00% 0.00% 0.00%
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4. Discussion
4.1. In-Depth Analysis of the Best Model

Table 3 introduces a complete overview of the results recorded for the best model,
the multi-label SciBERT trained on the augmented dataset. The F1-score per technique from
the MITRE ATT&CK Enterprise Matrix ranges from 80.35% for Endpoint Denial of Service
to 0.00%; the last techniques at the end of Table 3 marked with italics and including the
corresponding number of training samples in parenthesis. Even though the model scores
on a global scale an F1-score of 47.84%, the model fails to capture any knowledge about
nine out of the thirty-one techniques, though fewer instances than the other evaluated
models. We can associate this inability of the model to recognise the distinct features
of these techniques with the extremely reduced number of samples for each technique,
even after performing data augmentation. The existing samples in the dataset do not
contain enough relevant characteristics for these techniques; as such, the model cannot
differentiate them.

Nevertheless, the model successfully captures the essence of other techniques, obtain-
ing a precision of 100.00% for Forge Web Credentials and Brute Force. For almost all techniques,
precision exceeds recall, thus indicating that the general tendency of the model is to omit a
label, rather than misplace a technique that cannot be mapped to a particular CVE.

Overall, given the complexity of the multi-label problem and the severe imbalance of
the training set, the model obtains promising performance for a subset of techniques, while
managing to maximize its overall F1-score.

4.2. Error Analysis

This subsection revolves around understanding the roots of the multi-label SciBERT
model limitation. After a methodological investigation that aims to identify the cause of
the model’s errors, the observed performance deficiencies are further discussed.

Table 4 presents different CVEs whose predicted techniques differ partially or com-
pletely from the labeled ones. For most errors in the dataset with multiple techniques
tagged, the model succeeds in labeling a subset of correct techniques. This observation
stands true for errors 1, 2, and 3 from Table 4. While analyzing error #1, the model ex-
tracts the most obvious technique, pointed out by language markers such as password
unencrypted, global file, but fails to make the deduction that, in order for a user to access the
file system, a valid account must be used. In contrast, the model successfully identifies the
Valid Accounts technique for error #2. In general, techniques that are not clearly textually
encapsulated and whose understanding requires prerequisite knowledge are overlooked
by the model.

Figure 10 studies the model’s choice of labels for CVE #2 from Table 4 using Lime [18],
the model successfully recognizes the predominant label (i.e., Valid Accounts). Moreover,
the model correctly identifies the most important concept, the word authenticated, which
points in the direction of Valid Accounts. We can observe that there are techniques that are
not ambiguous for the model and for which the labeling process is straightforward; such
an example is Valid Accounts. The model extracts only the relevant features for the label
and the technique is correctly identified. For the Exploitation for Client Execution, the model
identifies patterns that suggest that the CVE should be mapped to the given technique,
as well as patterns that suggest the contrary. Being capable to identify features that are
correlated to both situations confuses the model. This problem results from the fact that the
meaning behind multiple techniques is overlapping and, as a result, relevant features for a
given technique cannot be differentiated.
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Table 4. Comparing predictions with the true values for the best model.

# CVE Text True Techniques Predicted Techniques

1 Jenkins Publish stores password unen-
crypted in its global configuration file
on the Jenkins controller where it can
be viewed by users with access to the
Jenkins controller file system.

Unsecured Creden-
tials, Valid Accounts

Unsecured Credentials

2 Due to improper input validation in In-
fraBox, logs can be modified by an au-
thenticated user.

Valid Accounts, Ex-
ploitation for Client
Execution

Valid Accounts

3 In Django 2.2 MultiPartParser, Upload-
edFile, and FieldFile allowed directory
traversal via uploaded files with suit-
ably crafted file name

File and Directory
Discovery, Com-
mand and Scripting
Interpreter

File and Directory Dis-
covery, Exploit Public-
Facing Application

4 Whale browser for iOS before 1.14.0 has
an inconsistent user interface issue that
allows an attacker to obfuscate the ad-
dress bar which may lead to address bar
spoofing.

Browser Session Hi-
jacking

User Execution

5 isula-build before 0.9.5-6 can cause a pro-
gram crash, when building container im-
ages, part of the functions for process-
ing external data do not remove spaces
when processing data.

Exploitation for
Client Execution

Endpoint Denial of Ser-
vice

(a)

(b)
Figure 10. Comparison of word mappings for each technique corresponding to CVE #2 from Table 4.
(a) Mapping Valid Accounts; (b) Mapping Exploitation for Client Execution.

An interesting aspect is revealed in error #3, namely that the model correctly tags File
and Directory Discovery, but also associates the CVE with Exploit Public Facing Application,
instead of Command and Scripting Interpreter. Both techniques in the MITRE ATT&CK
Enterprise Matrix could be equally correctly mapped on the given text description. This
is an important observation and points out the established CVE labeling methodology;
this highlights a fault in the data collection procedure, rather than the model’s capacity to
learn the multi-labeling problem. Example #4 presents a similar case, since the predicted
technique Endpoint Denial of Service is a correct label for the CVE, although it does not
appear among the true labels.
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(a)

(b)
Figure 11. Comparison of word mappings for each technique corresponding to CVE #4 from Table 4.
(a) Mapping User Execution technique; (b) Mapping Browser Session hijacking.

Error #4 is analyzed in detail in Figure 11 to observe insights on how the model
associates the features. The word browser is highlighted for both the predicted and the
correct label. However, the difference resides in the relevance percentage associated with
the word for each label, namely 0.45 for User Execution and 0.03 for Browser Session Hijacking.
While the word browser is recognized as being relevant for both labels, the label with the
higher percentage is selected. This finding can be associated with the discrepancy between
training examples—240 for User Execution, while Browser Session Hijacking has only 102.
Thus, the class imbalance affects the model’s capability to recognize the real correlation
between features and techniques, and leads the model to a biased decision.

The model extracts a correct technique for error #5 in Table 4, although it was not
among the true labels. As Figure 12 shows, the CVE text description indicates the Endpoint
Denial of Service technique, since the word crash is present and the relevance of the word
for the Endpoint Denial of Service technique is 0.93. Figure 12 also suggests that the word
crash is the only word that has a high impact on the model’s decision to label the CVE as
Endpoint Denial of Service.

Two observations can be made based on Figure 12. One is that the model successfully
captures a technique overlooked by the reviewer. The technique labeling process is error-
prone due to the ambiguity of the CVE text description and also the complexity of the
labeling processing given the wide range of available techniques. Second, the model
assigns a higher relevance to features that suggest Endpoint Denial of Service even though
key features for the Exploitation for Client Execution are identified (i.e., program and functions).

Table 5 presents the most relevant words when performing feature extraction for each
technique. More than 50% of the techniques have the same most relevant feature in common
with other techniques in the MITRE ATT&CK Enterprise Matrix. For example, Exploitation
for Privilege Escalation, Data from Local System, Data Destruction, Browser Session Hijacking,
Archive Collected Data, and Create Account are all mapped to the same feature. Having the
same most relevant extracted feature implies a strong intersection between techniques. This
further emphasizes that the separation between labels is fuzzy. The opinion and consensus
among reviewers were used to separate ambiguous examples, making use of previous
experience and context obtained from other resources. This is inherited by the model since
the labels from the training set reflect the reviewers’ perspective. In this context, more
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information would be valuable to counter the bias encapsulated in the training set by
offering more background information to the model.

(a)

(b)
Figure 12. Comparison of word mappings for each technique corresponding to CVE #5 from Table 4.
(a) Mapping Exploitation for Client Execution; (b) Mapping Endpoint Denial of Service.

Table 5. The most important words extracted per technique.

Technique CVEs

Exploitation for Privilege Escalation arbitrary
Data from Local System arbitrary
Data Destruction arbitrary
Browser Session Hijacking arbitrary
Archive Collected Data arbitrary
Create Account arbitrary
Forge Web Credentials bypass
Unsecured Credentials bypass
External Remote Services bypass
Adversary-in-the-Middle trigger
Phishing trigger
Stage Capabilities trigger
Exploitation for Credential Access wordpress
Brute Force wordpress
Abuse Elevation Control Mechanism xml
Endpoint Denial of Service parameter
Network Sniffing parameter
User Execution remote
Drive-by Compromise remote
Server Software Component service
Data Manipulation service
Exploit Public-Facing Application version
Command and Scripting Interpreter pointer
Exploitation for Client Execution attack
Valid Accounts system
Hijack Execution Flow cause
Process Injection privilege
File and Directory Discovery execute
Exploitation for Defense Evasion use
Exploitation of Remote Services possibly
Access Token Manipulation header
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4.3. Limitations

We have identified a number of limitations for our model, which have a toll on the
model’s performance; these limitations are detailed further. First, the process of manually
labeling a CVE is inevitably affected by the subjective perspective of the reviewer. Even
though multiple attempts to limit this undesired outcome were taken (i.e., following a clear
methodology and establishing general guidelines for the reviewers), the annotators were
unable to fully eliminate the inconsistency in the dataset labels.

Second, the quality of the information in the CVE text descriptions must also be
taken into consideration when discussing the general limitations of the proposed model.
Inconsistencies among the CVE descriptions (incomplete, outdated, or even erroneous
details) are highly prevalent [45], thus narrowing the attainable performance of the model.

Third, there is no clear delimitation between certain techniques. Multiple techniques
have overlapping meanings and follow the same attack pattern (e.g., Exploitation for Defence
Evasion and Abuse Elevation Control Mechanism). Due to this, a CVE might have multi-
ple possible correct labels, depending on the methodology used to mark the CVE since
techniques are closely interconnected and the difference between relating techniques is
generally subtle.

Lastly, the rather small dataset and the severe imbalance between the number of CVEs
associated with a technique has a toll on the capacity of the model to accumulate enough
knowledge to correctly label future samples. Having a larger knowledge base for training
the model would help provide samples so that the model perceives also sensitive nuances
in CVE text descriptions.

5. Conclusions

In this paper, we emphasized the need for an automatic linkage between the CVE
list and MITRE ATT&CK Enterprise Matrix techniques. The problem was transposed
into a multi-label task for Natural Language Processing for which we introduce a novel
labeled CVE corpus that was augmented using adversarial attacks to limit the severe
impact of imbalance between labels. Our baseline includes several classic machine learning
models and BERT-based architectures, and the best performing model (i.e., Multi-label
SciBERT) was evaluated within a series of experiments from multiple perspectives to extract
a complete overview of the data augmentation impact. Comparing the obtained metrics
against classical machine learning models accentuates the significant benefits brought by
our solution to labeling CVEs with corresponding techniques.

Despite our model obtaining promising results in terms of well-represented techniques,
the inherent limitations imposed by the training set tops up the maximum achievable per-
formance. Future work will focus on improving the robustness of the labeled CVE corpus.
On one hand, we will focus on enforcing homogeneity among labeling methodology; on
the other, we will address the severe imbalance between labels and also its reduced size.
Possible new strategies might consider Few-Shot Learning methods [46] for task general-
ization considering few samples. Semi-supervised learning [47] could also be a possible
research direction, given the reduced number of labeled CVEs and the significant number
of unlabeled samples that exist in the CVE list. Another aspect that is worth exploring is
whether or not gathering extra information from additional sources (e.g., Common Weakness
Enumeration CWE [48]) can address the incompleteness and inconsistency of the textual
CVE description.
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BERT Bidirectional Encoder Representations from Transformers
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CNN Convolutional Neural Network
CVE Common Vulnerabilities and Exposures
CVET Common Vulnerabilities and Exposures Transformer
CWE Common Weakness Enumeration
EDA Easy Data Augmentation
ML Machine Learning
NLP Natural Language Processing
SciBERT Scientific Bidirectional Encoder Representations from Transformers
SecBERT Security Bidirectional Encoder Representations from Transformers
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