
Citation: Panteleev, A.V.; Kolessa,

A.A. Application of the Tomtit Flock

Metaheuristic Optimization

Algorithm to the Optimal Discrete

Time Deterministic Dynamical

Control Problem. Algorithms 2022, 15,

301. https://doi.org/10.3390/

a15090301

Academic Editor: Lorenzo

Salas-Morera

Received: 4 August 2022

Accepted: 23 August 2022

Published: 26 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Application of the Tomtit Flock Metaheuristic Optimization
Algorithm to the Optimal Discrete Time Deterministic
Dynamical Control Problem
Andrei V. Panteleev * and Anna A. Kolessa

Department of Mathematics and Cybernetics, Moscow Aviation Institute, National Research University, 4,
Volokolamskoe Shosse, 125993 Moscow, Russia
* Correspondence: avpanteleev@inbox.ru

Abstract: A new bio-inspired method for optimizing the objective function on a parallelepiped set
of admissible solutions is proposed. It uses a model of the behavior of tomtits during the search for
food. This algorithm combines some techniques for finding the extremum of the objective function,
such as the memory matrix and the Levy flight from the cuckoo algorithm. The trajectories of
tomtits are described by the jump-diffusion processes. The algorithm is applied to the classic and
nonseparable optimal control problems for deterministic discrete dynamical systems. This type of
control problem can often be solved using the discrete maximum principle or more general necessary
optimality conditions, and the Bellman’s equation, but sometimes it is extremely difficult or even
impossible. For this reason, there is a need to create new methods to solve these problems. The new
metaheuristic algorithm makes it possible to obtain solutions of acceptable quality in an acceptable
time. The efficiency and analysis of this method are demonstrated by solving a number of optimal
deterministic discrete open-loop control problems: nonlinear nonseparable problems (Luus–Tassone
and Li–Haimes) and separable problems for linear control dynamical systems.

Keywords: bird-inspired algorithms; metaheuristic methods; optimal control; discrete dynamical
system; tomtit; flock; Levy flight

1. Introduction

Global optimization algorithms are widely used to solve engineering, financial, op-
timal control problems, as well as problems of clustering, classification, deep machine
learning and many others [1–10]. To solve complex applied problems, both deterministic
methods of mathematical programming [11–13] and stochastic metaheuristic optimization
algorithms can be used [14–26]. The advantage of the methods of the first group is their
guaranteed convergence to the global extremum, and the advantage of the second group
is the possibility of obtaining a good-quality solution at acceptable computational costs,
even in the absence of convergence guarantees. Among metaheuristic optimization algo-
rithms, various groups are conventionally distinguished: evolutionary methods, swarm
intelligence methods, algorithms generated by the laws of biology and physics, multi-start,
multi-agent, memetic, and human-based methods. The classification is conditional, since
the same algorithm can belong to several groups at once. Four characteristic groups of meta-
heuristic algorithms can be distinguished, in which heuristics that have proven themselves
in solving various optimization problems are coordinated by a higher-level algorithm.

Evolutionary methods, in which the search process is associated with the evolution
of a solutions set, named a population, include Genetic Algorithms (GA), Self-Organizing
Migrating Algorithm (SOMA), Memetic Algorithms (MA), Differential Evolution (DE),
Covariance Matrix Adaptation Evolution Strategy (CMAES), Scatter Search (SS), Artificial
Immune Systems (AIS), Variable Mesh Optimization (VMO), Invasive Weed Optimization
(IWO), and Cuckoo Search (SC) [3,4,14–18,20].
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The group of Swarm Intelligence algorithms includes Particle Swarm Optimization
(PSO), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Bacterial Foraging
Optimization (BFO), Bat-Inspired Algorithm (BA), Fish School Search (FSS), Cat Swarm
Optimization (CSO), Firefly Algorithm (FA), Gray Wolf Optimizer (GWO), Whale Optimiza-
tion Algorithm (WOA), Glowworm Swarm Optimization (GSO), Shuffled Frog-Leaping
Algorithm (SFLA), Krill Herd (KH), Elephant Herding Optimization (EHO), Lion Pride
Optimization Algorithm (LPOA), Spotted Hyena Optimizer (SHO), Spider Monkey Op-
timization (SMO), Imperialist Competitive Algorithm (ICA), Stochastic Diffusion Search
(SDS), Human Group Optimization Algorithm (HGOA), and Perch School Search Algo-
rithm (PSS). In the methods of this group, swarm members (solutions) exchange information
during the search process, using information about the absolute leaders and local leaders
among neighbors of each solution and their own best positions [2,15–17,20,22–28].

The group of physics-based algorithms includes Simulated Annealing (SA), Adaptive
Simulated Annealing (ASA), Central Force Optimization (CFO), Big Bang-Big Crunch
(BB-BC), Harmony Search (HS), Fireworks Algorithm (FA), Grenade Explosion Method
(GEM), Spiral Dynamics Algorithm (SDA), Intelligent Water Drops Algorithm (IWD),
Electromagnetism-like Mechanism (EM), and the Gravitational Search Algorithm
(GSA) [15–17,19,23–28].

The group of multi-start-based algorithms includes Greedy Randomized Adaptive
Search (GRAS) and Tabu Search (TS) [15–17].

Among these four groups, bio-inspired optimization algorithms can be distinguished
as a part of nature-inspired algorithms [2,7,15,22–28]. In turn, among bio-inspired meth-
ods, bird-inspired algorithms that imitate the characteristic features of the behavior of
flocks of various birds during foraging, migration, and hunting are widely used: Bird
Mating Optimizer (BMO), Chicken Swarm Optimization (CSO), Crow Search Algorithm
(CSA), Cuckoo Search (CS), Cuckoo Optimization Algorithm (COA), Emperor Penguin
Optimizer (EPO), Emperor Penguins Colony (EPC), Harris Hawks Optimization (HHO),
Migrating Bird Optimization (MBO), Owl Search Algorithm (OSA), Pigeon Inspired Opti-
mization (PIO), Raven Roosting Optimization (RRO), Satin Bowerbird Optimizer (SBO),
Seagull Optimization Algorithm (SOA), and the Sooty Tern Optimization Algorithm
(STOA) [15,24–26].

One of the applications of bio-inspired optimization algorithms is the problem of
finding control laws for discrete dynamical systems [1,10]. As a rule, to solve this class of
optimal control problems, the necessary optimality conditions are applied, which are re-
duced to solve a boundary value problem for a system of difference equations. For systems
with convex varying, the discrete maximum principle is applied. An alternative way is to
apply sufficient optimality conditions in the form of the Bellman’s equation. In this case,
the optimal control found in the form of feedback depends on the state vector of the system,
which is more preferable. However, it is well known that with an increase in the state vector
dimension, the computational costs of using the dynamic programming procedure increase
significantly. Special problems are caused by the solution of nonseparable problems, as
well as problems in which the vector variation is not convex and, therefore, the discrete
maximum principle is not valid. Since the problem of optimal control of discrete systems is
finite dimensional, the use of efficient bio-inspired optimization methods for its resolution
is natural.

The article is devoted to the development of the swarm intelligence and bird-inspired
groups of methods based on observing the process of searching for food by a flock of
tomtits, organizing their sequential movement under the influence of the leader of the
flock. To simulate the trajectories of movement of each tomtit, the solution of a stochastic
differential equation with jumps is used. The parameters of the random process—the
drift vector and the diffusion matrix—depend on the position of all members of the flock
and their individual achievements. The method is hybrid because it also uses the ideas
of particle swarm optimization methods [15–17], methods that imitate the behavior of
cuckoos with Levy flights [29], and the Luus–Jaakola method with successive reduction
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and further incomplete restoration of the search area [1]. Based on the assertion of the
Free Lunch Theorem [30], it can be argued that the problem of developing new efficient
global optimization algorithms used to solve complex optimal control problems remains
relevant. In particular, the method should allow us to solve both separable and non-
classical nonseparable optimization problems for discrete deterministic dynamical control
systems [1,10]. As a benchmark of problems for assessing the accuracy of the method
and computational costs, a set of nonlinear nonseparable and classical linear separable
problems with known best or exact solutions was used.

The paper is organized as follows. Section 2.1 contains the statement of the discrete
deterministic open-loop control problem. Section 2.2 provides a description of the solution
search strategy and a step-by-step novel bio-inspired metaheuristic optimization method.
In Section 3, the application of the new optimization method described in Section 2.2
for the representative set of optimal control problems described in Section 2.1 is given.
Recommendations on the choice of method hyperparameters are given, time costs are
estimated to obtain numerical results of acceptable quality, and comparison with the results
obtained by other known metaheuristic algorithms is presented.

2. Materials and Methods
2.1. Open-Loop Control Problem

Let us consider a nonlinear discrete deterministic dynamical control system described
by a state equation of the form

x(t + 1) = f (t, x(t), u(t)), t = 0, 1, . . . , N − 1, (1)

where t is a discrete time with number of stages N; x is the (n × 1) state vector; u is
the (q × 1) control vector, u ∈ U(t) = [a1(t), b1(t)] × . . . × [aq(t), bq(t)]; fi(t, x, u),
i = 1, . . . , n are a known continuous functions.

Initial condition:
x(0) = x0. (2)

Let us define a set D(0, x0) of pairs d = (x(·), u(·)), where x(·) = {x0, x(1), . . . , x(N)}
is a trajectory, u(·) = {u(0), u(1), . . . , u(N − 1)} is an open-loop control, satisfying the
state equation (1) and initial condition (2).

The performance index to be minimized is defined on the set D(0, x0) as

I(d) =
N−1

∑
t=0

f 0(t, x(t), u(t)) + F(x(N)), (3)

or
I(d) = F(x(0), . . . , x(N); u(0), . . . , u(N − 1)), (4)

where f 0(t, x, u), F(x), F(x(·), u(·)) are known continuous functions. The notation
form (3) is typical for separable optimal control problems, and the form (4) is typical for
nonseparable ones.

It is required to find an optimal pair d∗ = (x∗(·), u∗(·)) ∈ D(0, x0) that minimizes
the performance index, i.e.,

I(d∗) = min
d∈D(0,x0)

I(d). (5)

To solve the problem (5), an algorithm that imitates the behavior of a tomtits flock is
proposed. This algorithm belongs to the nature-inspired (more precisely, bird-inspired)
and swarm intelligence metaheuristic optimization algorithms [2,15–17]. This problem was
solved using iterative dynamic programming and the Luus–Jaakola algorithm [1] and by
the Perch School Search optimization algorithm [10]. The results of a comparative analysis
of the obtained results are presented below in the solved examples.
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2.2. Bio-Inspired Metaheuristic Optimization Method

The problem of finding the global minimum of the objective function f (x) = f (x1, . . . , xn)
on the set of feasible solutions of the form D = [a1, b1]× · · · × [an, bn] is considered.

The Tomtit Flock Optimization (TFO) method of simulating the behavior of a flock of
tomtits is a hybrid algorithm for finding the global conditional extremum of functions of
many variables, related to both swarm intelligence methods and bio-inspired methods.

A tomtit unites in flocks. They obey the commands of the flock leader and have some
freedom in choosing the way to search for food. Tomtits are distinguished from other birds
and animals by their special cohesion, coordination of collective actions, intensity of use of
the food source found until it disappears, and clear and friendly execution of commands
common to members of the flock.

Finite sets I = {xj = (xj
1, xj

2, . . . , xj
n)

T
, j = 1, 2, . . . , NP} ⊂ D of possible solutions,

named populations, are used to solve the problem of finding a global constrained minimum
of objective function, where xj is a tomtit-individual (potential feasible solution) with
number j, and NP is a population size.

In the beginning, when number of iterations k = 0, the method creates initial popu-
lation of tomtits via the uniform distribution law on a feasible solutions set D. The value
of objective function f (x) is calculated for each tomtit, which is a possible solution. The
solution with the best value of objective function is the position of flock leader. The leader
does not search for food in the current iteration. It waits for results of finding food for
processing results and further storage in the memory matrix:x1

1 · · · x1
n f (x1)

...
. . .

...
...

xK
1 · · · xK

n f (xK)

.

The memory matrix size is K × (n + 1), where K is a given maximum number of
records. The best achieved result on each k-th iteration is added in the matrix until the
matrix is fulfilled. The number K defines the iterations counted in one pass. Results in the
matrix are ordered by the following rule. The first record in the matrix is the best solution
(x1, f (x1)); other records are ordered by increasing (nondecreasing) value of the objective
function. When the memory matrix is fulfilled, the best result is placed in a special set Pool
(set of the best results of passes), after which the matrix is cleared.

New position of the leader is randomly generated by Levy distribution [29]:

x1,k+1
i = x1,k

i +
α

k + 1
· Levyi(λ), i = 1, . . . , n,

where x1,k
i is a coordinate of the leader’s position on the k-th iteration, and α is a movement

step, λ ∈ (1, 3]. Studies of animal behavior have shown that the Levy distribution most
accurately describes the trajectory of birds and insects. Due to the “heavy tails” of the
Levy distribution, the probability of significant deviations of the random variable from the
mean is high. Therefore, according to the above expression, sufficiently large increments
are possible for each coordinate of the vector xj,k. If the new value of the certain coordinate
does not belong to the set of feasible solutions; that is xi /∈ [ai, bi], then one should repeat
the generation process.

This process describes the flight of the flock leader from one place to another. Other
tomtits fly after it at the command of the leader. Positions of these tomtits are modeled
using a uniform distribution on the parallelepiped set. The center of the parallelepiped set
is determined by the position of the leader of the flock; the lengths of the sides are equal
rk(bi − ai), i = 1, . . . , n, where rk+1 = γ rk, r0 = 1, γ—reduction parameter of search set; if
rk < ε, then the current pass is stopped and a new one starts. Upon reaching K iterations
or when the condition rk < ε is fulfilled, the pass is considered complete, the counter of
passes is increased: p = p + 1, and the parameter that describes the size of the next search
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space is set equal to r0 = ηp, where η—reconstruction parameter of search set. The found
coordinate values determine the initial conditions for the search at the current iteration (the
initial position of each tomtit).

It is assumed that each j-th individual has a memory that stores:

• Current iteration count k;
• Current position xj,k and the corresponding value of objective function f (xj,k);
• The best position xbest and the corresponding value of objective function in population

f (xbest);
• The best position of a tomtit xj,best during all iterations and the corresponding value of

objective function f (xj,best);
• The best position xj,local among all tomtits located in the vicinity of the j-th individual

of radius ρ and the corresponding value of objective function f (xj,local).

The trajectory of movement of each individual (for all tomtits j = 1, . . . , NP) on the
segment [0; Tt], during which the search is carried out at the current iteration, is described
by the solution of the stochastic differential equation:

dxj,k = f(xj,k(t))dt +σ(xj,k(t))dW + dq, xj,k(0) = xj,k, j = 2, . . . , NP,

where W(t)—standard Wiener stochastic process, Tt—the time allotted by the leader of the
pack for searching for members of the pack at the current iteration, dq—Poisson component,
which can be written as:

dq = ∑
p
θpδ(t− τp)dt,

δ(t)—asymmetric delta function, τp—moments of jumps. In random moments of time τp
the position of a tomtit experiences random increments θp, forming a Poisson stream of
events of a given intensity µ. The solution of the equation determines the trajectories of the
tomtit’s movement that implement the diffusion search procedure with jumps.

Drift vector f(xj,k(t)) ∀t ∈ [0; T] is described by the equation:

f(xj,k(t)) = c1 r1 [xbest − xj,k(t)],

i.e., it takes into account information about the best solution in the population: the position
of the global leader of the flock.

Diffusion matrix σ(xj,k(t)) takes into account information about the best solution
obtained by a given individual for all past iterations, about the best solution in the vicinity
of the current solution, determined by the radius ρ:

σ(xj,k(t)) = c2r2 [xj,best − xj,k(t)] + c3r3 [xj,local − xj,k(t)],

where c1, c2, c3—effect coefficients; r1, r2, r3—random parameters uniformly distributed on
the segment [0, 1]. Parameter c2 determines the process of forgetting about one’s search
history; parameter c3 describes the leader’s effect among neighbors.

The solution of a stochastic differential equation is a random process, the trajectories
of which have sections of continuous change, interrupted by jumps of a given intensity. It
describes the movement of the tomtit, accompanied by relatively short jumps. This solution
can be found by numerical integration with a step size h. If any coordinate value hits the
boundary of the search area or goes beyond it, then it is taken equal to the value on this
boundary. The best position achieved during the current iteration is chosen as the new position
xj,k,search of the tomtit. This process is shown in Figure 1a. Among all the new positions of
tomtits, the best one is selected. It is recorded in the memory matrix and identified with the
final position of the leader of the flock at the current iteration, after which the next iteration
begins with the procedure for finding a new position of the leader of the flock and the initial
positions of the members of the flock relative to it. This procedure is shown in Figure 1b. The
method terminates when the maximum number of passes P is reached.
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Figure 1. Movement of tomtits; (a) stochastic movement of tomtits, choosing the best solution and
adding into the memory matrix, (b) new position of the leader and flight results of other tomtits.

The proposed hybrid method uses the ideas of evolutionary methods to create the
initial population [15–18], the method of imitating the behavior of cuckoo to simulate the
jump of the flock leader based on Levy flights [29], the application of a modified numerical
Euler–Maruyama method for solving a stochastic differential equation describing the
movement of individuals in a population [31]; the idea of particle swarm optimization
technique in a flock for describing the interaction of individuals with each other, the
modified method of artificial immune systems for updating the population, the Luus-
Jaakola method for updating the search set at the end of the next pass [1].

Figure 2 below illustrates the block diagram of the algorithm.
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Below is a detailed description of the algorithm.
Step 1. Creation of the initial tomtit population:
Step 1.1. Set parameters of method:

• Number of tomtits in population NP;
• Flock leader movement step α;
• Reduction parameter of search set γ;
• Reconstruction parameter of search set η;
• Levy distribution parameter λ;
• Tomtit’s neighborhood radius size ρ;
• Parameters c1, c2, c3, which describe drift vector and diffusion matrix in the stochastic

differential equation;
• Number of maximum records in memory matrix K;
• Integration step size h;
• Number of maximum discrete steps L;
• Time required for searching by tomtits Tt = Lh;
• Number of maximum passes P;
• Jump intensity parameter µ.

Set the value p = 0 (the number of passes), r0 = 1.

Step 1.2. Create initial population I =
{

xj = (xj
1, xj

2, . . . , xj
n)

T
, j = 1, 2, . . . , NP

}
⊂ D

of NP solutions (tomtits) with randomly generated coordinates xi from the segment [ai, bi]
using a uniform distribution:

xj
i = ai + randi[0, 1] · (bi − ai),i = 1, . . . , n; j = 1, . . . , NP,

where randi[0, 1] is the uniform distribution law on the segment [0; 1].
Step 2. Movement of flock members. Implementation of the diffusion search proce-

dure with jumps.
Step 2.1. Set the value: k = 0 (iteration counter).
Step 2.2. For each member of flock calculate the value of objective function: f (x1,k),

. . ., f (xNP,k). Order flock members in increasing (nondecreasing) objective function values.
The solution x1,k corresponds to the best value, i.e., the position of the leader.

Step 2.3. Process current information about flock members.
For j = 1 set the following. The best position is xbest = x1,k and the corresponding

value of objective function f (xbest) = f (x1,k) in population.
For all other flock members (j = 2, . . . , NP) find:

• The best position of a tomtit xj,best during all iterations and the corresponding value of
objective function f (xj,best);

• The best position xj,local among all tomtits located in the vicinity of the j-th individual
of radius ρ and the corresponding value of objective function f (xj,local).

Step 2.4. For each j = 2, . . . , NP find the numerical solution of the stochastic differen-
tial equation with step size h on the segment [0, Lh] using the Euler–Maruyama method.

Step 2.4.1. Set the value: xj,k(0) = xj,k and l = 0.
Step 2.4.2. Find the diffusion part of the solution

x̃j,k(l + 1) = xj,k(l) + hf(xj,k(l)) +
√

hσ(xj,k(l))ξ,

where
f(xj,k(l)) = c1 r1 [xbest − xj,k(l)],

σ(xj,k(l)) = c2r2[xj,best − xj,k(l)] + c3r3[xj,local − xj,k(l)],
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r1, r2, r3 are random parameters uniformly distributed on the segment [0, 1] and ξ is a
random variable that has a standard normal distribution with zero mean value and unit
variance value. It is possible to model this variable using the Box–Muller method:

ξ =
√
−2 lnα1 cos 2πα2 or ξ =

√
−2 lnα1 sin 2πα2,

in which α1 and α2 are an independent random variables uniformly distributed on the
segment (0; 1).

Step 2.4.3. Check jump condition: β ≤ µh, where β is a random variable uniformly
distributed on the segment (0; 1). In the process of integration, one should check whether
the solution belongs to the set of feasible solutions: if any coordinate value of the solu-
tion hits the boundary of the search area or goes beyond it, then it is taken equal to the
corresponding value on the boundary.

If the jump condition is satisfied, then set the value:

xj,k(l + 1) = x̃j,k(l + 1) + θ,

where θ is a random increment, in which coordinates are modeled according to the uniform
distribution law: θi ∈ [−∆i, ∆i], ∆i = min[(bi − x̃j,k

i (l + 1), (x̃j,k
i (l + 1)− ai)].

Otherwise, set the value: xj,k(l + 1) = x̃j,k(l + 1).
Step 2.4.4. Check the stop condition of the moving process of a flock’s member.
If l < L, set the value l = l + 1 and go to step 2.4.2. Otherwise, go to step 2.5.
Step 2.5. For each flock member (j = 2, . . . , NP), find the best solution among all

solutions obtained: xj,k(0), xj,k(1), . . . , xj,k(L). Denote it as xj,k,search, j = 2, . . . , NP.
Step 2.6. Among positions x1,k, x2,k,search, . . . , xNP,k,search of tomtits (solutions) find the

best one. Record it in the memory matrix. This is the leader’s position at the end of the
current iteration x1,k,search.

Step 2.7. Check the stop condition of a pass. If k = K(memory matrix is full) or rk < ε,
then stop the pass. From the memory matrix, choose the best solution and put it in the set
Pool, then go to step 3. If k < K, set the value rk+1 = γrk, k = k + 1 and go to step 2.8.

Step 2.8. Find the new position of the leader:

x1,k = x1,k,search +
α

k + 1
Levy(λ).

To generate a random variable according to the Levy distribution, it is required: for
each coordinate xi = Levyi(λ) to generate number Ri, i = 1, . . . , n by uniform distribution
law on the set [ε; bi − ai], where ε = 10−7− distinguishability constant, and carry out the
following [10]:

• Generate numbers θi = R · i2π and Li = (Ri + ε)
− 1

λ , i = 1, . . . , n, where λ is a
distribution parameter;

• Calculate values of coordinates:

xi(λ) = Li sin θi, i = 1, . . . ,
[n

2

]
; xi(λ) = Li cos θi, i =

[n
2

]
+ 1, . . . , n.

If the obtained value of the coordinate xi does not belong to the set of feasible solutions;
that is xi /∈ [ai; bi], then repeat the generation process for the coordinate xi.

If, after ten unsuccessful generations, the coordinate xi does not belong to the set of
feasible solutions, then generate xi by uniform distribution law on the set [ai; bi].

Step 2.9. Release the flight of the rest of the tomtits.
Positions of all other tomtits (j = 2, . . . , NP) are modeled using a uniform distribution

on the parallelepiped set (see step 1.2). The center of the parallelepiped set is determined
by the position of the leader of the flock x1,k (see step 2.8), and the lengths of the sides are
equal rk(bi − ai), i = 1, . . . , n.
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If the value of tomtit’s coordinate does not belong to the set of feasible solutions, then
generate a new position using uniform distribution:

• On the set
[

ai, x1,k
i

]
when xj,k

i < ai, j = 2, . . . , NP;

• On the set
[

x1,k
i , bi

]
when xj,k

i > bi, j = 2, . . . , NP.

Go to step 2.2.
Step 3. Check the stop condition of the search. If p = P, then stop the process and go

to step 4. If p < P, clear the memory matrix, increase the counter of passes: p = p + 1, and
set the value r0 = ηp, where η is a reconstruction parameter of the search set.

Generate a new flock of tomtits. Choose the best solution from Pool set: x1,0. Positions
of all other tomtits (j = 2, . . . , NP) are modeled using a uniform distribution on the
parallelepiped set (see step 1.2). The center of the parallelepiped set is determined by the
position of the leader of the flock x1,0, and the lengths of the sides are equal r0(bi − ai),
i = 1, . . . , n.

If the value of the tomtit’s coordinate does not belong to the set of feasible solutions,
then generate a new position using uniform distribution:

• On the set
[

ai, x1,0
i

]
when xj,k

i < ai, j = 2, . . . , NP;

• On the set
[

x1,0
i , bi

]
when xj,k

i > bi, j = 2, . . . , NP.

Go to step 2.
Step 4. Choosing the best solution. Among solutions in the set Pool, find the best one,

which is considered to be the approximate solution of the optimization problem.
As a result of generalizing the data obtained both in solving classical separable and non-

classical nonseparable optimal control problems, recommendations for choosing the values
of hyperparameters were developed: number of tomtits in population NP ∈ [10; 1000]; flock
leader movement step α ∈ [0.0001; 0.2]; reduction parameter of search set γ ∈ [0.1; 0.99]; re-
construction parameter of search set η ∈ [0.1; 0.9]; Levy distribution parameter λ ∈ [1.1; 2];
tomtit’s neighborhood radius size ρ ∈ [1; 1000]; parameters c1, c2, c3 ∈ [0.5; 30]; number
of maximum records in memory matrix K ∈ [5; 50]; integration step size h ∈ [0.01; 0.1];
number of maximum discrete steps L ∈ [2; 10]; number of maximum passes P ∈ [10; 200];
jump intensity parameter µ ∈ [1; 30].

3. Results
3.1. Example 1. The One-Dimensional Optimal Control Problem with an Exact Solution

The dynamical system is described by the state equation:

x(t + 1) = x(t) + u(t),

where x ∈ R; t = 0, 1, . . . , N − 1; u ∈ R. All variables, i.e., the coordinates of the state
vector of dynamical systems and the coordinates of the control vector, hereinafter, are
written in the normalized form.

It is required to find such a pair of trajectory and control (x∗(·), u∗(·)) that the value
of the performance index I is minimal:

I = 1
2

N−1
∑

t=0
γ−tu2(t) + x(N), γ > 1.

In this case, it is possible to solve this problem analytically:

u∗(t) = −γt; x∗(t) = x0 +
(1−γk)
γ−1 ; minI = x0 +

1−γN

2(γ−1) .

In this problem, the initial condition is known: x(0) = 0, and the constraints on the
control are also given: −2 · 104 ≤ u ≤ 2 · 104. For this task, the number of stages is set:
N = 50; the exact value of the performance index is minI = −581.954264398477.



Algorithms 2022, 15, 301 10 of 19

To solve the problems under consideration with the help of the new TFO algorithm, a
computer with the following characteristics was used: an Intel Core i7-2860QM processor
with a clock frequency of 3.3 GHz, 16 gigabytes of RAM. To implement the software
package, the C# programming language (7.2) with Microsoft Framework. Net version 4.7.2
was used from https://dotnet.microsoft.com/en-us/ (accessed on 25 August 2022).

When solving this problem, the approximate value of the performance index obtained
by the TFO algorithm was I∗TFO = −581.953556374572 and the runtime was 1:07 min. The
relative error of the obtained value of the performance index was 1.2× 10−6. The same
problem was solved by Perch School Search algorithm [10]. The runtime was 5:36 min
and the value of performance index was I∗PSS = −581.954264313551. It is obvious that the
new TFO algorithm makes it possible to obtain solutions much faster and with sufficient
accuracy.

To solve this problem, the TFO algorithm was used with the parameters shown in
Table 1. Figure 3 shows the obtained pair (x(·), u(·)).

Table 1. The set of parameters of the TFO algorithm in Example 1.

NP γ η ρ c1 c2 c3 K h L P µ ε λ α

1000 0.1 0.6 1000 30 30 30 50 0.01 4 160 30 1× 10−9 1.3 0.1
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The approximate value of the performance index obtained by the TFO algorithm was
I∗ = −579.311903151533, and the runtime was 14.92 s. It turned out that the resulting value
of the performance index was worse due to other parameters, but the change in relative
error was not significant. This example shows the importance of selecting parameters,

https://dotnet.microsoft.com/en-us/
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which is a rather difficult task. A slight change in the parameters can significantly affect
the result of solving the problem.

To demonstrate the increase in the runtime to solve the problem, a search for optimal
control and the trajectory with the parameters of the algorithm from Table 1 is performed.
The difference will be an increase in the number of stages: N = 80, but the parameters of
the system remain unchanged.

Figure 5 shows the obtained pair (x(·), u(·)).
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The exact value of the performance index was minI = −10237.001072927329. The
obtained value of the performance index was I∗ = −10174.6684936038, with a runtime of
1:58 min.

Example 1 illustrates the possibilities of the method in solving financial optimization
problems that take the discounting effect into account.

3.2. Example 2. Luus–Tassone Nonseparable Control Problem

The dynamical system is described by three difference equations:

x1(t + 1) = x1(t)
1+0.01u1(t)(3+u2(t))

;

x2(t + 1) = x2(t)+u1(t)x1(t+1)
1+u1(t)(1+u2(t))

;

x3(t + 1) = x3(t)
1+0.01u2(t)(1+u3(t))

,

where x ∈ R3, t = 0, . . . , N − 1, and u ∈ R3.
It is required to find such a pair of trajectories and control (x∗(·), u∗(·)) so that the

value of the performance index I is minimal:

I = x1
2(N) + x2

2(N) + x2
3(N)+

+

[(
N
∑

k=1
x2

1(k− 1) + x2
2(k− 1) + 2u2

3(k− 1)
)(

N
∑

k=1
x2

3(k− 1) + 2u2
1(k− 1) + 2u2

2(k− 1)
)] 1

2

.

In this problem, the initial condition: x(0) = (2; 5; 7)T , and the constraints on the
control are also given: 0 ≤ u1(t) ≤ 4, 0 ≤ u2(t) ≤ 4, 0 ≤ u3(t) ≤ 0.5. For this task, the
number of stages is set: N = 20.

The best known value of the performance index for this problem was obtained in [1]:
minI = 209.26937 The approximate value of the performance index obtained by the TFO
algorithm was I∗TFO = 209.389060601957, and the runtime was 16.47 s. The same problem
was solved by the Perch School Search algorithm [10]. The runtime was 49.92 s, and the
value of performance index was I∗PSS = 209.429533683522. It is obvious that the new TFO
algorithm makes it possible to obtain the solution much faster. However, the obtained
solution of this problem is still not as accurate as that of the author of the problem [1].
It turned out to be extremely difficult to select the parameters for the algorithm for this
problem.

To solve this problem, the TFO algorithm was used with the parameters shown in
Table 3. Figures 6 and 7 show the obtained pair (x(·), u(·)).
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Table 3. The set of parameters of the TFO algorithm in Example 2.

NP γ η ρ c1 c2 c3 K h L P µ ε λ α

300 0.3 0.9 2 2 0.5 3 10 0.05 10 100 1 1× 10−9 1.1 0.0001
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3.3. Example 3. Li–Haimes Nonseparable Control Problem

The dynamical system is described by three difference equations:

x(1) = x(0)u(0); x(2) = (1 + u(1)) · x(1); x(3) = x(2) + u(2),

where x ∈ R, t = 0, 1, 2, and u ∈ R.
It is required to find such a pair of trajectory and control (x∗(·), u∗(·)) that the value

of the performance index I is minimal:

I = [x2(0) + x2(1) + (2x2(2) + x2(3)) exp(x2(1))]× [50 + u2(0) + (u2(1) + u2(2)) exp(u2(0))]
1/2

.

In this problem, the initial condition is known: x(0) = 15, and the constraints on the
control are also given: −1 ≤ u(t) ≤ 1, t = 0, 1, 2. For this task, the number of stages is set:
N = 3. The best-known value of the performance index obtained for this nonseparable
control problem was obtained in [1]: minI = 1596.4796778.

The approximate value of the performance index obtained by the TFO algorithm was
I∗TFO = 1596.47967783381 and the runtime was 0.13 s. The same problem was solved by
Perch School Search algorithm [10]. The runtime was 0.19 s and the value of performance
index was I∗PSS = 1596.47967783389. The new TFO algorithm makes it possible to obtain
almost the same solution much faster.

To solve this problem, the TFO algorithm was used with the parameters shown in
Table 4. Figure 8 shows the obtained pair (x(·), u(·)). The values of the obtained control
u(·) and trajectory x(·) are shown in Table 5.

Table 4. The set of parameters of the TFO algorithm in Example 3.

NP γ η ρ c1 c2 c3 K h L P µ ε λ α

100 0.1 0.1 5 3 3 3 10 0.1 5 100 2 1× 10−9 1.5 0.001
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Table 5. The values of the obtained control and trajectory.

t u x

0 −0.42716 15
1 −0.09897 0.31450
2 −0.08238 0.28337
3 0.20099

Examples 2 and 3 illustrate the possibilities of solving complex optimal control prob-
lems with nonseparable performance indexes, for which obtaining solutions using known
optimality conditions is extremely difficult.

3.4. Example 4. The Two-Dimensional Lagrange Optimal Control Problem with an Exact Solution

The dynamical system is described by two difference equations:

x1(t + 1) = x1(t) + u(t); x2(t + 1) = 2x1(t) + x2(t),

where x ∈ R2, t = 0, 1, and u ∈ R.
It is required to find such a pair of trajectory and control (x∗(·), u∗(·)) that the value

of the performance index I is minimal:

I =
1

∑
t=0

[
x1

2(t) + x2
2(t) + u2(t)

]
.

In this problem, the initial condition x(0) = (2; 1)T and the constraints on the control
are also given: −105 ≤ u ≤ 105, the number of stages is set: N = 2. The exact value of the
performance index is minI = 32. For this control problem, the analytical solution can be
found: u∗ = {−1; 0}; x∗1(·) = {2; 1; 1}; x∗2(·) = {1; 5; 7}.

The approximate value of the performance index obtained by the TFO algorithm was
I∗TFO = 32.0000000000001 and the runtime was less than 0.01 s. The relative error of the
obtained value of the performance index was 3.1× 10−15. The same problem was solved
by the Perch School Search algorithm [10]. The runtime was 1.58 s and the value of the
performance index was I∗PSS = 32. The new TFO algorithm makes it possible to obtain
solutions much faster and with almost the same accuracy.

To solve this problem, the TFO algorithm was used with the parameters shown in
Table 6. Figure 9 shows the obtained pair (x(·), u(·)).

Table 6. The set of parameters of the TFO algorithm in Example 4.

NP γ η ρ c1 c2 c3 K h L P µ ε λ α

70 0.1 0.1 100 2 3 2 5 0.1 6 10 2 1× 10−9 1.5 0.001
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3.5. Example 5. The Two-Dimensional Meyer Optimal Control Problem with an Exact Solution

The dynamical system is described by two difference equations:

x1(t + 1) = x1(t) + u(t); x2(t + 1) = 2x1(t) + x2(t),

where x ∈ R2, t = 0, 1, and u ∈ R.
It is required to find such a pair of trajectory and control (x∗(·), u∗(·)) that the value

of the performance index I is minimal:

I = x2
1(2) + x2

2(2).

In this problem, the initial condition vector is known: x(0) = (2;−3)T , and the
constraints on the control are also given: −1 ≤ u ≤ 1. For this task, the number of stages is
set: N = 2; the exact value of the performance index is minI = 5.

The approximate value of the performance index obtained by the TFO algorithm was
I∗TFO = 5 and the runtime was less than 0.01 s. The same problem was solved by Perch
School Search algorithm [10]. The runtime was 0.25 s and the value of the performance
index was I∗PSS = 5.00000000000002.. It is obvious that the new TFO algorithm makes it
possible to obtain the solution much faster and with almost the same accuracy.

To solve this problem, the TFO algorithm was used with the parameters shown in
Table 7. Figure 10 shows the obtained pair (x(·), u(·)). The values of the obtained control
and trajectory components are shown in Table 8.

Table 7. The set of parameters of the TFO algorithm in Example 5.

NP γ η ρ c1 c2 c3 K h L P µ ε λ α

30 0.81 0.6 2 1 1 1 5 0.1 6 10 2 1× 10−9 1.2 0.2
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Table 8. The values of the obtained control and trajectory.

t u x1 x2

0 1 2 −3
1 −1 −3 1
2 1 −2

Examples 4 and 5 illustrate the possibility of solving the problem of finding the optimal
program control for classical control problems for linear discrete deterministic dynamical
systems with a quadratic performance index.

3.6. Example 6. The Two-Dimensional Bolza Optimal Control Problem with an Exact Solution

The dynamical system is described by two difference equations:

x1(t + 1) = x2(t); x2(t + 1) = 2x2(t)− x1(t) + 1
N2 u(t),

where x ∈ R2, t = 0, 1, . . . , N − 1, and u ∈ R.
It is required to find such a pair of trajectory and control (x∗(·), u∗(·)) that the value

of the performance index I is minimal:

I = −x1(N) +
1

2N

N−1

∑
t=0

u2(t).

In this case, it is possible to solve this problem analytically:

u∗(t) = N−t−1
N ; minI = − 1

3 + 3N−1
6N2 + 1

2N3

N−1
∑

t=0
t2.

In this problem, the initial condition vector is known: x(0) = (0; 0)T , and the con-
straints on the control are also given: 0 ≤ u ≤ 100. For this task, the number of stages is set:
N = 10.; the exact value of the performance index is minI = −0.1425.

When solving this problem, the approximate value of the performance index obtained
by the TFO algorithm was I∗TFO = −0.142499964879453 and the runtime was 0.13 s. The
relative error of the obtained value of the performance index was 2.5× 10−7. The same
problem was solved by Perch School Search algorithm [7]. The runtime was 7.39 s and
the value of the performance index was I∗PSS = −0.142499999999796. The new algorithm
makes it possible to obtain solutions much faster and with almost the same accuracy.

To solve this problem, the TFO algorithm was used with the parameters shown in
Table 9. Figure 11 shows the obtained pair (x(·), u(·)). Figure 12 shows deviations of
approximate control values from exact ones at different moments of the dynamic system
operation, i.e., ∆u(t) = |u(t)− u ∗ (t)|.

Table 9. The set of parameters of the TFO algorithm in Example 6.

NP γ η ρ c1 c2 c3 K h L P µ ε λ α

120 0.9 0.2 40 10 10 10 20 0.1 4 20 3 1× 10−9 1.7 0.1
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3.7. Example 7. The Two-Dimensional Meyer Optimal Control Problem with an Exact Solution

The dynamical system is described by two difference equations:

x1(t + 1) = x1(t) + 2u(t); x2(t + 1) = −x2
1(t) + x1(t) + u2(t),

where x ∈ R2, t = 0, 1, and u ∈ R.
It is required to find such a pair of trajectory and control (x∗(·), u∗(·)) that the value

of the performance index I is minimal:

I = −x2(2).

In this problem, the initial condition vector is known: x(0) = (3; 0)T , and the con-
straints on the control are also given: −5 ≤ u ≤ 5. For this task, the number of stages is set:
N = 2; the exact value of the performance index is minI = −19.

In this example, the convex varying condition is not satisfied, which means that the
discrete maximum principle cannot be applied, while the necessary optimality conditions
are satisfied.

This problem has two solutions: x1∗
1 (·) = {3;−1; 9}, x1∗

2 (·) = {0;−5; 19}, u1∗(·) =
{−2; 5} and x2∗

1 (·) = {3;−1;−11}, x2∗
2 (·) = {0;−5; 19}, u2∗(·) = {−2;−5}; the TFO

algorithm successfully finds both solutions.
When solving this problem, the approximate values of the performance index obtained

by the TFO algorithm for both solutions were: I1∗
TFO = −18.999999999918 (the runtime was

less than 0.01 s for the first solution); I2∗
TFO = −18.9999999991551(the runtime was less than

0.01 s for the second solution). The relative errors of the obtained value of the performance
index were 4.3× 10−12 and 4.4× 10−11, respectively. The same problem was solved by
the Perch School Search algorithm [7]. Runtimes were 0.30 s and 0.31 s, and the values of
the performance index were I1∗

PSS = −18.9999999999354 and I2∗
PSS = −18.9999999999939,

respectively. The TFO algorithm makes it possible to obtain solutions much faster and with
almost the same accuracy.

To solve this problem, the TFO algorithm was used with the parameters shown in
Table 10. Figures 13 and 14 show the obtained pairs (x(·), u(·)) for both solutions. The
values of the obtained control and trajectory components are shown in Tables 11 and 12.



Algorithms 2022, 15, 301 17 of 19

Table 10. The set of parameters of the TFO algorithm in Example 7.

NP γ η ρ c1 c2 c3 K h L P µ ε λ α

30 0.81 0.4 3 2.5 2.7 2.8 20 0.1 4 30 2.5 1× 10−9 2 0.01
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Table 11. The values of the obtained control and trajectory components for the first solution.
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0 −2.00001 3 0
1 5 −1.00001 −4.99998
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Table 12. The values of the obtained control and trajectory components for the second solution.

t u x1 x2

0 −1.99998 3 0
1 −5 −0.99997 −5.00007
2 −10.99997 19

4. Conclusions

In this paper, a new bio-inspired metaheuristic optimization algorithm named TFO,
used to find the solution to open-loop control problems for discrete deterministic dynamical
systems, is proposed.

This algorithm has successfully inherited a number of new ideas and known tech-
niques from several algorithms; for example, the numerical solution of stochastic differential
equations with jumps by the Euler–Maruyama method to describe the movement of tomtits
when foraging, compression and recovery of the search area б exchange of information
between members of the flock. These ideas allow the algorithm to solve applied optimiza-
tion problems in a short runtime, which was shown by examples of the problem of finding
optimal control and trajectories of discrete dynamical systems. The solutions obtained in
most cases are extremely close, or coincide with the analytical solutions if they are known.
Compared to the previously developed PSS algorithm, this algorithm is more efficient
when it comes to solving problems of finding the optimal control and trajectory, which is
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shown by the through comparison of the running time of the algorithm and the relative
error.

In the future, we plan to improve this algorithm or create new algorithms based on
the TFO algorithm in order to obtain more accurate (but no less fast) algorithms.

The direction of further development of this work can be the application of the devel-
oped metaheuristic optimization algorithm in solving applied problems of optimal control
of aircraft of various types and optimal control problems with full and incomplete feedback
on the measured variables, as well as solving problems in the presence of uncertainty when
setting the initial state vector.
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