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Abstract: Traffic parameter characteristics in congested road networks are explored based on traffic 
flow theory, and observed variables are transformed to a uniform format. The Gaussian mixture 
model is used to reconstruct route trajectories based on data regarding travel routes containing only 
the origin and destination information. Using a bi-level optimization framework, a Bayesian traffic 
demand estimation model was built using route trajectory reconstruction in congested networks. 
Numerical examples demonstrate that traffic demand estimation errors, without considering a con-
gested network, are within ±12; whereas estimation demands considering traffic congestion are 
close to the real values. Using the Gaussian mixture model’s technology of trajectory reconstruction, 
the mean of the traffic demand root mean square error can be stabilized to approximately 1.3. Traffic 
demand estimation accuracy decreases with an increase in observed data usage, and the designed 
iterative algorithm can predict convergence with 0.06 accuracy. The evolution rules of urban traffic 
demands and road flows in congested networks are uncovered, and a theoretical basis for alleviat-
ing urban traffic congestion is provided to determine traffic management and control strategies. 

Keywords: traffic network; demand estimation; congested networks; trajectory reconstruction; 
Bayesian 
 

1. Introduction 
With the accelerated development of urbanization in developing countries, such as 

China, car ownership has increased substantially, triggering a surge in urban traffic. It is 
difficult for limited traffic routes to meet the rapid growth in urban traffic demand, re-
sulting in disordered and congested urban traffic. However, car ownership is not propor-
tional to urban congestion. In other words, urban congestion can be alleviated through 
rational planning of urban road networks and effective formulation of traffic control pol-
icies. 

Origin–destination (OD) demand, which describes the distribution characteristics of 
traffic travel space, is an important input parameter for long-term urban traffic planning 
and short-term traffic management. OD demand is helpful in traffic network design (with 
respect to traffic bottleneck identification, road network capacity assessment, etc.) and 
traffic demand management (with respect to road congestion pricing, traffic control, etc.) 
in congested networks [1]. Therefore, accurately estimating OD demand can help ascer-
tain traffic characteristics of current road networks, facilitating alleviation of traffic con-
gestion in a more targeted and purposeful way during traffic planning and urban plan-
ning [2]. 

In recent years, transportation scholars have increasingly focused on OD demand 
estimation [3], especially regarding new data sources, methods, and theories associated 
with the theoretical and practical research of transportation planning. Existing studies can 
be categorized as OD demand estimation for either non-congested or congested networks 
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(depending on the application’s scope) and as static or dynamic OD demand estimation 
(depending on whether time variations are considered). Maximum entropy theory has 
been employed to estimate traffic demand for non-congested networks based on observ-
ing link flow [4]. Hazelton [5] further estimated OD demand based on the Bayesian 
method. Parry and Hazelton [6] observed link flow and route flow at the same time, and 
estimated traffic demand using the maximum likelihood method. The Kalman filtering 
method has been dynamically used to predict the OD demand for rail transit [7]. Some 
scholars determined traffic demand based on the generalized least square method by ob-
serving information such as link flow, route flow, speed, and entrance lane flow at inter-
sections [8,9]. Grange et al. used maximum entropy theory to estimate traffic demand on 
congested networks based on observing vehicle density at links [10]. Many scholars ob-
served variables such as link flow, speed, and density to estimate traffic demand based on 
the generalized least square method [11–13]. Many OD demand estimation models use 
other theoretical frameworks, including OD demand estimation under supervised learn-
ing, sub-network OD demand estimation [14], OD demand estimation based on mobile 
phone location data [15], OD demand estimation based on bus card data [16], and multi-
target OD demand estimation models [17]. 

The main weaknesses of current OD demand estimation research are as follows. (1) 
Existing studies ignore congestion characteristics in the observed travel data of road net-
works of various types. (2) The existing traffic demand estimation literature usually only 
includes road traffic data location and time information for origin and destination, lacking 
route trajectory reconstruction research. (3) Although road detection equipment can mon-
itor a large amount of route travel time data, the existing Bayesian traffic demand estima-
tion method fails to integrate the route travel time. This paper further reconstructs route 
trajectory data and establishes a Bayesian traffic demand estimation model with route tra-
jectory reconstruction in congested networks by analyzing the propagation mechanism of 
congested traffic parameters and transforming the multi-source observed variables to a 
uniform format. Next, an iterative algorithm designed to solve the model is presented. 
Finally, numerical experiments are employed to test the model and algorithm. 

2. Observed Data Analysis and Processing 
In this section, the functional relationship between traffic flow and travel time is re-

solved based on the analysis of congested networks’ traffic characteristics. Multi-source 
observed variables are transformed to a uniform format, and further trajectory of ob-
served route data is reconstructed using cluster analysis technology. 

2.1. Analysis of Traffic Congestion Characteristics 
Traditional OD estimation methods in congested networks assume that link travel 

time increases monotonically with link flow (as shown in Figure 1a). However, in actual 
urban networks, link travel time is a non-monotony and non-convex function of link flow 
[18], and each link flow value corresponds to two different road conditions (as shown in 
Figure 1b). Therefore, traditional methods using link characteristic functions, which are 
increasing monotonical, is not suitable for OD demand estimation in congested networks; 
function errors might propagate to output results, which reduces the reliability of traffic 
network planning and design. There is a one-to-one correspondence between road travel 
time and traffic flow; therefore road travel time can be used as an effective observed var-
iable for traffic demand estimation in congested networks. 
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Figure 1. Performance function of link travel time. (a) Traditional assumption. (b) Actual situation. 

2.2. Unification of Traffic Variables’ Dimensions 
Modern information technology (such as automatic vehicle identification technology 

and GPS positioning technology) drives the development of traffic detectors. Different 
periods and types of traffic data can be observed, such as link traffic flow, speed, density, 
travel time, etc. The inconsistencies of dimension between these observed variables affect 
further application of data. As noted above, there are analytical relations among link flow, 
speed, and travel time in congested networks. Therefore, traffic flow theory is adopted to 
transform the dimension of observed variables to unify observed multi-source link infor-
mation. In this paper, the Green Shields traffic flow–speed–density relation function was 
used to unify multi-source observed variables in link travel time [19]. In other words, the 
inverse function of Equation (1) was used to transform the dimension of each traffic flow 
parameter relationship: 

,
,

1 ,a a
a j a

a a f a

l lv M a A
t t S

  
= − ∀ ∈      

 (1)

where A  represents set of links, a A∈ ; av  represents traffic volume of link a ; at  repre-
sents estimated travel time of link a ; al  represents length of link a ; ,j aM  represents con-

gestion density of link a ; and ,f aS  represents maximum driving speed of link a . Link 
travel time can be derived from link length and vehicle speed. 

2.3. Route Trajectory Reconstruction Based on Gaussian Mixture Clustering Analysis 
Usually, only origin and destination information of a travel route can be obtained 

during the monitoring process of actual traffic data. For example, automatic vehicle iden-
tification data and mobile phone bill data can only capture trip start and end time and 
location information. Therefore, route trajectory reconstruction of such data is required 
for traffic demand estimation. 

The Gaussian mixture model is a soft data clustering method, which can effectively 
describe the distribution of the mixed density function of observed data [20]. In the pro-
cess of route trajectory reconstruction, observed travel route information with the same 
origin and destination are subject to a set of probability distributions with unknown mean 
and variance. Each observation (trajectory unknown) is a sample of multi-model distribu-
tion. Next, the probability density function of the Gaussian mixture model is formed using 
the probability density function corresponding to multiple sets of origin and destination 
points. Equations (2)–(4) build a route trajectory reconstruction model based on Gaussian 
mixture clustering analysis: 
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where I  represents the set of observed routes (trajectory unknown) i I∈ ; 
î

x  represents 
the ith observed route travel time; W  is the set of OD pairs of the road network, ω W∈
; ωK  represents the set of all routes in OD pairs ω  , ωk K∈  ; ωπ

k
 is the mixing weight 

of the route k  in OD pair ω , and 
ω

ωπ 1 ω,
k

k K

W
∈

= ∀ ∈ ; ω
k

c represents the expected 

value of travel time of the route k  in OD pair ω ; ω2σ
k

 represents the variance in travel 

time of the route k  in OD pair ω ; ω ω2σ( | , )
î k k

N x c  represents the probability density 

function of Gaussian distribution with mean ω
k

c  and variance ω2σ
k

 at 
î

x . Objective func-
tion (2) represents the maximized Gaussian mixture likelihood function. Constraints (3)–
(4) are mixed weight conservation and interval constraint, respectively. 

Thus, route travel time after trajectory reconstruction can be obtained using: 

, ,k i ki
k K

x c i I
ω

ω ωγ
∈

= ∀ ∈  (5)

In the following formula, ,k i
ωγ  represents the weight coefficient of the coincidence be-

tween the ith observed travel trajectory and the route k  in OD pair ω . 
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ω
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ω

ω ω ω
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ω

π σ
γ

∈

∀ ∈ ∈= ∈





 (6)

3. A Bayesian Traffic Demand Estimation Model using Route Trajectory Reconstruc-
tion in Congested Networks 
3.1. Analysis of the Relationship between Traffic Demand and Observed Variables 

Travelers’ choice of travel destination and driving route can be regarded as a large 
number of independent Bernoulli experiments. Therefore, this paper assumes that the 
traffic demand follows the multivariate normal distribution, ( )~ MVN ,D DD μ Σ , with 

mean vector Dμ  and covariance matrix DΣ . Traffic demand varies in different time peri-
ods and weather conditions. For example, traffic demand increases during holidays and 
decreases in severe weather conditions. In order to describe these characteristics, this pa-
per adopts the following form of traffic demand: 

D k Uω ω ωη= +  (7)

where k
ω

 describes the relative weight that the demand of OD pairs ω  account for total 

traffic demand, and k  is its vector form, namely { }, ,kω=k  
. U  reflects the changing 

situation of traffic demand over time and weather, and follows the normal distribution 



Algorithms 2022, 15, 307 5 of 13 
 

form of mean Uμ  and variance 
2
Uσ . 

ωη  is random errors which are mutually independ-

ent, and follows the normal distribution form of mean 0  and variance 
2

ησ , and η  is its 

vector form, namely { }, ,ωη=η  
. 

Considering the conservation relationship between link flow and OD demand: 

, ,a k a k
W k K

d a Av p
ω

ω ω ω

ω
δ

∈ ∈

∈= ∀   (8)

where av  represents traffic flow of link a  and ,a k
ωδ  represents the associated parameter of 

route-link among OD pairs ω , if link a  is on route k , the parameter is 1; otherwise, the 

parameter is 0. kp
ω

 represents travelers’ route choice probability on route k  in OD pair 
ω , which can be obtained by solving the following stochastic user equilibrium (SUE) 
model: 

( )
( )

exp

exp
, ,k

k
kk

c
p

c
k K W

ω
ωω

ω

θ

θ
ω∀ ∈

−
=

−
∈


 (9)

where θ  is a discrete parameter used to measure the perception error degree of travelers; 

and kc
ω

 represents the estimated route travel time on route k  in OD pair ω . 
,a k a kk

pω ω ωβ δ=  represents the ratio between the number of drivers using link a  and 

the demand of OD pairs, where β  is all OD-link ratio matrix. Thus, Equation (8) can be 
written as: 

,a a
W

v d a Aω ω

ω
β

∈

= ∀ ∈  (10)

To reduce the solving complexity of the Bayesian estimation model, the first-order 
Taylor expansion of road impedance function replaces link travel time. As the designed 
algorithm is iterative, the error generated by the replacement in the iterative algorithm 
gradually decreases. According to the link congestion and impedance function (Equation 
(1)), link travel time can be deduced as: 

, ,a a a a a k a k a
W k K

t m v m d an An p
ω

ω ω ω

ω
δ

∈ ∈

+ = + ∀ ∈=    (11)

where am and an  are the coefficients of first-order Taylor expansion. Further, route travel 
time can be written as: 

,= , ,k a k aa A
k K Wc tωω ωδ ω

∈
∀ ∈ ∈  (12)

3.2. Model Establishment 
The principle of Bayesian traffic demand estimation is to correct the prior OD de-

mand distribution according to the observed data (including data after dimension unifi-
cation of congested road networks and route travel time after trajectory reconstruction), 
to obtain the posterior OD demand distribution. Bayesian estimation methods use both 
observed information and historical information; a large amount of information helps to 
estimate more reliable traffic demand. The model expression is the following bi-level pro-
gramming form. 

The upper-level: 
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( ) ( )
( ) ( )

ˆ
arg max

ˆ
f p

f p d
=

D

C D D
D

C D D D
    (13)

Constraint conditions: Formulas (7), (11), and (12). 
The lower-level: Traffic demand D  is allocated using the SUE model to obtain the 

OD-link ratio, β , and road flow properties am  and an . 

( ) ( )Pr , , , ,lk k kf q q c c l K l Wp k k Kω ω ω ω ω ω ω ω ω ωω= ⋅ = ⋅ ≤ ∀ ∈ ≠ ∀ ∈ ∈c c  (14)

where Ĉ  represents the vector form of the processed observed data, { }ˆ ˆ, ,sc=C   , in-

cluding at  of Equation (1) after dimension unification and ix  of Equation (5) after trajec-

tory reconstruction; ( )Pr ⋅ represents the probability operator; and 
ωc  is the vector form 

of route travel time kc
ω

, namely { }, ,kc
ω ω=c  

. Formula (9) can be used to calculate kp
ω

. In the upper-level model of the bi-level programming framework, the objective function 
(13) is the maximum posterior probability estimation of the traffic demand under road 
data observation. Maximum posterior probability is used to obtain the point estimation 
value of traffic demand. The lower-level model of the bi-level programming framework 
estimates variables in the upper-level model constraints, namely the OD-link ratio and 
road flow properties. 

4. Solving Algorithm 
When solving the Gaussian mixture model, expectation maximization algorithm 

(EM) [21]. is used to calculate kc
ω

, 
2

k
ωσ , and k

ωπ  in order. The mean kc
ω

 and variance 
2

k
ωσ  

of route travel time are the extreme points of the Gaussian mixture model; that is, the 

partial derivatives of Equation (2) at kc
ω

 and 
2

k
ωσ  are zero: 

, ,0
kc

k K WL
ω

ω ω∀ ∈∂ = ∈
∂

 (15)

2 ,0 ,
k

k K WL ω
ω ω

σ
∀ ∈∂

∂
∈=  (16)

According to the KKT optimality conditions of Formulas (2)–(4), mixing weight is 
calculated as follows: 

, , ,k ii I
k k

I
K Wω

ω
ωω

ω

γ
π ω∈ ∈= ∀ ∈  (17)

where 
Iω

 is the potential of set Iω
. 

As prior traffic demand is subject to multivariate normal distribution and all varia-
bles are linearly related (Equations (7), (11) and (12)), the Bayesian posterior distribution 
of unobserved variables (traffic demand) is also subject to multivariate normal distribu-

tion after observing some variables (road travel data) where the mean vector 
ˆ=D Z C

μ
 and 

covariance matrix 
ˆ=D Z C

Σ
, respectively, are [22]: 

( )1
ˆ

ˆ−
=

= + −D DZ ZZ ZD Z C
μ μ Σ Σ C μ  (18)
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1
ˆ

−
=

= −DD DZ ZZ ZDD Z C
Σ Σ Σ Σ Σ  (19)

where Z  represents all observed variables’ vectors. Therefore, the established upper-
level model can be solved by updating Formulas (18) and (19). At each moment, the Bayes-
ian traffic demand estimation model in congested environments was solved using the it-
erative algorithm framework, and the lower-level SUE model was solved using the 
method of successive averages (MSA). The designed algorithms for proposed model are 
as Algorithm 1. 

Algorithm 1. The designed algorithms for proposed model. 

Step Contents 

1 

Initialization: Set the number of iteration steps 0n = , convergence accuracy ε , initial demand weight 
matrix ( )0k , mean Uμ  and variance 2

Uσ  of traffic demand level, random error parameter 2
ησ , discrete 

parameters θ  of traveler perception error; observed data, and observed route travel time . 

2 
According to Equation (1), the observed variables are transformed to a uniform format to obtain the link 
travel time at . 

3 The EM algorithm is used to solve kc
ω , 2

k
ωσ , and k

ωπ  to determine the observed route trajectory. 

 (a) Initialize the mean kc
ω , variance 2

k
ωσ , and mixing coefficient k

ωπ  of route travel time; 

 (b) Calculate the probability ,k j
ωγ  using Equation (6); 

 
(c) Use Equations (15) and (16) to update the mean kc

ω  and variance 2
k
ωσ  according to the current ,k j

ωγ , 

update the mixing coefficient k
ωπ  according to Equation (17); 

 
(d) If the parameter ,k j

ωγ  converges (that is, the difference between the parameters of two iterations reaches 

convergence accuracy), the algorithm ends. Otherwise, go to step (b); 
 (e) Determine the observed route trajectory; that is, calculate ix  using Equation (5). 

4 
Solve the lower-level model: apply the MSA algorithm to solve the SUE model; that is, allocate the 
requirements ( )nD , to obtain the OD-link ratio ( )nβ , am , and an . 

5 

Solve the upper-level model: substitute the OD-link ratio ( )nβ , am , and an . According to Equations (18) and 

(19), successively use observed data to solve the auxiliary OD demand ( )nD . 
(a) Initialization: Set the initial update step number 0s = . Observe the data dimension maxs and calculate 

the prior mean vectors ( )0μ  and covariance matrices ( )0Σ  of all variables. 

(b) According to the processed observed data ˆsc , use Equations (18) and (19) to update the posterior mean 

vector ˆsv=D Zμ  and covariance matrix ˆsc=D ZΣ  of all variables, and let ˆ ˆ
s sZ Z c cμ = = , ˆ 0

sZ Z c=Σ = , ( )
ˆs

s
c== D Zμ μ , 

and ( )
ˆs

s
c== D ZΣ Σ . 

(c) Convergence test: let 1s s= + ; if maxs s≥ , stop the calculation, and let ( ) ( )n s=D μ . Otherwise, go to step 
(b). 

6 Update traffic demand: let ( ) ( ) ( ) ( ) ( )( )1 1 1n n n nn+ = + + −D D D D . 

7 
Convergence test: if ( ) ( ) ( )1 /n n n ε+ − ≤D D D , stop the calculation, and ( )1n+D  is the optimal traffic demand. 

Otherwise, let 1n n= + , and go to Step 3. 
  

ˆix
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5. Numerical Experiment 
5.1. Nguyen–Dupuis Network 

Topology structures, road properties and traffic demand of the Nguyen–Dupuis net-

work [23]. are shown in Figure 2. Traffic demand in the figure is d k Uω ω= , and traffic 
operation status of 60 time windows within two hours is observed using Vissim simula-
tion technology, where traffic demand in the first half hour and the last half hour is set as 
1 2dω

, and traffic demand in the middle hour is set as d
ω

. Each time window captured 
50 groups of link flow, 30 groups of link travel time, and 20 groups of route travel time 
with unknown trajectories. The congested links are set as 5-6, 6-7, 10-11, and 11-2, and the 

maximum driving speed ,f aS  of each link is 40. According to the Green Shields model, 
the link length and value of congestion density in Equation (1) are: (free flow travel time 
× maximum driving speed) and (4 × road capacity/maximum driving speed), respectively. 

Traffic demand variance is 
2 10Uσ = . The initial demand weight matrix is

( ) [ ]0 6,10,8,6=k

. Random error parameters are not considered. The discrete parameter of traveler percep-
tion error is set as 1θ = . 

O D

1
4

2 3
300
500

700
200

13

10

6

12

7

11

3

8

2

1

4 5

9

7/900

1 000

700

800

900

4/700

9/700

14/900

5/800

9/600

2/900

13/500

2/600

9/600 5/900

10/700

9/600

8/900 4/700

8/700

3/600 7/700

11/700Free flow travel time/ Road capacity
 

Figure 2. Topology, link characteristics, and OD demands of the Nguyen–Dupuis network. 

The learning process of the Bayesian traffic demand estimation model solution in a 
congested environment was tested. Figure 3 depicts the distribution status of traffic de-
mand in the 10th, 20th, 30th, 40th, 50th, and 60th time windows, respectively, where the 
abscissa is the number of the OD demand and the ordinate is the probability that the OD 
demand is the corresponding value. Different colors and lines represent testing different 
time windows (see Figure 3b). Note that the predicted traffic demand of the first and last 
half hours (the 10th, 50th, and 60th time windows) is lower, and the traffic demand of the 
middle hour (the 20th, 30th, and 40th time windows) is higher. In the 20th time window, 
the variance in traffic demand is relatively large, because the traffic demand has just 

changed from 1 2dω
 to d

ω
, and observed data makes a significant difference. After traf-

fic demand stabilizes, its variance is low (the 60th period, for example). Figure 3 also 
shows that the proposed model can reflect the change state of real-time traffic demand. 
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(a) (b) 

Figure 3. Probability distribution of Bayesian learning-based OD demands under different time in-
tervals. (a) OD pair 1-2. (b) OD pair 1-3. 

Bayesian traffic demand estimation models for estimated errors under cases when 
traffic congestion is and is not considered are compared in Figure 4. Figure 4a depicts 
errors in traffic demand estimations in the 30th time window, and Figure 4b is the proba-
bility distribution of errors in traffic demand estimations in all 60 time windows. The or-
dinates in the graph are the differences between estimated traffic demand and actual traf-
fic demand. Figure 4a illustrates that traffic demand estimations considering congestion 
are significantly superior to estimations ignoring congestion. Figure 4b illustrates that er-
rors in traffic demand estimation without considering network congestion are within 12±
, and that the average error in traffic demand estimations considering congestion is near 
zero. This is because traffic demand estimations ignoring congestion are based on monot-
onous road travel time increases with link flow, which violates actual traffic flow charac-
teristics. 

−

−

 

1-2
1-3

4-2 4-3 1-2 1-3
4-2 4-3

−

−

(a) (b) 

Figure 4. Comparison of traffic demand estimation errors when traffic congestion is and is not con-
sidered. (a) Traffic demand errors in the 30th time window. (b) Probability distribution of traffic 
demand errors in all time periods. 

To illustrate the role of unknown route trajectory data in traffic demand estimations, 
root mean square errors of traffic demand with different observed data are shown in Fig-
ure 5. In Figure 5, we compare three cases: a trajectory reconstruction based on the Gauss-
ian mixture model, a k-means clustering trajectory, and only integrating data with known 

trajectories. The root mean square error is defined as: 
tru estRMSE ω= −d d

, where 
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trud , 
estd , and ω  represent exact traffic demand, estimated traffic demand, and potential 

traffic demand (number of set elements), respectively. Compared with only integrating 
data with known trajectories, the root mean square error of traffic demand estimation is 
smaller, but its variance fluctuates significantly. Compared with the k-means clustering 
trajectory method, variance in the root mean square error of traffic demand estimations 
based on trajectory reconstruction using the Gaussian mixture model is larger, but the 
mean error stabilizes at approximately 1.3. Therefore, trajectory reconstruction using the 
Gaussian mixture model is more accurate for traffic demand estimation than using k-
means cluster trajectory or only integrating data with known trajectories. 

Gaussian mixture K-means Known trajectory
0
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4

5
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n 
sq
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Figure 5. Root mean square errors of traffic demands with different observed data. 

5.2. Sioux Falls Network 
The Sioux Falls network [24] was used to further test the applicability of the designed 

algorithm. This road network consists of 24 nodes, 76 links, and 550 OD pairs. Character-
istics of this road link are described in the literature [24]. Observed variables, link maxi-
mum driving speed, link length, and congestion density are consistent with the Nguyen–
Dupuis network. The sensitivity of traffic demand to link observed data is shown in Fig-
ure 6. Observed traffic flow and speed on links 16 and 28 are disturbed, respectively. From 
these three figures, it can be seen that when the disturbance of observed variables is 0%, 
estimated traffic demand is close to its actual value (i.e., 120, 160, and 180). When disturb-
ance increases, estimated traffic demand gradually diverges from actual demand. In this 
experiment, OD pairs 2-15 and 3-20 are more sensitive to observed data on link 28, 
whereas OD pair 6-11 is more susceptible to observed data on link 16. 

−
−

−
−

−
−
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Figure 6. Traffic demands between different OD pairs under fluctuations of observed data on links 
16 and 28. 

The evolution process of the Bayesian traffic demand estimation algorithm with 
route trajectory reconstruction in congested networks was plotted, and is shown in Figure 
7. The lower part of the figure illustrates a convergence situation of root mean square error 
of the entire iterative algorithm; the upper three figures represent the convergence process 
of the Bayesian update strategy (upper model) in the second, third, and fourth iterations 
of the algorithm, respectively. In the calculation process, the designed iterative algorithm 
and the Bayesian successive update method in the upper-level model can converge to ac-
curacies of 0.06 and 0.003, respectively. The root mean square error of traffic demand de-
creases steadily during each iteration, whereas the root mean square error does not con-
tinue to decrease when solving the upper-level model. However, with an increase in ob-
served information, the method ensures that the overall trend of root mean square error 
decreases. This indicates that the algorithm is robust. 

 Bayesian update in upper-level

 
Figure 7. Evolution processes of root mean square errors of traffic demands. 

6. Conclusions 
In this paper, the relationship between traffic variables and travel characteristics in 

congested network environments is analyzed, and the Bayesian traffic demand estimation 
model with route trajectory reconstruction in congested networks is established. Data 
analysis of traffic environments reveals that there is a non-monotone relationship between 
link travel time and traffic flow in congested networks. Therefore, the three-parameter 
relationship of congested network flow is analyzed to transform observed variables to a 
uniform format. The Gaussian mixture model is used to reconstruct observed route tra-
jectories using location data of observed route trajectories. The Bayesian estimation 
method is used to estimate OD, to modify prior OD demand distribution using observed 
data, and to obtain the posterior OD demand distribution in the current moment. The 
upper-level model is a maximized posterior probability distribution model, and the 
lower-level model is a stochastic network-user equilibrium model. The upper-level model 
transmits traffic demand to the lower-level model, and the lower-level model transmits 
the OD-link ratio and road flow properties to the upper-level model. 

The Nguyen–Dupuis and Sioux Falls networks were used to test the properties of the 
proposed model and algorithm. The results show that traffic demand estimations that 
consider traffic congestion are significantly better than those that ignore traffic congestion, 
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with traffic estimation errors of almost 0 and within 12± , respectively. Compared with 
only integrating known trajectory data, the mean of root mean square error of traffic de-
mand estimated by integrating unknown route trajectory data is smaller. Compared with 
the k-means clustering trajectory method, the mean of root mean square error of traffic 
demand estimated using the Gaussian mixture model reconstruction trajectory is smaller 
and stabilizes at approximately 1.3. The designed iterative algorithm and the Bayesian 
successive update method in the upper-level model can converge to 0.06 and 0.003, re-
spectively. 

The Bayesian traffic demand estimation model with route trajectory reconstruction 
in congested networks can be applied to urban traffic system optimization projects; a va-
riety of traffic demand distribution forms are adopted to establish the traffic demand es-
timation model. 
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