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Abstract: The computation of correspondences between shapes is a principal task in shape analysis.
In this work, we consider correspondences constructed by a numerical solution of partial differential
equations (PDEs). The underlying model of interest is thereby the classic wave equation, since this
may give the most accurate shape matching. As has been observed in previous works, numerical
time discretisation has a substantial influence on matching quality. Therefore, it is of interest to
understand the underlying mechanisms and to investigate at the same time if there is an analytical
model that could best describe the most suitable method for shape matching. To this end, we study
here the damped wave equation, which mainly serves as a tool to understand and model properties
of time discretisation. At the hand of a detailed study of possible parameters, we illustrate that the
method that gives the most reasonable feature descriptors benefits from a damping mechanism which
can be introduced numerically or within the PDE. This sheds light on some basic mechanisms of
underlying computational and analytic models, as one may conjecture by our investigation that an
ideal model could be composed of a transport mechanism and a diffusive component that helps to
counter grid effects.

Keywords: shape analysis; partial differential equations; damped wave equation; wave equation;
time discretisation; numerical methods; Laplace–Beltrami operator

1. Introduction

The computation of shape correspondences is a fundamental task in computer vision
with many potential applications [1,2]. In the setting of three-dimensional shape analysis,
the underlying problem amounts to identifying an explicit relation between the surface
elements of two or more shapes. The variety of possible shape correspondence mappings
that is of interest in applications includes non-rigid transformations where shapes are just
almost isometric, allowing, e.g., to match different poses of human or animal shapes.

An important solution strategy is to achieve a pointwise shape correspondence using
so-called descriptor-based methods. For this, a feature descriptor has to be computed
that characterises each point on a shape by describing the surrounding shape surface
geometry. A mathematically sound approach to compute such shape signatures is to make
use of the spectral decomposition of the Laplace–Beltrami operator; see, e.g., [2–4]. To
this end, the Laplace–Beltrami operator may be incorporated in a certain variety of partial
differential equations (PDEs) that are potentially useful as models for feature computation.
The arguably most important classic signature that can be obtained in this way is the heat
kernel signature (HKS) [4], which relies on the heat equation; however, this also includes
versions of the Schrödinger equation leading to the wave kernel signature (WKS) [5].
Additionally, the hyperbolic wave equation [6] has already been proposed.

For the computation of such PDE-based signatures, the basic task amounts to resolving
the underlying PDEs on a manifold representing a shape’s boundary. The HKS and WKS are
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both kernel-based methods that rely on the eigenfunction expansion of the Laplace–Beltrami
operator to tackle this task and to achieve efficient algorithms. An alternative to the
spectral approach is to consider the numerical integration of the underlying PDEs as
proposed in [6–8]. As has been shown in the mentioned works, the shape-matching
accuracy of the numerical descriptors constructed in the latter works may be slightly higher
than by the kernel-based approaches, such as HKS. However, when following the path
towards numerical feature construction, it is highly advocated to employ very efficient
computational means such as the model order reduction framework presented in [8,9] in
order to avoid high computational times.

In previous works based on numerical integration, the first-order implicit time integration
has been studied in detail [7]. For the wave equation model, it has been shown that
backward differencing in time may yield favourable results over simple central differences [6].
In particular, as has been illustrated in [6], the classic wave equation may yield in some
experiments results of higher corresponding quality compared to the other mentioned
models. Let us note that this holds again in particular when assessing the models using
numerical integration with implicit first-order time stepping.

Our Contributions: In this paper, we give an account of efforts on analysing important
numerical aspects of PDE-based shape descriptors. According to the previous results
described above, the question arises if some implicit schemes offer particularly useful key
properties in the shape analysis context. To answer this question, we present a detailed
study of three implicit time stepping schemes for the wave and damped wave equation on
manifolds. We show that standard finite differences may not be appropriate since the typical
initial condition used for the construction of shape signatures, which is a discrete Dirac delta
function, may yield oscillatory artefacts that may spoil correspondence quality. In order to
resolve this issue, we show that l0-stable methods should be employed, extending the first
results presented in [10] in several ways by a much more detailed exposition. We explore
in detail that, in addition, a certain amount of numerical or explicit diffusion is beneficial to
achieve results of best matching quality. To perform the study, we have developed a unified
numerical model order reduction framework based on [8]. The experimental investigation
is performed at the hand of dedicated synthetic settings and selected shape data sets in
order to show in detail the important effects.

As for previous work relating to this paper, the closest publication we would like to
mention is surely our conference paper [10], where the l0-stability of schemes also used in
the current work is studied in detail for heat and wave equations. We actually employ some
information on those results in some part of this paper, as visible in some remarks with clear
citation. Furthermore and naturally, we recall the numerical schemes in a similar style here.
In all other aspects, we begin our investigations here at the point where [10] concludes.

2. Theoretical Background

Talking about shape correspondence and shape matching, we need to build a formal
understanding of shapes and an idea of comparing them. To this end, imagine, e.g., two
versions of a centaur and one version of a dog. It appears obvious that the two different
versions of a centaur, such as standing and bowing as in Figure 1, have more in common
than a centaur and the dog. Naturally, we expect to also obtain corresponding results
from our numerical model. Therefore, we study the behaviour of wave propagation on
shapes. This propagation will lead to an object called feature descriptor. The descriptors
can be compared pointwise with each other to find similarities between the shapes. In the
end, we should have a better match between two centaur shapes than between a dog and a
centaur shape.

This idea will be realised by mathematical formulas over the next sections. The geometric
basics of the set-up coincide with the classical framework in the field; see, e.g., [2].
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M M̃

R

Figure 1. Almost isometric transformation T between two centaur shapes M (shape 0) and
M̃ (shape 2) of the TOSCA dataset [2]. Additionally, we see the feature descriptor (function plots
in the boxes) at three different points xi with i ∈ {13, 221, 2686, 3269}. These are located at the left
thumb, the back and the left front hoof, in this order. The plotted feature descriptors are created for
illustration of the underlying idea and are not based on real calculations.

2.1. Basics on Geometry of Shapes

We consider a shapeM⊂ R3 as a compact two-dimensional Riemannian manifold of
a three-dimensional geometric object B, and we assume that it is declared by its bounding
surface M = ∂B. Two shapes M and M̃ will be called isometric if there is a smooth
homeomorphism S : M→ M̃ between both shapes that preserves the intrinsic distance
dM : M×M→ R

dM(xi, xj) = dM̃(S(xi), S(xj)) (1)

for all surface points xi, xj ∈ M.
Considering only isometric shapes would be far too restrictive in our framework.

Nearly all shapes have small elastic deformations when they undergo a transformation
that will undermine the equality in Equation (1). These deformations occur either as a
by-product of shape acquisition or due to the variability in the pose itself; see Figure 1.
With this in mind, we use the almost isometric transformation R : M → M̃, which will
allow small deformations

∣∣dM(xi, xj)− dM̃(R(xi), R(xj))
∣∣ < ε (2)

for all xi, xj ∈ M and ε a small non-negative number.

2.2. Shape Correspondence

To compare two shapesM and M̃with each other, we need two ingredients. First, we
employ a feature that will describe our shape pointwise well enough to make comparison
possible. Second, we need a metric so we can declare which features are close to each other
and which are not.

2.2.1. Feature Descriptor

For establishing shape correspondence, we consider for each point on an object’s
surface a feature descriptor, which is a computational object that contains geometric shape
information. To meet this aim, we will solve the wave or damped wave equation on the
shape, respectively. Depending on the starting point xi and the local geometry around xi,



Algorithms 2022, 15, 304 4 of 26

the solutions u(x, t) of these PDEs will propagate differently. The feature descriptor of xi
will be the solution u(x, t) restricted to the spatial component

fxi (t) := u(x, t)|x=xi (3)

Roughly speaking, we expect that the feature descriptors of different points differ
enough to not get mixed up with each other but are quite similar for matching points on
variations of the same shape (undergoing almost isometric transformations).

To illustrate the idea about the nature of the feature descriptors we compute, we show
in Figure 2 the analytical solution u(x, t) of the damped wave equation for a cosine initial
condition propagating in time. The feature descriptor fxi is plotted as the black line in this
figure. For more details, we refer to Section 5.

−π
0

π 0

5

10
−1

0

1

x

t

u
(x
,t
)

u(x, t)

fxi(t)

Figure 2. The one-dimensional analytical solution of the damped wave equation. The spatial interval
is chosen from −π to π and [0, 10] for the time interval. The feature descriptor fx=0 is the solid black
line and is the function u(x, t) restricted to x = 0. For more details on the solution and how we obtain
it, we refer the reader to Section 5.

In our framework, we need to compute the feature descriptor of all points on the
different shapes. After that, we compare them with each other and search for the best
matching ones.

2.2.2. Metric

To compare the feature descriptors for different locations xi ∈ M and x̃j ∈ M̃ on two
different shapesM and M̃, we define a distance d f (xi, x̃j) via the L1 norm

d f (xi, x̃j) =
∫

I
| fxi − f x̃j |dt (4)

over the interval I = [0, T]. This will compute the absolute difference between two feature
descriptors. At the end, the tuple of locations (xi, x̃j) ∈ M×M̃ with the smallest distance
are considered to belong together.

2.3. PDE-Based Models

Since we consider a PDE for generating the feature descriptor, the choice of a good
PDE to meet this purpose is a core question of the shape-matching framework.

In this paper, we want to focus on the wave and damped wave equation, respectively.
Other PDEs such as the heat equation [4] have already been discussed for our framework
to some extent [7,9,10].

The classical wave and damped wave equation make use of the Laplace operator ∆.
When we operate onM⊂ R2, we can restrain the Laplace operator to the local variables of
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our manifold. The corresponding operator is called Laplace-Beltrami operator (LBO) ∆M,
and it will respect the curvature of the manifold. Applied to a scalar-valued function u, we
can write it as:

∆Mu =
1√
|g|

2

∑
i,j=1

∂i

(√
|g|gij∂ju

)
(5)

where |g| is the determinant of the metric tensor g ∈ R2×2 that describes locally the
geometry, and gij are the entries of its inverse; see, e.g., [11] for more details on the
differential geometric notions. The LBO itself is related to the mean curvature of a shape [12].
Shape representations making use of the Gaussian curvature are also possible [13,14].

2.3.1. Wave Equation and Damped Wave Equation

Let us first recall the wave equation introduced for the shape matching scenario in [6],

∂ttu(x, t) = ∆Mu(x, t), x ∈ M, t ∈ I (6)

on a surfaceM and the interval I = [0, T]. As has been shown in [6], this PDE may be
considered the PDE-based model that gives the best results among the PDEs from classical
physics in the numerical shape-matching setting. As a key model for our investigations,
we employ the damped wave equation

∂ttu(x, t) + k∂tu(x, t) = ∆Mu(x, t) (7)

with x ∈ M and t ∈ I . Choosing k = 0 will lead back to the standard wave Equation (6).
Making use of both equations, we study the expansion of an initial wave over the surface
of a given shape.

To distinguish clearly between the corresponding feature descriptors, we employ the
following notions. We use the damped feature descriptor to denote the feature descriptor
obtained from the solution of the damped wave Equation (7) and just feature descriptor to
denote the one obtained from the wave equation without damping (6).

2.3.2. Initial Conditions

Both considered PDEs need to be supplemented by an initial function and an initial
velocity to solve them properly. In all our scenarios, we will set the initial velocity
∂tu(x, 0) = 0. Let us now comment on the chosen initial functions.

First, we use the Dirac delta function

u(x, 0) = uδ(x) = δxi (x) =

{
1, x = xi

0, x 6= xi
(8)

centred at the point xi ∈ M; cf. [4] for use of this function in the context of feature
computation with PDE.

The second initial function we use is a highly peaked Gaussian distribution

u(x, 0) = uG(x) = exp

(
−1

2
d2
M(x, xi)

σ2

)
(9)

around the centre xi ∈ M and with σ2 as the width parameter. Letting σ converge towards
zero would lead to the Delta distribution:

lim
σ→0

exp

(
−1

2
d2
M(x, xi)

σ2

)
= δxi (x) (10)
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3. Basic Discretisation

Let us recall the basic discretisation, as it has already been employed, for instance,
in [6]. The discrete shape representationMd = (P , T ) of our shapeM can be realised
through a set of pointsP := {x1, . . . , xN} containing coordinates of each point xi and a set of
triangles T . In T , we store G triplets i, j, k, which indicate that the points xi, xj, xk ∈ P form
a triangle together. Furthermore, we denote by Ωi the barycentric cell volume surrounding
the point xi.

In Figure 3, we visualise these terminologies. We plotted the shape of the centaurs
head on the left. In the middle, we show the discrete version of this head. On the right
image, we zoomed in on the discrete model to show the points, angles and barycentric
cell volume.

M Md

αij

βij

•

xi

•

xj •

xk

Ωi

(x
i
, x

j
)

Figure 3. (Left) The 2D Riemannian manifold M of the centaur’s head. (Middle) The discrete
approximationMd of this manifold. Md is displayed via the point cloud P and the triangles T .
(Right) The setting for the calculation of the LBO around the point xi. The yellow area indicates
the cell volume Ωi. Additionally, we see the two angles αij and βij opposite to the edge (xi, xj)

(green line).

3.1. Spatial Discretisation

We now want to explain spatial discretisation. Let us illustrate the proceeding at hand
of Equation (7). Setting k = 0 in this example will get us the discretisation for Equation (6).

First, we consider Equation (7) over a shapeM and time interval I . The integration
over time and space will lead to

∫

I

∫

M
∂ttu(x, t) + k∂tu(x, t)dx dt =

∫

I

∫

M
∆M u(x, t)dx dt (11)

In the discretisation, we subdivide our meshed surfaceMd and the time interval I in
the following manner:

Md =
N⋃

i=1

Ωi, I =
M⋃

l=1

Il with Il = [tl−1, tl ] (12)

with N the total number of barycentric cell volumes Ωi located around the point xi and M
the total number of time intervals 0 := t0 < t1 < . . . < tM := T with the time increment
τ = tl − tl−1 uniform for all l ∈ {1, . . . , M}. This allows us to focus on one arbitrarily
chosen time period with t ∈ Il and a fixed cell Ωi:

∫

Il

∫

Ωi

∂ttu(x, t) + k∂tu(x, t)dx dt =
∫

Il

∫

Ωi

∆M u(x, t)dx dt (13)

Additionally, with the definition of the cell average

ui(t) =
1
|Ωi|

∫

Ωi

u(x, t) ≈ u(x̄i, t)dx (14)
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where the approximation is an identity up to second-order accuracy [15] and where |Ωi|
denotes the area of Ωi, we can calculate the averaged Laplacian as

Lui(t) =
1
|Ωi|

∫

Ωi

∆M u(x, t)dx (15)

This integral is solved with the use of the divergence theorem and the application of
the cotangent weight scheme [16], which we will recall in a moment. In the end, we obtain
the ODE system

ü(t) + ku̇(t) = Lu(t) (16)

where the N-dimensional vector u(t) = (u1(t), . . . , uN(t))> will store all functions ui(t).
The cotangent weight scheme will give us the discrete LBO L ∈ RN×N [17,18]. This

matrix is composed via the sparse matrix representation L = D−1W with

Wij =





− ∑
j∈νi

wij, if xi = xj

wij, if xi 6= xj and j ∈ νi

0, else

(17)

computed with the cotangent formulae

wij =

{ cot αij+cot βij
2 if (xi, xj) ∈ Ei

cot αij
2 if (xi, xj) ∈ Eb

(18)

Thereby, νi denotes the neighbourhood of vertexes xi, Ei as the set of interior edges and
Eb as the set of boundary edges. Let us mention that in our considered scenarios, Eb = ∅,
since we assume we deal with a closed manifold. The angles αij and βij are opposite to
the edge (xi, xj), and the matrix D = diag(|Ω1|, . . . , |Ωi|, . . . , |ΩN |) contains the local cell
areas. A visualization of this can be seen in the right plot of Figure 3.

In order to enforce a uniform numerical proceeding with respect to all occurring time
derivatives, we want to transform the Equation (16) into an ODE system of first-order.
We obtain

q̇(t) = Hq(t) (19)

due to the choice of q(t) =
(
u(t), u̇(t)

)> ∈ R2N and

H =

(
0 IN
L −kIN

)
∈ R2N×2N (20)

with IN ∈ RN×N being the identity matrix.
At this point, it is adequate to talk about the discrete initial conditions. As in the

analytical scenario, we set the initial velocity to the null vector u̇(0) = 0. The discrete
versions of the initial conditions (8) and (9) can be written as

uδ
xi
= u(xi, 0) = (0, . . . , 0, |Ωi|−1, 0, . . . , 0)> (21)

and
uG

xi
= |Ωi|−1(uG(x1), . . . , uG(xi), . . . , uG(xN))

> (22)

3.2. Eigenproblem and Modal Coordinate Reduction

Systems such as (16) or (19) come with large sparse matrices, and thus their repeated
solution consequently leads to high costs in terms of computation time. In order to approach
this issue, one of the natural ideas is to reduce the order of the matrices from N, such as in
Equation (16) or 2N such as Equation (19), to a smaller order r. The Modal Order Reduction
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(MOR) technique will offer us a suitable framework for performing this in a suitable way.
With this technique, a low-dimensional system will supplant the current high-dimensional
one. We recommend the reader to [19,20] for more details on the MOR topic.

The MOR technique itself includes a large variety of methods. Specifically, in our
framework, we want to focus on the Modal Coordinate Reduction (MCR) technique. In [9],
an approach was presented, which we will briefly recall now.

The key step is the calculation of the eigenvalues λ and eigenvectors v of the LBO Lv =
λv. With L = D−1W, we may reformulate this into the generalised eigenvalue problem

Wv = λDv (23)

The symmetry of W and the diagonal matrix D will lead to real eigenvalues and
linear independent eigenvectors. Additionally, we determine that the eigenvectors v are
D-orthogonal with v>i Dvj = δij. These considerations will lead to the following equations:

I = V>DV, L = VΛV>D, Λ = V>WV (24)

with V being the right eigenvector matrix of L, and Λ being the diagonal matrix of
eigenvalues. Multiplying the second equation with V from the right will give the basic
property LV = VΛ, making use of the first identify in (24). The third equation can be
obtained via the multiplication of V>D from the left on LV = D−1WV = VΛ.

To finally achieve the MCR transformation, we use these considerations and substitute
Equation (16) with u = Vw, leading to

Vẅ + kVẇ = LVw (25)

With the left multiplication of V>D, we obtain

ẅ + kẇ = Λw (26)

Let us mention that, at this point, we still have a high-dimensional system since we
consider all eigenvalues. The reduction happens when we use the first r � N-ordered
eigenvalues 0 = λ1 < λ2 ≤ . . . ≤ λr. The reduced model writes as

ẅr + kẇr = Λrwr where wr = V>r Du (27)

Analogously to the steps from (16) to (19), we produce from (27) the equation

ṗr(t) = Hrpr(t) with Hr =

(
0 Ir

Λr −kIr

)
∈ R2r×2r, pr = (wr, ẇr)

> ∈ R2r (28)

The last step remaining is the transformation of the initial conditions into our reduced
system. Beginning with uδ(xi, 0) = (0, . . . , 0, |Ωi|−1, 0, . . . , 0)>, we obtain with wδ

r =
V>r Duδ the reduced condition wδ

r (xi, 0) = V>r ei. For the Gaussian initial condition, we
receive with wG

r = V>r DuG

wG
r (xi, 0) = V>r

(
uG(x1), . . . , uG(xi), . . . , uG(xN)

)>
(29)

The initial velocity ẇr(0) = 0 will not change, since it was already zero.

3.3. Improvement of the Eigenvalue Computation

Since the main aspect of the MCR method is the computation of the eigenvalues λ and
eigenvectors v, we want to show an improvement of the eigendecomposition, as mentioned
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in [9]. We want to transform our problem into the symmetric standard eigenvalue problem
via the similarity transformation.

L = D−1W = D−
1
2 D−

1
2 WD−

1
2 D

1
2 = D−

1
2 BD

1
2 (30)

with the symmetric, inherited from matrix W, matrix B = D−
1
2 WD−

1
2 . Due to this

transformation, the matrices L and B are similar and share the same real eigenvalues.
However, the eigenvectors of L and B differ. With ṽ, we denote the eigenvectors of B, and v
refers to the eigenvectors of L. Then, v and ṽ can be transformed into each other via

v = D−
1
2 ṽ, ṽ = D

1
2 v (31)

3.4. Time Discretisation

In our experiments, we use three different numerical schemes for time discretisation.
We have two l0-stable schemes, namely the implicit Euler (IE) method as a method of
first-order accuracy in time and then a method of second-order presented in [21]. The third
method we use is the Crank-Nicolson (CN) method as a method of second-order accuracy,
which is not l0-stable. We showed in our previous work [10] that l0-stability is an important
property in the shape-matching framework and should not be left out.

As already mentioned, we subdivided the time interval I = [0, tM] into smaller
intervals Il = [tl−1, tl ] with 0 = t0 < t1 < . . . < tM. Additionally, we choose uniform time
increments τ = tl − tl−1.

As discussed in [9] we change the temporal domain [0, tM] for wave and damped
wave equations to [0, t∗] using

t∗(λr) =
tM

4
√
|λN |

4
√
|λr|

(32)

The computational parameters are thus τ = t∗
M , with M being the number of iterations.

3.4.1. Implicit Euler and Crank–Nicolson

To solve the time derivatives, we integrate the differential Equation (28) over Il either
with an approximation by the rectangle method to obtain the IE scheme

pr(tl)− pr(tl−1) =

tl∫

tl−1

Hrpr(t)dt ≈ τHrpr(tl) (33)

or the trapezoidal rule to obtain the CN scheme

pr(tl)− pr(tl−1) =

tl∫

tl−1

Hrpr(t)dt ≈ τ

2
Hr(pr(tl−1) + pr(tl)) (34)

With some minor transformations, we obtain

pr(tl) = (I2r − τHr)
−1pr(tl−1) (35)

for the IE method and

pr(tl) =
(

I2r −
τ

2
Hr

)−1(
I2r +

τ

2
Hr

)
pr(tl−1) (36)

for the CN method.
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3.4.2. Second-Order Time Integration

First-order accurate methods are easier to construct than the majority of second-order
methods, which may be produced by relying on Butcher tableaus. These tableaus may
become quite complicated when the scheme has to also be l0-stable.

In this section, we recall a second-order l0-stable (SOl0) scheme, first presented in [21],
that does not rely on Butcher tableaus and is relatively easy to compute. In the following,
we want to give a brief explanation of this method.

We aim to solve an equation like (19) or (28), and these equations look like

ẋ(t) = Ax(t) (37)

The solution of this ODE is x(t) = exp(tA), and for a time step further, we can write

x(t + τ) = exp((t + τ)A) = exp(τA)x(t) (38)

However, calculating exp(τA) is a complicated task. To simplify it, we make use of
approximations such as

R(τA) ≈ exp(τA) (39)

A simple choice of R(τA) would be R(τA) = (I − aτA)−1(I + (1− a)τA), which
leads to well-known numerical schemes just by changing a. Choosing a = 0, we obtain the
explicit Euler method. For a = 1, we obtain the IE method, as it is presented earlier in this
paper. The CN scheme can be produced by setting a = 0.5.

To obtain a l0-stable second-order method, we need another R(τA). Twizell et al.
presented the following equation

R(τA) = (I − r1τA)−1(I − r2τA)−1(I + (1− a)τA) (40)

as such a suitable choice. With r1,2 = 1
2

(
a∓
√

a2 − 4a + 2
)

, we obtain a method of

second-order, and by choosing a = 2−
√

2− ε, with ε being an arbitrarily small positive
number, we obtain a l0-stable method which relies only on real-valued arithmetic.

Putting these considerations on our Equation (28) leads to the following numerical
scheme:

pr(tl) = (I2r − r1τHr)
−1(I2r − r2τHr)

−1(I2r + (1− a)τHr)pr(tl−1) (41)

4. Experimental Settings

After presenting all the mathematical background, we now turn to basic matters of
implementation and testing. With this aim, we present detailed information about the data
set we used, the way we declare whether two given shapes belong together or not, and,
last but not least, we provide a flowchart of our code.

4.1. Dataset

We used a selection of the classic TOSCA data set [2]. This set has a total of 80 shapes
from animals and humans in different positions. The resolution of these shapes goes from
4344 points up to 52,565 points. The shapes from this data set have a ground-truth map.
Thus, for overall shapes of one and the same kind, we know which points belong together.

Unless we say otherwise, we used the centaur shape (cf. Figure 1) as our main shape
for all the experiments. We chose this shape because it has both human and animal
parts. For the sake of completeness, we would like to mention that the centaur consists of
N = 15,768 points.

4.2. Evaluation and Reference Models

When do we know that of two shapes, one is obtained by an almost isometric
transformation of the other shape? To answer this question, we would like to follow
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the Princeton benchmark protocol [22]. For this, we need to explain the concepts of the
geodesic error and the hit rate.

The geodesic error is an important step in the Princeton benchmark protocol for
calculating the correspondence quality. To this end, we determine the normalised intrinsic
distance dM(xi, x∗)/

√
AM between the computed match xi ∈ M and the ground-truth x∗.

With AM, we declare the total area of the shape.
With this definition, we effectively draw a circle around the matching point xi with a

radius of a threshold parameter. Starting at 0, we increase the radius until the ground-truth
x∗ is inside the circle, but not more than 0.25.

If x∗ is inside the circle with a radius of at least 0.25, this matching is declared as true
and false otherwise. Spoken in these terms, we have a perfect matching when we have a
threshold parameter of 0.

The hit rate defines the rate of true matchings and can be calculated with

hit rate =
TP

(TP + FN)
(42)

With TP, we describe the number of true positive results, and FN describes the number
of false negative results.

4.3. Our Code

At this point in the paper, we want to explain the basic steps of the code used for the
shape matching calculations. All steps of Algorithm 1 refer to the equations explained
within this paper.

Algorithm 1: Shape Matching MOR Method
Data: Shapes
Result: hit rate between shapes

1 foreach Shape do
2 Compute W and D−1 for the LBO via (17) and (18).;
3 Compute eigendecomposition (λ, ṽ) of B (30) to get the eigenvectors of the

LBO L with (31);
4 Keep the r lowest nonzero eigenvalues λr and the corresponding eigenvectors

Vr. Additionally, keep the maximal eigenvalue λN for the temporal domain
calculation;

5 Compute temporal domain t∗ with (32) and the time increment τ = t∗/M;
6 Compute Hr via (28);
7 foreach x ∈ P do
8 Set initial condition u(xi, 0) with (8) or (9);
9 Transform the initial condition into the reduced system wr(xi, 0) via (27);

10 Solve this with one of our three models (35), (36) or (41);
11 Transform the solution back into the full system via u = Vrw;
12 Extract the damped feature descriptor fxi (t) from u (3);
13 end
14 end
15 Compare feature descriptors of different shapes (4) to find the best matching ones;
16 Compute the hit rate using Equation (42);

Overall, this code does not need much input. A basic version of the algorithm needs
the shapes and two parameters, the number of the eigenvalues to keep for modal coordinate
reduction r, and the end of the time interval tM. Both parameters can be set to r = tM = 100.
That this is a suitable choice for the parameters has been verified in previous works [6,7,9].

If we want to use the damped wave equation or the Gaussian initial conditions, we
have to pass the damping parameter k and the width of the Gaussian function σ as well.
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5. Introductory Synthetic Tests

We now conduct in a first experimentally oriented section a series of comparatively
simple, mainly synthetic experiments. These experiments are aimed to show very clearly
important computational aspects and they allow us to perceive these independently from
potentially perturbing parameters, such as, e.g., varying shape resolution or noise in a
shape’s acquisition.

Let us nevertheless start discussing a given example shape, serving as a motivation
for the considerations. Running a basic experiment on the centaur shape, with delta peak
initial condition (8) and the three methods to solve the wave Equation (6), we notice that
the second-order methods perform very different from the first-order method. In order
to see this, let us refer to Figure 4 where we show the feature descriptors from different
points on the shape. One point is on the left thumb, one on the back and one at the hoof.
With the blue circles and red triangles, we distinguish between Shape 0 and Shape 2, or left
and right in Figure 1. In the rows, we see the different numerical schemes and the columns
indicate the different points. We notice that the feature descriptors of the second-order
methods will result in jagged curves. On the other hand, the first-order method will lead to
smooth curves.
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Figure 4. Visualisation of the feature descriptor at different points of the centaur shape, obtained
through the solution of the wave equation using the IE solver with δ-peak initial conditions. Shape 0,
Shape 2 and the point are equal to the points, and shapes are shown in Figure 1. (Rows) Different
solver. (Columns) Different points.

Naturally, however, one would expect that all the schemes give an account of the
underlying analytical model, where the second-order methods are expected to give a more
accurate solution than the first-order scheme. Thus, we conjecture that we observe some
hidden computational parameters that have an important impact on feature construction.

In this section, we want to explain these observations, and in doing so, we attempt
to find a better model for the shape-matching scenario. To pursue this aim, we study an
academic example. Furthermore, we can also explain in some detail the idea in the use
of the damped wave equation as a general model for some important phenomena in the
feature descriptor computation.
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5.1. Academic Examples

When we want to study our model properties with the numerical schemes, it comes
in handy to find an analytical solution for the feature descriptor, first. For this, we need a
more practicable setting than the centaur shape.

We will use the 1D damped wave equation utt + 2kut = uxx on the interval of x ∈[
− L

2 , L
2

]
, periodic boundary conditions and initial velocity ut(x, t) = 0, for this purpose.

The value 2 in this equation will make the calculation of the analytical solution easier to
execute. In the following, we will outline the extraction of the solution, for the sake of
completeness. In doing so, we want to be as general as possible and as detailed as necessary.

With the method of separation of variables and the condition,

1 <
2π

kL
(43)

we receive the analytical solution u(x, t) = ∑n un(x, t) via

un(x, t) = e−kt An

(
cos(αnt) +

k
αn

sin(αnt)
)

cos(βnx) (44)

The condition (43) is needed to generate an oscillating solution that may give a
meaningful result for generating a feature. Furthermore, we set αn =

√
β2

n − k2 and
βn = 2nπ

L . In the standard shape-matching scenario, we would use uδ(x) or uG(x)
as initial conditions u(x, 0). Since we would have to Fourier transform these initial
conditions, and this will not make the solution more pleasant, we choose the cosine
function u(x, 0) = cos(x) as the initial condition instead. With this choice and L = 2π, we
can determine the parameter An in Equation (44):

cos(x) = u(x, 0) = ∑
n

An cos(nx) (45)

which implies

An =

{
1 if n = 1
0 if n 6= 1

(46)

In the end, we get the analytical solution for our academic example

u(x, t) = e−kt
(

cos(
√

1− k2t) +
k√

1− k2
sin(

√
1− k2t)

)
cos(x) (47)

From this equation, by choosing a specific x, we can also obtain the feature descriptor.
We choose the centre of the domain x = 0, meaning

fx=0(t) = u(x, t)|x=0 = e−kt
(

cos(
√

1− k2t) +
k√

1− k2
sin(

√
1− k2t)

)
(48)

Setting k = 0 will generate the solution and feature descriptor for the wave equation.
As we did earlier, we will write analytical (damped) feature descriptor for the feature descriptor
obtained from the analytical solution of the (damped) wave equation.

In Figure 2 we already presented the solution u(x, t) and the feature descriptor of
this example. The solution u(x, t) is presented as a red-blue surface. Reddish parts are
greater than zero, and bluish parts are less than zero. Additionally, we plotted the feature
descriptor f0 as a solid black line. For the evaluation, we have chosen the time increment
τ = 0.1 and the damping constant k = τ

2 .

5.2. Experiments

Now, after explaining our academic setting, we want to use this to study the parameters
for a good shape-matching model. In addition, we want to present insights into the use of
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the damped wave equation and Gaussian initial condition. Thereby, we want to explain
the jagged curves that occur in the feature descriptors of the second-order methods.

5.2.1. Details for the Damped Wave Equation

We already noticed in our last work [10] that the second-order methods CN and SOl0
did not perform favourably compared to the first-order method IE.

Using numerical solvers for PDEs will always result in a solution with an approximation
error compared to the exact solution. We could, in principle, attempt to conduct an
analytical error analysis of the numerical schemes to determine accounts of the wave
propagation and damping parts in the leading order errors, but this is actually a quite
tedious issue for the SOl0 scheme, which is of importance in our numerical study. As it
turns out, when approaching this task, the resulting terms are not as clear to interpret as
desirable. It is even more challenging and a great deal beyond the scope of this study to
perform a theoretical error analysis for the setting on a shape.

Thus, we opt to present here a more vivid approach that clearly illustrates the
underlying mechanisms. Since we have the analytical damped feature descriptor (48),
we can adjust the damping parameter k in a way that it will fit the feature descriptors
obtained from one of the numerical solvers. For the evaluation, we chose τ = 0.1 as the
time increment and h = 0.05 as the lattice parameter.

In Figure 5, we present the results of our approach. In this figure, the red circles
indicate the analytical feature descriptor obtained from the IE method. The blue triangles
belong to the CN scheme, the solid black line is the analytical damped feature descriptor,
and the solid red line shows the difference between the second-order methods.

In the top row in Figure 5, we changed the damping parameter k from the analytical
damped feature descriptor to fit best with the feature descriptors from the IE (left) or the
CN method (right). For the fit to the IE method, we used a damping parameter of k = τ/2.
In the top right plot, we used k = τ/8 as the damping parameter. This indicates that the
numerical solution of a wave equation obtained via the IE method is closer to the analytical
solution of the damped wave equation than to the analytical solution of the wave equation.
This phenomenon is well known under the topic of modified equations [23].

In the bottom right plot, we showed that it is possible to imitate the analytical feature
descriptor from the IE method with the analytical damped feature descriptor from the CN
method. The damping parameter was set to k = τ.

In total, this means that the solution of the wave equation using the IE method and
the solution of the damped wave equation using the CN method are approximately the
same. This leads us to conjecture that it is possible, with an adequate choice of the damping
parameter, to describe beneficial properties of the IE method in an analytical way. This
may give an indication about a potentially necessary (or beneficial) damping behaviour in
continuous-scale PDE models that may be useful in a more general shape matching scenario.

In the bottom left picture of Figure 5, we present the difference between the two
second-order methods. We observe that the difference becomes slightly larger during time
evolution, but for our time interval, they are close to each other. This result leads us to plot
only the CN method as representative of the second-order methods.

The error between the second-order methods will grow, and at a certain point, the results
of both schemes are not equal anymore. To show this, we set up Figure 6. In this plot,
we see the cosine initial condition at the top and the second-order schemes at different
iterations on the bottom. We have chosen iterations close to the 100th, 250th and 500th
iteration to show the differences between both solutions. We chose iterations close to the
mentioned ones because we want to show the turning point for the SOl0 method. In doing
so, the comparison to the CN gets easier. Both solutions will simply oscillate up and down
without any movement to the sides. The blue line belongs to the CN scheme, and the
green one belongs to the SOl0 method. For obtaining faster results, we increased the time
increment from τ = 0.1 to τ = 0.5.
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Figure 5. For all plots, red circles indicate the CN method, and the blue triangle denotes the SOl0
scheme. The black solid line indicates the analytical damped feature descriptor, and the red line
stands for the difference between the two analytical damped feature descriptors obtained from
the second-order methods. (Top left) The damping parameter for the analytical damped feature
descriptor was set to k = τ/2. (Top right) Damping parameter was set to k = τ/8. (Bottom left) We
plotted the difference between the analytical damped feature descriptors obtained with the CN and
SOl0 method. The difference will not exceed ±1 · 10−2. Therefore, only CN is used as a representative
of the second-order methods. (Bottom right) We compared the damped feature descriptor (k = τ)
obtained using the CN method with the feature descriptor using IE. All (damped) feature descriptors
are extracted from a solution u(x, t) at the point x = 0. For the numerical calculations, we set the time
increment τ = 0.1 and the lattice parameter to h = 0.05.
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Figure 6. (Top row) Cosine initial condition. (Bottom row) We plotted the solution from our academic
setting at different iterations. The solution was generated using the SOl0 (green) scheme and the
CN (blue) method. We chose iterations close to 100, 250 and 500 at which the SOl0 solution has a
maximum amplitude. We notice a phase drift and small damping as well. For faster results, we
increased the time increment to τ = 0.5.
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While both solutions u(x, t) are still quite close together at 100 iterations, there is a
phase difference that becomes noticeable after 250 iterations and can no longer be denied
after 500 iterations. Since we see the SOl0 solutions u(x, t) at their turning point, we can
notice that the second-order features not only a phase error but also inherent damping as
well. We only realise it apparently later in time evolution in this simple setting. Let us
note, however, that the use of non-uniform grids as appearing in higher dimension over a
shapes’ surface may possibly enhance this phase-shift effect.

5.2.2. Details for the Gaussian Initial Condition

We want to discuss the jigged curves in Figure 4 now. Every time a numerical solver
comes across a discontinuity, over- and undershooting is supposed to occur. This is the
so-called Gibbs phenomenon. For more details on this topic, we refer the reader to [24].

To illustrate the Gibbs phenomenon, we will solve the δ-peak (cf. Figure 7) and
Gaussian initial conditions (cf. Figure 8) with the undamped wave equation and our three
numerical methods.
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Figure 7. (First row) We see a delta peak as the initial condition. (Columns) The solutions of different
numerical schemes (left to right) for the IE, CN and SOl0 schemes are presented. (Rows 2–4) We see
the solution after different iterations. In the second row, we calculated 10 iterations. The third row
shows us the solution after 20 iterations, and in the fourth row, the 50th iteration is presented. All
numerical schemes show these oscillations, called the Gibbs phenomenon. This is more visible in the
second-order schemes than in the first-order method. The time increment was set to τ = 0.01.

In Figure 7, we computed up to 50 iterations (rows) with our three numerical solvers
(columns). For all three methods, we observe two waves moving away from each other.
Additionally, we notice over- and undershoots occurring in the centre of the plot, exactly
where the discontinuities were. Through the inherent damping of the IE scheme, the Gibbs
phenomenon is less distinct and is vanishing faster than in the second-order methods.

In Figure 8, we used a Gaussian curve with σ = 10√
2

as the initial condition. Again, we
solved the wave equation with our models. This time we did not observe any over- and
undershoots. We only notice the two waves propagating away from each other.

Since we started with a curve with a height of one, both second-order schemes produce
two waves with a height of a half. The first-order method shows some loss in the height of
the two waves, which indicates again the presence of a numerical damping mechanism.
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Figure 8. (First row) We see the Gaussian distribution exp
(
−x2/0.01

)
as the initial condition.

(Columns) The solutions of different numerical schemes for the (left to right) IE, CN and SOl0
schemes are presented. (Rows 2–4) We see the solution after different iterations. In the second row,
we calculated 10 iterations. The third row shows us the solution after 20 iterations, and in the fourth
row, the 50th iteration is presented. The time increment was set to τ = 0.01.

One may conjecture that using the Gaussian initial conditions together with the
second-order methods could lead to more information stored in the feature descriptor and
therefore to better matching results, as more spatial information might have been collected
by the spread initial function compared to the δ peak.

6. Experiments on Shapes

In this part, we aim to transform the ideas and insights of the last section onto real
shapes. We will discuss the importance of the damping parameter and Gaussian initial
condition as model parameters. For this, we use the settings made in Section 4.3.

Every time we say hit rate, we refer to the hit rate at a geodesic error of 0.25. In all
the following plots, we can distinguish the different numerical schemes by colour. The IE
method will always be red, CN will be blue, and SOl0 will have the colour green.

6.1. Study of the Damping Parameter

First, we wanted to study the impact of the damping parameter. For this experiment,
we used 30 different, logarithmic equidistant distributed, damping parameters k between
10−3 and 1. Then, we computed the hit rate depending on k within a shape class. The classes
we chose are cat, centaur, dog, horse and wolf. Additionally, we showed the mean of all
classes. To compare the results with our previous works [6,7,9,10], we added k = 0 (dashed
lines) to simulate the non-damping scenario. The results can be viewed in Figure 9.

Across all classes, we see a similar behaviour of the hit rates. For the first-order
method, the hit rate falls with rising k. In contrast, the second-order methods increase the
hit rate until k ≈ 0.1. This point differs from shape to shape. For k > 0.1, hit rates are the
same and fall similar to each other.

Let us take a closer look at the plot from the centaur (cf. Figure 10). In addition, we
resized the hit rate axes, so that variations become more evident. Here we notice that the
second-order methods have a dent at k ∈ (0.01, 0.03). While the CN method continues to
rise, the SOl0 method decreases in this interval. This inconstant growth in the hit rate can
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be observed in all other classes in Figure 9, as well. It is even noticeable in the plot with the
mean hit rate.
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Figure 9. We plotted the hit rate at a geodesic error of 0.25 over the damping parameter k. With the
three different colours, we identify the numerical schemes that were used to solve the damped wave
equation on the different shapes. Red indicate the IE scheme, blue denotes the CN method, and green
stands for the SOl0 scheme. Solid lines denote a changing damping parameter k, and the dashed lines
indicate a fixed k = 0.
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Figure 10. Hit rate from the centaur shapes over different damping parameters k. Solid lines indicate
changing damping parameters and dashed lines denote a fixed damping parameter (k = 0). The
colours distinguish between the different numerical methods: red for IE, blue for CN and green
for SOl0.

In conclusion of these experiments, we see that certain damping is a beneficial
mechanism (when about k ≈ 0.1). Since the second-order methods are supposed to
give an accurate account of the underlying analytical model, this means that a reasonable
analytical model appears to be the damped wave equation (with k ≈ 0.1). Let us note in
this context that one cannot expect that the results of the IE method and an analytical model
resolved at second-order accuracy coincide exactly, so one may interpret in many cases
such as in Figure 10 the peak situation (there again at k ≈ 0.1) and the IE method results as
numerically identical.
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6.2. Gaussian Initial Condition

As we studied in Section 5.2.2, we can expect that the Gaussian initial conditions will
provide smoother solutions u(x, t). The reduction of the Gibbs phenomenon should be
more beneficial for the second-order methods than for the IE method.

To study this, we recreated the settings from Section 6.1 and changed the initial
condition from the δ-peak to the Gaussian distributed peak. We studied three different
width parameters: σ = {ε, 1, 5}. Here, ε is a small non-negative number and indicates the
limit of σ→ 0. Since our calculations were done in MATLAB, we would like to mention
that MATLAB has a built-in machine ε with a value of εmachine ≈ 2.2204 · 10−16.

As in the previous section, we changed the damping parameter k to be between 10−3

and 1. The results can be seen in Figure 11. Again, we denote the different numerical
solvers with the known colour scheme and keep the meaning of the dashed and solid lines.
New to this plot are the symbols on the solid lines, which indicate the different values of σ.
The triangle belongs to σ→ 0, the square to σ = 1 and with the circle, we indicate σ = 5.
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Figure 11. (Top) to (bottom) We see the hit rate at a geodesic error of 0.25 from the centaur shapes
obtained by three different numerical schemes. The colours and rows distinguish between the
different solvers we used: (red, (top)) IE, (blue, (middle)) CN and (green, (bottom)) SOl0. Solid lines
indicate a changing damping parameter k and dashed lines for a fixed (k = 0) one. The symbols
distinguish between the different widths σ of the Gaussian distributed initial condition.

First, we want to mention that the results for σ→ 0 are similar to the results obtained
with the δ-peak initial conditions (cf. Figure 10). According to the theory, this should be the
case, but it is a good sign that our calculations verify this.

Second, we notice that in both scenarios, with or without damping (k = 0), the hit rate
increases with rising σ. There are two exceptions to this. One is the IE method. A resized
version of this plot can be found in Figure 12. Here, the Gaussian initial condition with
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σ = 1 is slightly better than the Gaussian initial condition with σ = 5. The second exception
can be observed in the interval of k ∈ [0.03, 0.4], where σ→ 0 performs slightly better than
σ = 1. However, in the end, this means a nearly negligible plus of ≈1%.

For the second-order schemes, we can still notice the maximum value for the hit rate
around k = 0.1. Even the changes in σ did not affect this value.

In the end, we can conclude that all numerical methods benefit from the Gaussian
initial condition. The second-order schemes profit even more than the first-order method.
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Figure 12. Resized version from Figure 11. We only plotted the IE method between k = 10−3 and
k = 10−2. We resized the hit rate axes as well. With these adjustments, it is possible to distinguish the
small changes caused by changing the width of the Gaussian initial condition.

6.3. Changing Width in Gaussian Initial Conditions

In Section 6.2, we saw that increasing σ, the width of the Gaussian initial condition, will
lead to better hit rates. We wanted to refine these results by fixing the damping parameter
to k = 0.1 and changing σ from 1 to 20. The results can be seen in Figure 13.
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Figure 13. The hit rate of the centaur shape over different widths σ of the Gaussian initial condition.
For this, we fixed the damping parameter at k = 0.1. The red solid line denotes the IE method,
the blue indicates the CN method and the green line is for the SOl0 method. The red dashed line
shows us the hit rate of the wave equation solved using the IE method and δ-peak initial conditions.
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As in the previous plots, we notice an increase in the hit rate. At σ ≈ 10, we reached the
maximum value for the hit rate. The maximum value for the IE method is at ≈72% and for
CN and SOl0 at≈72.4%. Again, the difference between the second- and first-order methods
is not that large. We added a dashed red line to the plot to indicate the hit rate from the
IE method solving the wave equation (k = 0). This setting belongs to the best-performing
scenarios thus far; here, it reached a hit rate of ≈73.25%.

As the reported hit rates are partially very small in their differences, one may consider
again close solutions as numerically identical.

6.4. Feature Descriptors with Optimised Parameters

After we studied the influence of the damping parameter k and width of the Gaussian
initial condition σ on the hit rate and, therefore, its suitability as a model parameter, we
wanted to know their impact on the feature descriptor.

To meet this aim, we recreated the plots from Figure 4, but this time we used the
damped wave equation with and without the Gaussian initial condition. In all cases, we
used the optimal parameters found during the last sections.

We started with Figure 14. Here, we solved the damped wave equation with a damping
parameter of k = 0.1 and a δ-peak initial condition. Overall, we notice that the feature
descriptors are more smooth compared to the ones in Figure 4. For the second-order
methods, we still have some jagged parts at the beginning. These are the remains of the
Gibbs phenomenon. In the end, the feature descriptors of the second-order methods are
more close to each other, which was not the case in Figure 4. For the hoof, all feature
descriptors of the different numerical solvers nearly look alike.
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Figure 14. The comparison of the feature descriptors from the centaur shape. We used the damped
wave equation (k = 0.1) with the δ-peak initial condition to generate the feature descriptor. Shape
0, Shape 2 and the points are equal to the points, and shapes shown in Figure 1. (Rows) Different
solvers. (Columns) Different points.

In Figure 15, we solved the damped wave equation with the Gaussian initial condition.
The damping parameter was set to k = 0.1, and the width of the Gaussian distribution was
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set to σ = 10. The results are similar to those from Figure 14. The main difference is the
disappearance of the Gibbs phenomenon remains. For the second-order methods, we still
have some artefacts at the back, but there are less than in Figure 14.
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Figure 15. The comparison of the feature descriptors from the centaur shape. We used the damped
wave equation (k = 0.1) with the Gaussian (σ = 10) initial condition to generate the feature descriptor.
Shape 0, Shape 2 and the points are equal to the points, and shapes shown in Figure 1. (Rows)
Different solvers. (Columns) Different points.

In the end, it appears that the optimised feature descriptors have qualitatively much in
common with the feature descriptors obtained from solving a heat equation ([10], Figure 4,
top left), roughly resembling an exponential damping. This is, however, not too surprising,
as we enforce by use of the damped wave equation and Gaussian initial condition important
properties such as, e.g., the l0 stability, shared with heat equation results. Let us also note
that the obtained hit rates clearly surpass the hit rates one may obtain by use of the
pure heat equation or HKS, so it is still evident that wave propagation is an important
model ingredient.

6.5. Noisy Shape Experiments

The shapes from the TOSCA dataset [2] are artificially created. Therefore, they have
no noise in the coordinates of the points. We want to address this fact and add noise to the
points. Again, we use the centaur as the shape class for our considerations. We applied a
percentage normally distributed noise of 6% and 12% to each shape.

With these noisy shapes, we repeat the experiments with the damping parameter
from Section 6.1. This means we solve the damping wave equation with the δ-peak initial
condition and repeat this with different damping parameters k between 10−3 and 1.

The results are plotted in Figure 16. The relations of the colours to the numerical
solvers remain the same. Dashed lines still refer to the non-damping scenario (k = 0) and
the solid lines indicate the change of k. However, the symbols on the solid lines refer to
the percentage of noise now. The triangle denotes a noise of 6%, and the square denotes a
12% noise.
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The first thing we observe is that with higher noise, the hit rate is decreasing, which
appears quite natural. The other thing we notice is that, in this scenario, the optimal value
for the damping parameter is k = 0.05, which is half of the value from the non-noise
scenario. What is also somewhat interesting is that we can increase the hit rate for the IE
method with certain damping parameters compared to the non-damping case. With a noise
of 12% and around k = 0.02, we are slightly better compared to the non-damping (k = 0)
case. The second-order methods show similar behaviour as in Figure 10.
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Figure 16. We solved the damped wave equation using different numerical schemes and the δ-peaked
initial condition over different k. Then, we computed the hit rate at a geodesic error of 0.25 and
plotted the hit rate over different damping parameters k. From (Top) to (Bottom), we see the hit rate
produced with the IE method (red), the CN scheme (blue) and the SOl0 method (green). With the
dashed line, we indicate the results from the k = 0 scenario. The triangle and square denote a noise
of 6% and a noise of 12%, respectively.
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Next, we wanted to recreate the experiments from Section 6.3. This time, we fixed the
damping parameter at k = 0.05 and solved the damped wave equation with the Gaussian
distributed initial condition. We repeated this with different values for σ, the width of the
Gaussian distribution. As before, we change σ to be between 1 and 20.

The results are illustrated in Figure 17. The meaning of the colours and the symbols
did not change. We obtained similar results for both noise levels. In the beginning, we see
an increase in the hit rate. When entering the interval σ ≈ 7 to σ ≈ 12, we notice a plateau
in the hit rate. In this interval, a rising σ did not affect the hit rate. For σ ≈ 12, the hit rate is
decreasing again.
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Figure 17. We solved the damped wave equation (k = 5 · 10−2) with the Gaussian initial condition.
Then, we computed the hit rate at a geodesic error of 0.25 and plotted it over different values of σ.
Additionally, we plotted the hit rate from the wave equation without damping obtained with δ-peak
initial conditions and solved by the IE method as a red dashed line. The triangle and square denote a
noise of 6% and a noise of 12%, respectively.

Overall, our results from the noisy shapes are similar to the results from the artificial
shapes. This indicates that our approach is robust and could be transferred to real-world
shape-matching scenarios.

7. Conclusions and Further Work

This paper represents an attempt to study the influence of several discrete and
continuous-scale model properties for the shape-matching scenario. In particular, we
analysed in detail that a (certain, but not too large) damping mechanism is a useful model
property, which may relate to the analogon of l0 stability of the underlying analytical model.

The usage of the δ-peak condition was motivated by the works on the HKS [4] and
WKS [5]. In our approach to the shape-matching framework, the Gaussian distributed
initial conditions seem favourable. In all experiments, we see an increase in the hit rate
when using Gaussian distributed initial conditions.

One of the most interesting points for future work seems to us to put a focus on the
influence of the initial condition, since it appears that it is important for hit rate quality
what kind of initial signal will be propagated. The experiments reported here using the
Gaussian initialisation may represent a starting point for this.
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