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Abstract: Traffic parameter characteristics in congested road networks are explored based on traffic
flow theory, and observed variables are transformed to a uniform format. The Gaussian mixture
model is used to reconstruct route trajectories based on data regarding travel routes containing only
the origin and destination information. Using a bi-level optimization framework, a Bayesian traffic
demand estimation model was built using route trajectory reconstruction in congested networks.
Numerical examples demonstrate that traffic demand estimation errors, without considering a
congested network, are within ±12; whereas estimation demands considering traffic congestion are
close to the real values. Using the Gaussian mixture model’s technology of trajectory reconstruction,
the mean of the traffic demand root mean square error can be stabilized to approximately 1.3. Traffic
demand estimation accuracy decreases with an increase in observed data usage, and the designed
iterative algorithm can predict convergence with 0.06 accuracy. The evolution rules of urban traffic
demands and road flows in congested networks are uncovered, and a theoretical basis for alleviating
urban traffic congestion is provided to determine traffic management and control strategies.

Keywords: traffic network; demand estimation; congested networks; trajectory reconstruction; Bayesian

1. Introduction

With the accelerated development of urbanization in developing countries, such as
China, car ownership has increased substantially, triggering a surge in urban traffic. It is
difficult for limited traffic routes to meet the rapid growth in urban traffic demand, resulting
in disordered and congested urban traffic. However, car ownership is not proportional
to urban congestion. In other words, urban congestion can be alleviated through rational
planning of urban road networks and effective formulation of traffic control policies.

Origin–destination (OD) demand, which describes the distribution characteristics of
traffic travel space, is an important input parameter for long-term urban traffic planning
and short-term traffic management. OD demand is helpful in traffic network design (with
respect to traffic bottleneck identification, road network capacity assessment, etc.) and
traffic demand management (with respect to road congestion pricing, traffic control, etc.)
in congested networks [1]. Therefore, accurately estimating OD demand can help ascertain
traffic characteristics of current road networks, facilitating alleviation of traffic congestion
in a more targeted and purposeful way during traffic planning and urban planning [2].

In recent years, transportation scholars have increasingly focused on OD demand
estimation [3], especially regarding new data sources, methods, and theories associated
with the theoretical and practical research of transportation planning. Existing studies can
be categorized as OD demand estimation for either non-congested or congested networks
(depending on the application’s scope) and as static or dynamic OD demand estimation
(depending on whether time variations are considered). Maximum entropy theory has been
employed to estimate traffic demand for non-congested networks based on observing link
flow [4]. Hazelton [5] further estimated OD demand based on the Bayesian method. Parry
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and Hazelton [6] observed link flow and route flow at the same time, and estimated traffic
demand using the maximum likelihood method. The Kalman filtering method has been
dynamically used to predict the OD demand for rail transit [7]. Some scholars determined
traffic demand based on the generalized least square method by observing information such
as link flow, route flow, speed, and entrance lane flow at intersections [8,9]. Grange et al.
used maximum entropy theory to estimate traffic demand on congested networks based
on observing vehicle density at links [10]. Many scholars observed variables such as link
flow, speed, and density to estimate traffic demand based on the generalized least square
method [11–13]. Many OD demand estimation models use other theoretical frameworks,
including OD demand estimation under supervised learning, sub-network OD demand
estimation [14], OD demand estimation based on mobile phone location data [15], OD
demand estimation based on bus card data [16], and multi-target OD demand estimation
models [17].

The main weaknesses of current OD demand estimation research are as follows.
(1) Existing studies ignore congestion characteristics in the observed travel data of road
networks of various types. (2) The existing traffic demand estimation literature usually
only includes road traffic data location and time information for origin and destination,
lacking route trajectory reconstruction research. (3) Although road detection equipment
can monitor a large amount of route travel time data, the existing Bayesian traffic demand
estimation method fails to integrate the route travel time. This paper further reconstructs
route trajectory data and establishes a Bayesian traffic demand estimation model with route
trajectory reconstruction in congested networks by analyzing the propagation mechanism
of congested traffic parameters and transforming the multi-source observed variables to
a uniform format. Next, an iterative algorithm designed to solve the model is presented.
Finally, numerical experiments are employed to test the model and algorithm.

2. Observed Data Analysis and Processing

In this section, the functional relationship between traffic flow and travel time is
resolved based on the analysis of congested networks’ traffic characteristics. Multi-source
observed variables are transformed to a uniform format, and further trajectory of observed
route data is reconstructed using cluster analysis technology.

2.1. Analysis of Traffic Congestion Characteristics

Traditional OD estimation methods in congested networks assume that link travel time
increases monotonically with link flow (as shown in Figure 1a). However, in actual urban
networks, link travel time is a non-monotony and non-convex function of link flow [18], and
each link flow value corresponds to two different road conditions (as shown in Figure 1b).
Therefore, traditional methods using link characteristic functions, which are increasing
monotonical, is not suitable for OD demand estimation in congested networks; function
errors might propagate to output results, which reduces the reliability of traffic network
planning and design. There is a one-to-one correspondence between road travel time and
traffic flow; therefore road travel time can be used as an effective observed variable for
traffic demand estimation in congested networks.

2.2. Unification of Traffic Variables’ Dimensions

Modern information technology (such as automatic vehicle identification technology
and GPS positioning technology) drives the development of traffic detectors. Different
periods and types of traffic data can be observed, such as link traffic flow, speed, density,
travel time, etc. The inconsistencies of dimension between these observed variables affect
further application of data. As noted above, there are analytical relations among link flow,
speed, and travel time in congested networks. Therefore, traffic flow theory is adopted
to transform the dimension of observed variables to unify observed multi-source link
information. In this paper, the Green Shields traffic flow–speed–density relation function
was used to unify multi-source observed variables in link travel time [19]. In other words,
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the inverse function of Equation (1) was used to transform the dimension of each traffic
flow parameter relationship:

va =
la

ta

[
Mj,a

(
1− la

taS f ,a

)]
, ∀a ∈ A (1)

where A represents set of links, a ∈ A; va represents traffic volume of link a; ta represents
estimated travel time of link a; la represents length of link a; Mj,a represents congestion
density of link a; and S f ,a represents maximum driving speed of link a. Link travel time
can be derived from link length and vehicle speed.
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2.3. Route Trajectory Reconstruction Based on Gaussian Mixture Clustering Analysis

Usually, only origin and destination information of a travel route can be obtained
during the monitoring process of actual traffic data. For example, automatic vehicle
identification data and mobile phone bill data can only capture trip start and end time and
location information. Therefore, route trajectory reconstruction of such data is required for
traffic demand estimation.

The Gaussian mixture model is a soft data clustering method, which can effectively
describe the distribution of the mixed density function of observed data [20]. In the process
of route trajectory reconstruction, observed travel route information with the same origin
and destination are subject to a set of probability distributions with unknown mean and
variance. Each observation (trajectory unknown) is a sample of multi-model distribution.
Next, the probability density function of the Gaussian mixture model is formed using the
probability density function corresponding to multiple sets of origin and destination points.
Equations (2)–(4) build a route trajectory reconstruction model based on Gaussian mixture
clustering analysis:

maxL(c, σ, π) = ∑
i∈I

log( ∑
k∈Kω

πω
k N(

ˆ
xi

∣∣∣∣cω
k , σω2

k ) ) (2)

Constraints are:
∑

k∈Kω

πω
k = 1, ∀ω ∈W (3)

0 ≤ πω
k ≤ 1, ∀k ∈ Kω, ω ∈W (4)

where I represents the set of observed routes (trajectory unknown) i ∈ I;
ˆ
Xi represents the

ith observed route travel time; W is the set of OD pairs of the road network, ω ∈ W; Kω

represents the set of all routes in OD pairs ω, k ∈ Kω ; πω
k is the mixing weight of the route

k in OD pair ω, and ∑
k∈Kω

πω
k = 1, ∀ω ∈W; cω

k represents the expected value of travel time
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of the route k in OD pair ω; σω2
k represents the variance in travel time of the route k in OD

pair ω; N(
ˆ
xi

∣∣∣∣cω
k , σω2

k ) represents the probability density function of Gaussian distribution

with mean cω
k and variance σω2

k at
ˆ
Xi. Objective function (2) represents the maximized

Gaussian mixture likelihood function. Constraints (3)–(4) are mixed weight conservation
and interval constraint, respectively.

Thus, route travel time after trajectory reconstruction can be obtained using:

xi = ∑
k∈Kω

γω
k,ic

ω
k , ∀i ∈ I (5)

In the following formula, γω
k,i represents the weight coefficient of the coincidence

between the ith observed travel trajectory and the route k in OD pair ω.

γω
k,i =

πω
k N

(
ˆ
xi

∣∣∣cω
k , σω

k
2
)

∑
k∈Kω

πω
k N

(
ˆ
xi

∣∣∣cω
k , σω

k
2
) , ∀k ∈ Kω, ω ∈W, i ∈ I (6)

3. A Bayesian Traffic Demand Estimation Model Using Route Trajectory Reconstruction
in Congested Networks
3.1. Analysis of the Relationship between Traffic Demand and Observed Variables

Travelers’ choice of travel destination and driving route can be regarded as a large
number of independent Bernoulli experiments. Therefore, this paper assumes that the traffic
demand follows the multivariate normal distribution, D ∼ MVN(µD, ΣD), with mean
vector µD and covariance matrix ΣD. Traffic demand varies in different time periods and
weather conditions. For example, traffic demand increases during holidays and decreases
in severe weather conditions. In order to describe these characteristics, this paper adopts
the following form of traffic demand:

Dω = kωU + ηω (7)

where kω describes the relative weight that the demand of OD pairs ω account for total
traffic demand, and k is its vector form, namely k = {· · · , kω, · · ·}. U reflects the changing
situation of traffic demand over time and weather, and follows the normal distribution
form of mean µU and variance σ2

U . ηω is random errors which are mutually independent,
and follows the normal distribution form of mean 0 and variance σ2

η , and η is its vector
form, namely η = {· · · , ηω, · · ·}.

Considering the conservation relationship between link flow and OD demand:

va = ∑
ω∈W

∑
k∈Kω

pω
k δω

a,kdω, ∀a ∈ A (8)

where va represents traffic flow of link a and δω
a,k represents the associated parameter of

route-link among OD pairs ω, if link a is on route k, the parameter is 1; otherwise, the
parameter is 0. pω

k represents travelers’ route choice probability on route k in OD pair ω,
which can be obtained by solving the following stochastic user equilibrium (SUE) model:

pω
k =

exp
(
−θcω

k
)

∑k exp
(
−θcω

k
) , ∀k ∈ Kω, ω ∈W (9)

where θ is a discrete parameter used to measure the perception error degree of travelers;
and cω

k represents the estimated route travel time on route k in OD pair ω.
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βω
a = ∑k pω

k δω
a,k represents the ratio between the number of drivers using link a and

the demand of OD pairs, where β is all OD-link ratio matrix. Thus, Equation (8) can be
written as:

va = ∑
ω∈W

βω
a dω, ∀a ∈ A (10)

To reduce the solving complexity of the Bayesian estimation model, the first-order
Taylor expansion of road impedance function replaces link travel time. As the designed
algorithm is iterative, the error generated by the replacement in the iterative algorithm grad-
ually decreases. According to the link congestion and impedance function (Equation (1)),
link travel time can be deduced as:

ta = mava + na = ma ∑
ω∈W

∑
k∈Kω

pω
k δω

a,kdω + na, ∀a ∈ A (11)

where ma and na are the coefficients of first-order Taylor expansion. Further, route travel
time can be written as:

cω
k = ∑

a∈A
δω

a,kta, ∀k ∈ Kω, ω ∈W (12)

3.2. Model Establishment

The principle of Bayesian traffic demand estimation is to correct the prior OD demand
distribution according to the observed data (including data after dimension unification of
congested road networks and route travel time after trajectory reconstruction), to obtain
the posterior OD demand distribution. Bayesian estimation methods use both observed in-
formation and historical information; a large amount of information helps to estimate more
reliable traffic demand. The model expression is the following bi-level programming form.

The upper-level:

˜
D = argmax

D

f
(

ˆ
C |D

)
p(D)∫

f
(

ˆ
C |D

)
p(D)dD

(13)

Constraint conditions: Formulas (7), (11) and (12).
The lower-level: Traffic demand D is allocated using the SUE model to obtain the

OD-link ratio, β, and road flow properties ma and na.

f ω
k = qω · pω

k (c
ω) = qω · Pr(cω

k ≤ cω
l , ∀l ∈ Kω, l 6= k|cω ), ∀ω ∈W, k ∈ Kω (14)

where
ˆ
C represents the vector form of the processed observed data,

ˆ
C =

{
· · · ,

ˆ
cs, · · ·

}
,

including ta of Equation (1) after dimension unification and xi of Equation (5) after trajectory
reconstruction; Pr(·) represents the probability operator; and cω is the vector form of route
travel time cω

k , namely cω =
{
· · · , cω

k , · · ·
}

. Formula (9) can be used to calculate pω
k . In

the upper-level model of the bi-level programming framework, the objective function (13)
is the maximum posterior probability estimation of the traffic demand under road data
observation. Maximum posterior probability is used to obtain the point estimation value of
traffic demand. The lower-level model of the bi-level programming framework estimates
variables in the upper-level model constraints, namely the OD-link ratio and road flow
properties.

4. Solving Algorithm

When solving the Gaussian mixture model, expectation maximization algorithm
(EM) [21]. is used to calculate cω

k , σω
k

2, and πω
k in order. The mean cω

k and variance σω
k

2 of
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route travel time are the extreme points of the Gaussian mixture model; that is, the partial
derivatives of Equation (2) at cω

k and σω
k

2 are zero:

∂L
∂cω

k
= 0, ∀k ∈ Kω, ω ∈W (15)

∂L
∂σω

k
2 = 0, ∀k ∈ Kω, ω ∈W (16)

According to the KKT optimality conditions of Formulas (2)–(4), mixing weight is
calculated as follows:

πω
k =

∑i∈Iω γω
k,i

|Iω | , ∀k ∈ Kω, ω ∈W (17)

where |Iω | is the potential of set Iω.
As prior traffic demand is subject to multivariate normal distribution and all variables

are linearly related (Equations (7), (11), and (12)), the Bayesian posterior distribution of
unobserved variables (traffic demand) is also subject to multivariate normal distribution
after observing some variables (road travel data) where the mean vector µ

D|Z=
ˆ
C

and

covariance matrix Σ
D|Z=

ˆ
C

, respectively, are [22]:

µ
D|Z=

ˆ
C
= µD + ΣDZΣ−1

ZZ

(
ˆ
C− µZ

)
(18)

Σ
D|Z=

ˆ
C
= ΣDD − ΣDZΣ−1

ZZΣZD (19)

where Z represents all observed variables’ vectors. Therefore, the established upper-
level model can be solved by updating Formulas (18) and (19). At each moment, the
Bayesian traffic demand estimation model in congested environments was solved using
the iterative algorithm framework, and the lower-level SUE model was solved using the
method of successive averages (MSA). The designed algorithms for proposed model are as
Algorithm 1.

Algorithm 1 The designed algorithms for proposed model

Step Contents

1

Initialization: Set the number of iteration steps n = 0, convergence accuracy ε, initial
demand weight matrix k(0), mean µU and variance σ2

U of traffic demand level,
random error parameter σ2

η , discrete parameters θ of traveler perception error;

observed data, and observed route travel time
ˆ
xi.

2
According to Equation (1), the observed variables are transformed to a uniform format
to obtain the link travel time ta.

3 The EM algorithm is used to solve cω
k , σω

k
2, and πω

k to determine the observed route
trajectory.
(a) Initialize the mean cω

k , variance σω
k

2, and mixing coefficient πω
k of route travel time;

(b) Calculate the probability γω
k,j using Equation (6);

(c) Use Equations (15) and (16) to update the mean cω
k and variance σω

k
2 according to

the current γω
k,j, update the mixing coefficient πω

k according to Equation (17);
(d) If the parameter γω

k,j converges (that is, the difference between the parameters of
two iterations reaches convergence accuracy), the algorithm ends. Otherwise, go to
step (b);
(e) Determine the observed route trajectory; that is, calculate xi using Equation (5).
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Algorithm 1 Cont.

4
Solve the lower-level model: apply the MSA algorithm to solve the SUE model; that is,
allocate the requirements D(n), to obtain the OD-link ratio β(n), ma, and na.

5

Solve the upper-level model: substitute the OD-link ratio β(n), ma, and na. According
to Equations (18) and (19), successively use observed data to solve the auxiliary OD

demand
¯
D

(n)
.

(a) Initialization: Set the initial update step number s = 0. Observe the data dimension
smax and calculate the prior mean vectors µ(0) and covariance matrices Σ(0) of all
variables.
(b) According to the processed observed data

ˆ
cs, use Equations (18) and (19) to update

the posterior mean vector µ
D|Z= ˆ

vs
and covariance matrix Σ

D|Z= ˆ
cs

of all variables, and

let µ
Z|Z= ˆ

cs
=

ˆ
cs, Σ

Z|Z= ˆ
cs
= 0, µ(s) = µ

D|Z= ˆ
cs

, and Σ(s) = Σ
D|Z= ˆ

cs
.

(c) Convergence test: let s = s + 1; if s ≥ smax, stop the calculation, and let
¯
D

(n)
= µ(s).

Otherwise, go to step (b).

6 Update traffic demand: let D(n+1) = D(n) + 1/(n + 1)

(
¯
D

(n)
−D(n)

)
.

7 Convergence test: if ‖D(n+1) −D(n)‖/‖D(n)‖ ≤ ε, stop the calculation, and D(n+1) is
the optimal traffic demand. Otherwise, let n = n + 1, and go to Step 3.

5. Numerical Experiment
5.1. Nguyen–Dupuis Network

Topology structures, road properties and traffic demand of the Nguyen–Dupuis net-
work [23] are shown in Figure 2. Traffic demand in the figure is dω = kωU, and traffic
operation status of 60 time windows within two hours is observed using Vissim simulation
technology, where traffic demand in the first half hour and the last half hour is set as 1/2dω ,
and traffic demand in the middle hour is set as dω . Each time window captured 50 groups
of link flow, 30 groups of link travel time, and 20 groups of route travel time with unknown
trajectories. The congested links are set as 5-6, 6-7, 10-11, and 11-2, and the maximum driv-
ing speed S f ,a of each link is 40. According to the Green Shields model, the link length and
value of congestion density in Equation (1) are: (free flow travel time ×maximum driving
speed) and (4 × road capacity/maximum driving speed), respectively. Traffic demand
variance is σ2

U = 10. The initial demand weight matrix is k(0) = [6, 10, 8, 6]. Random error
parameters are not considered. The discrete parameter of traveler perception error is set as
θ = 1.
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Figure 2. Topology, link characteristics, and OD demands of the Nguyen–Dupuis network.

The learning process of the Bayesian traffic demand estimation model solution in
a congested environment was tested. Figure 3 depicts the distribution status of traffic
demand in the 10th, 20th, 30th, 40th, 50th, and 60th time windows, respectively, where the
abscissa is the number of the OD demand and the ordinate is the probability that the OD
demand is the corresponding value. Different colors and lines represent testing different
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time windows (see Figure 3b). Note that the predicted traffic demand of the first and last
half hours (the 10th, 50th, and 60th time windows) is lower, and the traffic demand of the
middle hour (the 20th, 30th, and 40th time windows) is higher. In the 20th time window, the
variance in traffic demand is relatively large, because the traffic demand has just changed
from 1/2dω to dω, and observed data makes a significant difference. After traffic demand
stabilizes, its variance is low (the 60th period, for example). Figure 3 also shows that the
proposed model can reflect the change state of real-time traffic demand.
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fic demand. Figure 4a illustrates that traffic demand estimations considering congestion 
are significantly superior to estimations ignoring congestion. Figure 4b illustrates that er-
rors in traffic demand estimation without considering network congestion are within 12±
, and that the average error in traffic demand estimations considering congestion is near 
zero. This is because traffic demand estimations ignoring congestion are based on monot-
onous road travel time increases with link flow, which violates actual traffic flow charac-
teristics. 
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Bayesian traffic demand estimation models for estimated errors under cases when
traffic congestion is and is not considered are compared in Figure 4. Figure 4a depicts errors
in traffic demand estimations in the 30th time window, and Figure 4b is the probability
distribution of errors in traffic demand estimations in all 60 time windows. The ordinates in
the graph are the differences between estimated traffic demand and actual traffic demand.
Figure 4a illustrates that traffic demand estimations considering congestion are significantly
superior to estimations ignoring congestion. Figure 4b illustrates that errors in traffic
demand estimation without considering network congestion are within ±12, and that the
average error in traffic demand estimations considering congestion is near zero. This is
because traffic demand estimations ignoring congestion are based on monotonous road
travel time increases with link flow, which violates actual traffic flow characteristics.
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To illustrate the role of unknown route trajectory data in traffic demand estimations,
root mean square errors of traffic demand with different observed data are shown in
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Figure 5. In Figure 5, we compare three cases: a trajectory reconstruction based on the
Gaussian mixture model, a k-means clustering trajectory, and only integrating data with
known trajectories. The root mean square error is defined as: RMSE = ‖dtru − dest‖/

√
|ω|,

where dtru, dest, and |ω| represent exact traffic demand, estimated traffic demand, and
potential traffic demand (number of set elements), respectively. Compared with only
integrating data with known trajectories, the root mean square error of traffic demand
estimation is smaller, but its variance fluctuates significantly. Compared with the k-means
clustering trajectory method, variance in the root mean square error of traffic demand
estimations based on trajectory reconstruction using the Gaussian mixture model is larger,
but the mean error stabilizes at approximately 1.3. Therefore, trajectory reconstruction
using the Gaussian mixture model is more accurate for traffic demand estimation than
using k-means cluster trajectory or only integrating data with known trajectories.
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5.2. Sioux Falls Network

The Sioux Falls network [24] was used to further test the applicability of the de-
signed algorithm. This road network consists of 24 nodes, 76 links, and 550 OD pairs.
Characteristics of this road link are described in the literature [24]. Observed variables,
link maximum driving speed, link length, and congestion density are consistent with the
Nguyen–Dupuis network. The sensitivity of traffic demand to link observed data is shown
in Figure 6. Observed traffic flow and speed on links 16 and 28 are disturbed, respectively.
From these three figures, it can be seen that when the disturbance of observed variables
is 0%, estimated traffic demand is close to its actual value (i.e., 120, 160, and 180). When
disturbance increases, estimated traffic demand gradually diverges from actual demand.
In this experiment, OD pairs 2-15 and 3-20 are more sensitive to observed data on link 28,
whereas OD pair 6-11 is more susceptible to observed data on link 16.

The evolution process of the Bayesian traffic demand estimation algorithm with route
trajectory reconstruction in congested networks was plotted, and is shown in Figure 7. The
lower part of the figure illustrates a convergence situation of root mean square error of the
entire iterative algorithm; the upper three figures represent the convergence process of the
Bayesian update strategy (upper model) in the second, third, and fourth iterations of the
algorithm, respectively. In the calculation process, the designed iterative algorithm and the
Bayesian successive update method in the upper-level model can converge to accuracies
of 0.06 and 0.003, respectively. The root mean square error of traffic demand decreases
steadily during each iteration, whereas the root mean square error does not continue to
decrease when solving the upper-level model. However, with an increase in observed
information, the method ensures that the overall trend of root mean square error decreases.
This indicates that the algorithm is robust.
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6. Conclusions

In this paper, the relationship between traffic variables and travel characteristics in
congested network environments is analyzed, and the Bayesian traffic demand estimation
model with route trajectory reconstruction in congested networks is established. Data
analysis of traffic environments reveals that there is a non-monotone relationship between
link travel time and traffic flow in congested networks. Therefore, the three-parameter
relationship of congested network flow is analyzed to transform observed variables to
a uniform format. The Gaussian mixture model is used to reconstruct observed route
trajectories using location data of observed route trajectories. The Bayesian estimation
method is used to estimate OD, to modify prior OD demand distribution using observed
data, and to obtain the posterior OD demand distribution in the current moment. The upper-
level model is a maximized posterior probability distribution model, and the lower-level
model is a stochastic network-user equilibrium model. The upper-level model transmits
traffic demand to the lower-level model, and the lower-level model transmits the OD-link
ratio and road flow properties to the upper-level model.

The Nguyen–Dupuis and Sioux Falls networks were used to test the properties of
the proposed model and algorithm. The results show that traffic demand estimations that
consider traffic congestion are significantly better than those that ignore traffic congestion,
with traffic estimation errors of almost 0 and within ±12, respectively. Compared with
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only integrating known trajectory data, the mean of root mean square error of traffic
demand estimated by integrating unknown route trajectory data is smaller. Compared
with the k-means clustering trajectory method, the mean of root mean square error of
traffic demand estimated using the Gaussian mixture model reconstruction trajectory is
smaller and stabilizes at approximately 1.3. The designed iterative algorithm and the
Bayesian successive update method in the upper-level model can converge to 0.06 and
0.003, respectively.

The Bayesian traffic demand estimation model with route trajectory reconstruction
in congested networks can be applied to urban traffic system optimization projects; a
variety of traffic demand distribution forms are adopted to establish the traffic demand
estimation model.
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