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Abstract: Artificial intelligence (AI) algorithms can provide actionable insights for clinical decision-
making and managing chronic diseases. The treatment and management of complex chronic dis-
eases, such as diabetes, stands to benefit from novel AI algorithms analyzing the frequent real-time
streaming data and the occasional medical diagnostics and laboratory test results reported in elec-
tronic health records (EHR). Novel algorithms are needed to develop trustworthy, responsible, re-
liable, and robust Al techniques that can handle the imperfect and imbalanced data of EHRs and
inconsistencies or discrepancies with free-living self-reported information. The challenges and ap-
plications of Al for two problems in the healthcare domain were explored in this work. First, we
introduced novel Al algorithms for EHRs designed to be fair and unbiased while accommodating
privacy concerns in predicting treatments and outcomes. Then, we studied the innovative approach
of using machine learning to improve automated insulin delivery systems through analyzing real-
time information from wearable devices and historical data to identify informative trends and pat-
terns in free-living data. Application examples in the treatment of diabetes demonstrate the benefits
of Al tools for medical and health informatics.

Keywords: diabetes; digital health; predictive models; artificial intelligence; machine learning; deep
learning; automated insulin delivery; electronic health records

1. Introduction

Artificial intelligence (AI) has provided new powerful approaches to addressing var-
ious problems in medicine [1,2]. This work focuses on machine learning (ML) applications
in diagnosing and treating diabetes. Since most ML techniques are data-driven, the
source, type, and quality of data play an important role in the performance, accuracy, and
reliability of the developed ML models. The data used can be subjective, objective, or a
combination of both [3,4]. Subjective sources of data include diaries kept by the individ-
ual, her/his responses to questionnaires, and self-reported information such as meals and
physical activities entered in various apps that collect such data. Objective data are col-
lected by devices that record measurements of numerous physiological variables and test
results reported. Challenges to objective data quality include accuracy of measurements,
effects of measurement noise and artifacts, missing values, and outliers in data. Under or
overestimation of food consumed, variations in the level of stress or pain perceived by the
patient, and forgetting entries to dairies are common in subjective data. When data are
collected for various classes of events, the balance in the number of samples in each class
can also influence or bias the results of the ML algorithms. This manuscript will first dis-
cuss data preprocessing methods to reduce the influence of imbalances and faults in data.
Then it will illustrate the use of ML in addressing various challenges in the treatment of
diabetes.
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Diabetes, a chronic disease that affects one out of every eleven people around the
world, will be used to illustrate the ML applications for detection, classification, and pre-
diction problems. Diabetes has a large impact on the quality of life of people with diabetes
and a significant financial burden on individuals and society [5]. Type 1 diabetes (T1D)
and Type 2 diabetes (T2D) are two major types of diabetes [6]. T1D is caused by an abso-
lute insulin deficiency, a result of the loss of insulin-producing beta cells of the pancreas.
T2D is characterized by the ineffective use of insulin in the body and defects in insulin
secretion that lead to relative insulin deficiency in relation to the increased insulin require-
ments imposed by the insulin-resistant state. While the cure of diabetes is the objective of
many active research programs, there is no cure approved to date to eliminate diabetes
[7]. Many activities focus on improving the treatment of diabetes using various classes of
pharmacological drugs and medical devices that can help improve the regulation of blood
glucose concentrations (BGC) in people with diabetes [8-10].

The role of ML in the classification of the characteristics of T2D, and the detection of
the patterns of the daily behavior of people with T1D will be discussed in this publication.
The ML problem for T2D pertains to the development of a decision support system that
recommends the most effective treatments (drugs prescribed and lifestyle changes) in
people with T2D. The ML algorithm can suggest personalized treatment intervention
strategies depending on the characteristics of the subject with T2D and the state of the
progressive disease, which can lead to either remission (in the early stages of T2D) or
treatment of T2D [11-16]. The use of ML in the treatment of T1D focuses on capturing the
patterns of the daily behavior of people with T1D [17,18] and to use this information in
enhancing the regulation of their BGC and automated insulin delivery [19]. While our
focus is on diabetes, the approaches and applications can be extended to many other
chronic diseases.

The application of Al algorithms also differs between T1D and T2D, because of dis-
tinct timescales and frequencies of decision-making in the treatment of T1D and T2D. T1D
necessitates frequent real-time decisions on insulin dosing, which requires Al algorithms
to infer patterns from historical data and analyze in real-time multiple streaming data
sources. The decisions rendered in T2D typically are on longer-term timescales, with al-
gorithms developed to offer pharmacotherapy suggestions and lifestyle modification rec-
ommendations to care providers for more effective personalized treatment of patients.
The differences in the frequency of data and the timescales for rendering decisions lead to
the development of different ML algorithms for these two types of diabetes.

Training AI algorithms to help diagnose and treat T2D is challenging because of the
diverse spectrum of the chronic disease across the population, the various treatment op-
tions and alternatives, and the potential existence of comorbidities and diabetes-related
complications. The complex pathophysiology of T2D necessitated the development of dif-
ferent classes of oral and injectable drugs that target specific biochemical pathways to ad-
dress various characteristics associated with T2D [20,21]. Treatment can include the ad-
ministration of one or more of these drugs [22,23]. In case of comorbidities, such as cardi-
ovascular diseases, chronic kidney disease, or diabetes complications such as nerve dam-
age, foot complications, and eye disease, additional medications to treat these conditions
are also administered. Drug-drug interactions and adverse side effects are common. Life-
style, including diet and physical activity, is a critical component of the treatment of T2D.
Physical activity can increase the risk of hypoglycemia with certain anti-diabetic medica-
tions. Thus, the diet, activity level, and lifestyle of the patient must be taken into consid-
eration. A major goal of ML systems that assist medical professionals to personalize treat-
ment approaches is to determine the characteristics and state of T2D for a subject, classify
the subject in the most likely cluster of patients with similar characteristics [16,24] and
identify the treatment options that have the highest probability of success for this individ-
ual [16].

Electronic health records (EHR) capture the medical records of people with T2D and
provide a good source of data for clustering people with similar characteristics and
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identifying treatment(s) that have been successful for each cluster. This data is heteroge-
neous, including free text, structured information (e.g., entered from hierarchical drop-
down menus) and numerical values (e.g., lab results), necessitating natural language pro-
cessing (NLP), planning, and structuring for analysis. ML can also identify secondary con-
nections to undiagnosed or potential comorbidities. Al will determine the interventions
that are most likely to be effective for specific clusters of patients with T2D. Interventions
include various types of antidiabetic drugs that affect different aspects of the metabolism
and have different side effects and lifestyle changes (diet, physical activity, stress, and
sleep). Currently, the management of all these factors, including the selection of the spe-
cific drugs and drug doses that would be appropriate for an individual relies on the expe-
rience and decisions of the medical care provider. We will pull the diagnosis codes, labor-
atory data, medications, and visit types for patients over a 10-year period. The data will
include the free text notes from primary care physicians, nurses, social workers, and nu-
trition notes. Biomedical informatics can leverage ML algorithms to gain insights from
historical EHR systems.

The first step in EHR data mining is identifying missing data and errors, followed by
data reconciliation. Then, concerns on bias in data and data size will be addressed. Cinar
and Rashid have developed various techniques for detecting and reconciling missing data
and errors by multivariate statistical and systems engineering techniques [25-27]. A dif-
ferent set of ML approaches have been developed by Shu (fair and robust Al, learning
with weak data) [28-32]. Bias in data results from patient records in EHR not reflecting
the population and causes models and relations that disproportionally concentrate on the
characteristics of the dominant groups in EHR data. Even if EHR has good representation
of African Americans and Latino/Hispanics, bias can still creep in unless this data is used
with care. The data size provides a different challenge. For example, the accuracy of deep
learning with long-short-term memory neural networks improves with large sets of data,
but other techniques such as support vector machines, k-nearest neighbors, decision trees,
linear discrimination, and ensemble learning provide good results with smaller data sets.

The outcome of the Al techniques for classification and suggestion of the most effec-
tive treatments must be trustworthy. Since EHR data may be fragile, clinicians would like
clarity on the reasons for the selection of a treatment [33,34]. Explainable AI methods [35-
37] provide insight into the selection of interventions in terms that are familiar to care
providers. We will focus on explainable Al techniques based on feature attribution meth-
ods that assign weights to features used to predict the best treatment [38-40]. The goal is
to assign a score to quantify the importance of features that are more useful for the pre-
diction results using attention mechanisms [30]. Another type of explainable ML models
aims to derive explanations after the model is trained, or post-hoc explanations [39].

In contrast to the infrequent decision-making in T2D, Al algorithms for T1D must
process both historical records and real-time streaming data to make numerous recurrent
decisions. People with T1D must make over a hundred decisions every day to regulate
their BGC based on complicated calculations on their insulin dose requirements through-
out daily life. This complex decision-making must consider numerous factors such as meal
carbohydrate amounts and times, past insulin infusions, and planned exercise and future
schedules. Assimilating diverse sources of information and making the insulin dosing de-
cisions, and decisions on food types and amount to consume throughout the day, in order
to maintain tight glycemic control is a challenging task. Automated insulin delivery (AID)
is an advanced treatment approach for keeping BGC in range despite major disturbances
to glycemic dynamics such as food consumption and physical activities (PA) [41-51].
Commercially available AID systems use BGC reported every 5 min (based on subcuta-
neous glucose concentrations measured by continuous glucose measurement [CGM] sys-
tems), a control algorithm that computes the optimal insulin dose to be infused, and an
insulin pump that infuses the computed insulin dose to subcutaneous tissue [52,53]. These
AID systems are called hybrid closed-loop systems because the user manually provides
information about the food consumed and then makes adjustments to the target BGC
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values or insulin dosing to mitigate the effects of routine, scheduled PA. They have
achieved 65-75 percent time in range for BGC in clinical trials reported to regulatory agen-
cies [54-59]. However, some people prefer fully-automated AID systems or would like to
be notified when they have not communicated a disturbance to their AID. This missing
information may be due to the inability of a young child or a geriatric person with T1D to
enter such information, forgetting to enter the information (such as a meal consumed) or
an unplanned/unexpected PA (such as running to catch a bus).

Fully-automated AID systems (Figure 1) necessitate the detection of food consump-
tion and estimation of the carbohydrate content of the meal and the detection of PA, clas-
sification of its type (such as aerobic, resistance, or interval training), and estimating its
intensity and duration [60-64]. This can only be achieved by a multivariable approach
where physiological data from wearable devices such as wristbands are integrated with
CGM and insulin infusion information to capture the metabolic state of the individual and
compute the optimal insulin dose to be infused by the pump [62]. The model predictive
control (MPC) approach has been demonstrated as the most effective type of control algo-
rithm for AID systems [26,65,66]. It necessitates the estimation of the future BGC to deter-
mine the optimal insulin dose to be infused by the pump. The accuracy of future BGC
estimates increases when future disturbances are estimated and included in predicting
future BGC excursions [19]. ML algorithms can analyze glucose and insulin data to deter-
mine the insulin dose requirements and analyze historical data to identify trends and pat-
terns that can be used to anticipate events and proactively make insulin dose adjustments
[19].
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Figure 1. Devices and information flow in multivariable automated insulin delivery systems. His-
torical data set depository and cloud/server for Al algorithms are used to improve glucose control
by incorporating information on identified historical patterns.

Unfortunately, both interpersonal variations in BGC dynamics among people with
T1D and intrapersonal variations in BGC dynamics of an individual throughout a day,
reduce the accuracy of fixed models developed based on historical data. Consequently,
recursive models to predict future BGC trends and adaptive control techniques become
more appealing for use in AID systems [27,62,66]. Their performance improves further by
providing information from ML algorithms to detect or predict disturbances that affect
BGC dynamics.

Al algorithms are gaining prominence in automating complex tasks in the manage-
ment of diabetes. The paper is structured to introduce various methods to address the
challenges in improving detection, classification, and prediction accuracy for better treat-
ment of T2D and T1D in the Methods section. ML for better analysis of electronic health
records (EHR) of people with diabetes will be introduced in Section 2.1. Section 2.2 focuses
on ML techniques integrated with data preprocessing, imputation of missing data, and
data reconciliation to predict the occurrence of food intake and exercise, and their concur-
rent incidence. Section 2.3 presents the integration of ML with automatic control to im-
prove BGC regulation with AID. Section 3 presents the results of implementing the ML
algorithms presented in Section 2.2 to data collected in free-living, and simulations to
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illustrate the effects of ML algorithms outlined in Section 2.3. Section 4 provides the dis-
cussion of results, and Conclusions are given in Section 5.

2. Methods

In this section, we first discuss the use of fair and trustworthy Al algorithms trained
using EHRs for personalized medicine and clinical decision-making in T2D. Then, we in-
vestigate novel methods to analyze free-living data from wearable devices for use in mo-
bile health and diabetes technologies for the treatment of T1D.

2.1. ML with Electronic Health Records for Personalized Medicine and Decision Making in T2D

EHR data can be generally divided into two categories: structured data and unstruc-
tured data. Structured EHR data includes demographic information, laboratory results,
prescribed medication, diagnosis codes, etc. Unstructured EHR data contains the clinical
notes and free text notes written by doctors and medical practitioners. ML models on both
types of data have been shown biased against certain demographic groups [67]. For ex-
ample, the predictions of multiple neural models on the MIMIC-IV dataset have been
found to have race-level discrepancies [68]. There exists a performance disparity between
demographic groups for a gradient boosting model on the Translational Research Inte-
grated Database Environment (STRIDE 8) dataset [69]. The use of pooled cohort equations
(PCE) method is also verified as biased to help guide physicians [3,70]. In addition to the
structured data, bias issues also exist in unstructured data for tasks such as automated
question answering (QA) tasks [71] and text generation [72].

The goal of general equitable/fair ML is to build an effective algorithm for prediction
while still satisfying fairness constraints. Following existing fair ML work [73,74], the per-
formance of fairness can be measured with metrics such as equal opportunity and statis-
tical parity. Equal opportunity requires that the probability of positive instances with ar-
bitrary protected attributes being assigned to a positive outcome are equal; statistical par-
ity requires the behavior of the prediction model to be fair to different sensitive groups.
Bias in algorithms can come from different sources such as unrepresentative or incomplete
training data or the reliance on flawed information that reflects historical inequalities [75].
Bias can also come from the algorithm design without considering fairness criteria or
come from user interactions such as user behavior bias.

To ensure fairness in ML algorithms, recent advancements in fairness-aware models
aim to optimize different fairness measures including individual fairness and group fair-
ness: individual fairness aims to give similar predictions to similar individuals with coun-
terfactual fairness or fairness through awareness; while group fairness is to treat different
groups equally measures like statistical parity and equalized odds.

An algorithm that is unbiased to the sensitive attributes, s € {0,1}, can be obtained
by incorporating constraints in the optimization problem that impose fairness on the
model. The goal of finding a mapping that provides both accurate predictions and fairness
guarantees can be achieved by incorporating constraints that ensure the parameter esti-
mates result in classification results that are independent of the sensitive attributes.

The model parameters of a fair model can be obtained by solving the following con-
strained optimization problem:

60" = argmin L(6,D
fon ) <1>
st. €C(6,D)<6 2)
with
C(6,D) = yrél{g’)i}[P(yJ FyYyls=0)—-P@#yls=1]<6 3)

where a relaxed probabilistic constraint computed over the training data D is introduced
so that the estimated model parameters yield approximately equalized odds, biases, and
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accuracies with respect to the protected attribute s and outcome 4. The constraint,
C(6,D), expressed generally as P(#|x,s) = P(#|x), or the independence of the predicted
outputs with respect to the sensitive attributes, enforces conditional independence be-
tween model predictions 4 = f(X) and the sensitive attribute s as conditional predic-
tion parity [76,77], ensuring the overall misclassification rate is not affected by the sensi-
tive attributes. The constraint may also be formulated in other analogous forms [73], such
as false negative rate, false positive rate, false omission rate, and false discovery rate [74].
Based on which stage of the ML training processes are considered, existing ap-
proaches fall into three categories: pre-processing approaches, in-processing approaches,
and post-processing approaches [78,79]. The pre-processing approaches are applied be-
fore training machine learning models by modifying the labels and/or attributes in the
training data; For example, one can reweight the datasets to be less biased to sensitive
attributes before feeding them into an algorithm. In-processing approaches aim to incor-
porate constraints during model training to ensure fairness. For example, adversarial de-
biasing aims to train a fair algorithm with adversarial learning to minimize the discrep-
ancy between different sensitive groups, and post-processing methods develop mecha-
nisms to change predicted labels. For example, one can calibrate the predictions based on
fairness criteria such as Equalized odds. It is important to consider privacy when building
a fair ML model on EHR data as it is often highly confidential due to legal compliance.
Apart from ensuring fairness in various medical applications, it is also essential to
preserve privacy in handling all kinds of medical data. Privacy protection is one of the
core components in jurisdictions on healthcare data across the globe. Ensuring privacy in
ML models for healthcare applications has been an increasingly critical concern. ML mod-
els can have serious privacy leakage issues for healthcare information. For example, a
study shows that ML models can be utilized to identify the individuals in healthcare data
repositories despite the removal of protected sensitive information [80]. Therefore, multi-
ple privacy protection methods including differential privacy, local differential privacy,
and federated learning can be incorporated to develop privacy-preserving ML models
with healthcare data. For instance, differential private logistic regression and naive Bayes
are proposed for breast cancer classification and diabetes prediction problems [81]. Fed-
erated learning is applied for heart failure disease prediction in a private manner [82].
Thus, it is important to study how to ensure fairness under privacy. Due to the restrictions
such as Electronic Communications Privacy Act (ECPA), General Data Protection Regu-
lation (GDPR) and medical data requirements, it is usually infeasible to directly get access
to the original sensitive data and effective privacy protection methods are needed [83].
Various privacy protection approaches are proposed to protect the privacy of sensi-
tive data including multiparty computation (MC), differential privacy (DP), local differ-
ential privacy (LDP) and federated learning (FL). Such privacy mechanisms are widely
deployed in medical analysis applications. There is currently limited research on the in-
tersection of privacy and fairness in ML. For example, with regards to the problem of
fairness under LDP, we can observe the experiment results on two mainstream fairness
datasets (ADULT [84], COMPAS [85,86]) and conclude that stronger privacy guarantee
requirements lead to worse fairness performance for debiasing models such as adversarial
debiasing (Figure 2). Therefore, there is a trade-off between the debiasing model and the
LDP privacy mechanism. More research is needed for the direction of private and fair ML.
In addition to privacy, we also propose to deal with the scenario when we have lim-
ited/unknown sensitive attributes (e.g., gender, race) to ensure fairness in ML models. In
real-world medical systems, user-sensitive attributes are often limited or even unavailable
due to legal restrictions or security protection. In [31], we study the problem of learning
fair classifiers by exploring related attributes. Since the related features might also be use-
ful for classification, instead of simply discarding them to improve fairness, we propose a
novel framework that simultaneously utilizes them to learn fair classifiers and adjusts the
importance weight of each related feature to trade-off their contribution to classification
accuracy and fairness. An illustration of the proposed FairRF is shown in Figure 3. It is
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mainly composed of three parts: (i) a base classifier that predicts the label of a data sample;
(ii) a covariance regularizer, which utilizes each feature to alleviate bias; and (iii) an im-
portance weight learner, which trade-offs the contribution of each related feature for clas-
sifier accuracy and fairness. The overall loss is to minimize the prediction error L. and
the weighted sum of correlation regularization from K related attributes L;. Experi-
mental results on the mainstream fairness datasets (ADULT, COMPAS) show that FairRF
can significantly improve the performance of fairness metrics such as Equal Opportunity
with 10-40%, without losing much on classification accuracy.

“os 1 1s 2 25 3 35 4 45
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<y Budget o
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Figure 2. Assessing the impact of fairness performances under private data. (a,b) ADULT, (c,d)
COMPAS [87].
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Figure 3. Fair classification with related sensitive attributes [31].

In addition to learning from related attributes to estimate sensitive attributes for fair
classification, we may explore auxiliary information from external sources to help. Specif-
ically, when there are no sensitive attributes for training a fair model in the target domain,
there might exist a similar domain that has sensitive attributes. For example, when pre-
dicting T2D with data that is collected recently when it is restricted from accessing sensi-
tive attributes, it is possible that abundant historical data is available from the past. In ML,
domain adaptation [88-90] techniques have been investigated for transferring knowledge
across domains for classification; however, they cannot be directly applied to fair classifi-
cation. We propose to investigate an unsupervised domain adaptation framework to
transfer fairness without sensitive attributes in the target domain [91]. We will use retro-
spective EHR datasets previously obtained from the University of Illinois Hospital and
Health Sciences System (Ul Health). The EHR dataset consists of approximately 300,000
adult patients treated at Ul Health over the course of a decade in duration, with at least
two visits in a 24-month time span, and either diagnosed with T2D or no diabetes. The
proposed framework is to investigate adversarial learning for joint debiasing and adapta-
tion. First, in the adversarial debiasing, the optimization is to predict the labels (e.g., dia-
betes) accurately while not accurately assessing user-sensitive attributes; Second, in the
adversarial domain adaptation, the goal is to learn an accurate function to estimate sensi-
tive attributes in the target domain. More research will be investigated to deeply explore
the effectiveness of the above framework in EHR data with respect to different domain
variations (e.g., quantify the similarity between domains that are categorized according
to time, location, etc.).



Algorithms 2022, 15, 299

8 of 20

2.2. ML with Free-Living Data for Digital Health Technologies in T1D

In people with T1D, the inability of the body to produce insulin necessitates exoge-
nous insulin administration to regulate the BGC. The advent of CGM devices enabled
people with diabetes to monitor their BGC every five minutes and interpret the numerical
and graphical information displayed. People with T1D can administer insulin by injec-
tions by using injectors or insulin pens or by infusions with insulin pumps to the subcu-
taneous tissue. While these technological advances improved BGC regulation and insulin
delivery, estimating the correct amount of insulin to administer is still a major burden for
people with T1D and their care providers. People with T1D make over 100 decisions every
day, distracting them from their other activities, increasing the probability of making in-
correct decisions, and reminding them of their chronic condition continuously.

People have patterns in their behavior that may vary between workdays and week-
ends, during seasons of the year, and on holidays. Capturing these patterns, in particular
meal and physical activity information, provides useful information and enables sugges-
tions for insulin boluses, reminders, and modifications in the target levels of BGC. They
can also be used by AID systems (also called artificial pancreas).

Determining the habits and behavior patterns of individuals with T1D can increase
the time-in-range (keeping BGC in the range of 70-180 mg/dL) and minimize hypoglyce-
mia (BGC < 70 mg/dL) and hyperglycemia (BGC > 180 mg/dL) episodes of people with
T1D in free-living. The data used for pattern detection can include BGC measurements
reported by CGM devices that measure subcutaneous glucose concentrations, insulin in-
fusions reported by the insulin pump, physiological data reported by wearable devices
such as wristbands, and information provided by the individuals, such as meal consump-
tion and amount, and the beginning time and duration of physical exercise. ML with free-
living data has many challenges: imbalance in data introduces bias in the classification of
daily events such as meal consumption and physical activity. Furthermore, missing val-
ues, sensor noise, and outliers reduce the accuracy of ML results. Some of the missing
information is caused by interruptions in communication between devices and others by
forgetting to enter manual information by the individual with T1D. Hence, data must be
preprocessed to reconcile the effects of artifacts, measurement noise, and outliers and im-
pute missing values.

The probabilities of meals, physical activity events, or their concurrent presence dur-
ing one day (24-h period) were obtained by analyzing 15 months of CGM, insulin pump,
meal, and physical activity data collected from a randomly selected person with T1D from
the Tidepool dataset (Figure 4) illustrate that while there are peak times for meals and
exercise, their high probabilities of occurrence are spread over time windows ranging
from1to3h.
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Figure 4. The probability of meal and physical activity events during a day was obtained by analyz-
ing 15 months of the pump-CGM sensor, meal, and physical activity data of a random person with
T1D from the Tidepool dataset [18].
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The Tidepool dataset is used to illustrate various data preprocessing activities and
the efficacy of ML for detecting and discriminating meal and exercise events (including
their concurrent occurrence). It includes data from 300 self-collected T1D datasets from
people who donated their data for research and the de-identified data were made availa-
ble for research. Each dataset represents data from one individual with T1D. 50 datasets
in this database include CGM sensor-insulin pump recordings and exercise information
such as the time, type, and duration of physical activity recorded from either open/closed-
loop insulin pump-sensor data. Meal information is reported as the amount of carbohy-
drates (CHO) consumed in the meal as estimated by the subject (over or underestimation
of CHO in meals is common). The subjects with T1D selected for this study used insulin
pump-CGM sensor therapy for up to two years, and some of them have lived with diabe-
tes for more than fifty years. The details of the demographic information of the selected
subjects in our work and the definition of the variables collected are provided in [18].
Separate models are developed for each person in order to capture personalized patterns
of meal consumption and physical activity. Data lengths vary between a minimum of 30
days up to 700 days of recorded information. The demographic information of the donors
is provided in [18]. The donors have used CGM data for adjusting their insulin dosing (by
using sensor-augmented-pump or automated insulin delivery) therapy for up to two
years. All information except meals and physical activity are recorded every five minutes.
As expected, in free-living there are many missing values in data and signal noise that
must be addressed by preprocessing the data. The probabilities of a meal or physical ac-
tivity events or their concurrent presence during one day (24-h period) were obtained by
analyzing 15 months of CGM, insulin pump, meal, and physical activity data collected
from a randomly selected person with T1D from the Tidepool dataset (Figure 4) illustrate
the high probabilities of occurrence of these events spread over time windows ranging
from 1 to 3 h, and the peak times for meals and exercise. It will be the task of a ML algo-
rithms to detect and discriminate the daily patterns of behavior for each person.

In data preprocessing, data reconciliation, outlier removal, and imputation of miss-
ing values are conducted using effective algorithms. The algorithms developed to imple-
ment these tasks are reported in [18]. The diagram of workflow for data processing, fea-
ture extraction, and modeling is summarized in Figure 5.

For the detection and classification of events, the CGM values and insulin pump data
are preprocessed and stacked with the past recorded data. All samples are segmented into
three different time windows: the current samples are used for model-based feature ex-
traction, two-hour window of the past data are used for statistical and nonlinear feature
variables, and past day samples of the data are used for the frequency domain features.
Redundant feature variables are identified and eliminated by a two-step feature selection
procedure. First, the deviance statistic test is performed to filter out features with low sig-
nificance. Then, the training split of all datasets is used in the wrapper feature selection
strategy to maximize the accuracy of the classifier in estimating meal and exercise events.
Voting and k-fold cross validation are used to assign the current state to one of the four
classes: “Meal and Exercise” (M and E), “no Meal but Exercise” (E), “no Exercise but Meal”
(M), “neither Meal nor Exercise” (No M and E).
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Figure 5. The diagram of workflow for data processing, feature extraction, and modeling [18].

Event detection is achieved with recurrent neural networks (RNN). RNN models are
developed for each individual to capture their behavior more accurately. The RNN mod-
els are used in this work to handle the temporal sequential nature of the time-series data,
where memory in the network ensures that the current state can effectively influence the
future state after a certain allotted time interval. Several RNN model configurations are
studied to assess their accuracy and performance in estimating the probabilities of occur-
rence of these four classes at each sampling time [18]. The feature variables are time-series
data, and recorded samples of past values of all feature variables are stacked together to
build the tensor of model inputs. These models use a past window of two hours, corre-
sponding to 24 past samples of the recorded CGM and insulin pump data, and extracted
features. Event (M, E) estimations are performed one sampling time backward. The sche-
matic diagram of the most promising RNN structure is illustrated in Figure 6.

y ! ; ReLU activation
LR N, y with droupout

=
’ Max pooling}
% Max pooling ¢ layer £ Softmax
1-D time-distributed  layer convolu RaLL ; PO Toverwi ; layer
Data Manual  convolution with ReLU activation and dropout Flatten FOlayer with ReLU 9
(Nxmxn x L) masking activation and dropout ReLU activation and ~ A¢tivation and

droupout

droupout

Figure 6. 1-D Convolutional RNN with LSTM layer [18].

2.3. Merging ML with Automatic Control to Improve Glucose Regulation

People with diabetes have mental models of their own metabolism and can provide
additional information to their AID systems manually that enable the algorithms used in
automated decisions to improve the insulin dose computed. The most prevalent manual
information announces potential impending glucose excursions during meals and physi-
cal activity, including user-reported meal information for computation of an insulin bolus
and increase in the target BGC and reduction of basal insulin infusion before starting an
exercise session. The first generation of AID systems automated the manual activities that
were performed repeatedly by the user [92]. Various control algorithms were proposed
over the years for AID systems, and eventually converged on using model predictive con-
trol (MPC) systems. In MPC, a dynamic model representing the metabolism of the user
forecasts the future behavior of the BGC based on hypothesized future control actions that
are optimized in real-time to bring future BGC as close to its desired trajectory as possible,
despite various disturbances such as meals and physical activities.

The second generation of AID systems aims to move from hybrid to automated op-
eration and reduce manual inputs to a few urgent situations [52,53]. This can be achieved
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by measuring and interpreting additional variables in real-time to infer the presence and
properties of disturbances to glucose homeostasis. Further, the expected behavior of a
person can be modeled using historical data sets and the model can be used to improve
insulin dosing decisions. This multivariable AID (mvAID) captures additional infor-
mation from a wearable device (i.e., blood volume pulse, heart rate, electrodermal activity,
accelerometer data) to provide real-time information to AID. Such information can be in-
terpreted by ML models to infer the presence of physical activities, classify their type,
estimate their intensity, and predict their effects on glucose levels in the near future
[19,62,66,93-95].

While the current mvAID with physiological data streaming in real-time improves
BGC regulation and ML of personal habits enhances BGG regulation, it does not leverage
the full promise of AL It has limited capability to address the challenges created by the
human in the loop, where the user who has access to data and information such as a po-
tential hypoglycemia episode changes their behavior and reduces the accuracy of the BGC
predictions and control decisions (insulin doses) made by the mvAID system (Figure 7).
MPC uses the predicted (future) BGC values to compare them against the desired future
BGC levels and conducts optimization in real-time to bring the predicted BGC values to
the desired (target) values by modifying future insulin doses. The use of the daily behav-
ior patterns captured by ML improves the model prediction accuracy of the used MPC
and updates the parameters of the MPC for tighter regulation of BGC. The RNN models
developed in the previous section can capture these patterns and provide information to
the MPC on the specific pattern that is evolving on a given day in order to predict future
disturbances more accurately.

Historical data set (weeks, months): Recant data (hours): Upper
- Missing data Missing values, outliers confidence
- Outliers ey WK ved
esire
- Erroneous or missing manual entries trajectory
Predicted
trajectory

| 1 -
Lower
Future
— S \_/w ot B mﬁmi{ldcmc

Past Present Future

Time

Figure 7. Lengths of historical data to capture many behavior patterns of a person (red), recent past
data for use by MPC (green) and challenges in data missing values, outliers). Confidence limits in
the prediction of future BGC, and disturbance effects.

3. Results

The results for the 1-D convolutional RNN with LSTM layer for the detection and
classification of the four states for one subject (Subject 2) in terms of Total Accuracy (%),
Weighted Recall (%), Precision (%), and F1 Score (%) are 94.69 (0.33), 94.69 (0.33), 96.58
(0.20), and 95.31 (0.16), respectively, where the standard deviations are given in parenthe-
ses. Some erroneous detections, such as confusing meals and exercise are dangerous since
meals necessitate an insulin bolus while exercise lowers BGC, and elimination of insulin
infusion and/or increase in target BGC are needed. RNNs with LSTM and 1D convolution
layers provide the best overall performance in minimizing such confusions: two meals
events are classified as exercise (0.003%) and eight exercise events are classified as meals
(0.125%). The performance of the four different RNNs are illustrated for one person in the
Tidepool dataset in Figure 8.
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Figure 8. Meal and exercise events were predicted for one person (subject 2) with outliers and un-
imputed samples by using different RNN configurations. Vertical green bars represent correctly
predicted classes. Vertical red bars denote incorrectly predicted classes, and their actual labels are
shown by blue bars. (a) LSTM, (b) LSTM with 1D Convolution Layers, (c¢) 2DConvLSTM, (d) Bi-
LSTM with 1D Convolution Layers [18].

Figure 8 displays a random day selected from the test data to compare the effective-
ness of various RNN models in detecting meal and exercise disturbances. Among four
possible realizations for the occurrence of events, detecting joint events, Class M and E is
more challenging as it usually shows overlaps with Class M and Class E. Several reasons
contribute to this challenge. Many people with T1D usually have a small snack before
and/or after exercise sessions. Also, exercise alone and exercise and snack together are less
frequent than sedentary state and meal consumption, and consequently, there is less in-
formation on Class M and E. Furthermore, the AID systems used by subjects record auto-
matically only CGM and insulin infusion values, and meal and physical activity sessions
needed to be manually entered into the device, at times an action that may be forgotten
by the subject.

Meal consumption and physical activity are two prominent disturbances that disrupt
BGC regulation, but their opposite effect on BGC makes the prediction of Class M and E
less critical than only meal or physical activity classes. The confusion matrices of the clas-
sification results for one of the subjects [18] and Figure 9 indicate that detecting Class E is
slightly more challenging in comparison to Class E and Class no M and E. One reason for
this difficulty is the lack of biosignal information such as 3D accelerometer, blood volume
pulse, and heart rate data in the Tidepool data set. As the use of wearable devices in-
creases, this difference is expected to be reduced [96-98].

Following the detection of meal and exercise events in historical data, we combine
the knowledge in historical data with real-time streaming information to determine the
most likely behavior pattern for the subject, and incorporate the estimated behavior pat-
tern in the multivariable AID system for improved decision-making. This improvement
is illustrated by simulations conducted with the mvAID connected to a multivariable sim-
ulator (mGIPsim) [99]. mGIPsim is a novel software enabling the in silico testing of ad-
vanced mvAID systems that improve glycemic control by supplementing the CGM data
with additional physiological measurements. The mGIPsim software has descriptions of
meals, insulin administration, and physical activities as inputs, and provides glucose and
insulin concentrations and physiological variables as outputs for use by nvAID algo-
rithms. mGIPsim can simulate patient behavior for up to one year with random daily var-
iations in meal and physical activity characteristics within ranges specified by the user. It
has a heterogenous virtual synthetic patient population that is representative of the actual
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patient population. mGIPsim is used to generate data for several days in response to daily
meal and exercise events. This historical data set is used to extract patterns of behavior for
each virtual subject. On the current day, the data generated up to the current time is com-
pared with all patterns of behavior of that subject, and the pattern that matches the most
to the current day is selected to provide future meal and exercise information (Figure 9).
This pattern information is used by the MPC to incorporate future potential meal and
exercise events in the prediction of future glucose values and compute optimal insulin
infusion to minimize the deviation of the predicted glucose concentration from the desired
glucose concentration.

Historical datal
Day 1 | Sleep l | Breakfast | | tunch | | Running | | Dinner |
¥ v ¥ !

r—

00:00 06:00 12:00 18:00 24:00

Past Window | Future Window

Day N ! ! ¥

00:00 06:00 12:00 18:00 24:00

Current Day I |Current Timel
Day N+1 : o
4 Future Window for Prediction

00:00 06:00 12:00 18:00 24:00

Figure 9. Disturbance prediction from historical data [19].

The improvement achieved by this approach is illustrated by two figures that com-
pare the performance of the AID control systems. The mvAID with an adaptive glucose
concentration model is denoted by A-MPC, and the controller that learns the patterns of
behavior is denoted by AL-MPC in Figures 10 and 11. The first figure (Figure 10) compares
the performances on day 30 of the simulation period for the two algorithms, by reporting
the mean glucose concentrations and their standard deviations for all 20 virtual subjects
simulated. AL-MPC is able to reduce the maximum glucose concentrations without in-
creasing the risk for hypoglycemia. Figure 11 illustrates the performance of the two algo-
rithms for one subject over the 30-day simulation period. Again, AL-MPC is able to reduce
the maximum glucose concentrations without increasing the risk for hypoglycemia. The
number of predicted hypoglycemic events decreased for the 30-day simulation period
from 92 to 75 with AL-MPC (hypoglycemia did not occur since based on the prediction
rescue carbs are consumed by the subjects) and the average of total daily injected insulin
(U) remained the same (39.5 U) [19].
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Figure 10. Closed-loop results of mAID for all subjects on day 30 [19].
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Figure 11. Closed-loop results of mAID for one select subject during whole simulation [19].

4. Discussion of Results

The applications of ML and Al in healthcare applications, particularly the treatment
of diabetes, are explored in this work. The use of various approaches to enhance Al to
diagnose the characteristics and state of a person with T2D using EHR data is explored.
Methods are discussed to ensure fairness and privacy of the Al algorithms in critical areas
such as healthcare applications. The use of reinforcement learning enabled complex math-
ematical programming problems to be solved, enabling the optimization formulations for
model learning to explicitly consider properties for fairness and privacy.

In contrast to the application of Al in T2D where EHR data are only updated occa-
sionally upon the availability of new laboratory results and doctor assessments, the use of
Al in T1D necessitates frequent rendering of insulin dosing decisions based on both his-
torical information and real-time streaming data. We analyzed historical data from a large
dataset to identify the likelihood of meal and exercise events, which are significant dis-
turbances to the tight regulation of BGC in diabetes. We showed that the meal and exercise
events can be predicted with high accuracy using a 1-D convolutional RNN with LSTM.
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The incorporation of behavioral patterns discerned from historical records in the real-
time insulin dosing decisions is shown to significantly improve the BGC regulation in
people with T1D. The advanced knowledge gained by analyzing the data from the current
day to estimate the likely behavioral pattern and anticipate the future pattern of the sub-
ject enables proactive mvAID systems that can mitigate the effects of disturbances to tight
BGC control before the disturbance effects materialize.

The applications of ML and Al in medicine show promising results in transforming
the treatment of chronic diseases such as diabetes. As the Al algorithms improve, they
will be able to better identify clusters, patterns, and relations in the medical data. The Al
algorithms will reduce the burden of managing chronic diseases and enhance the quality
of life of patients.

5. Conclusions

The developments in ML, EHR systems, wearable devices, and medical testing pro-
vide a fertile environment for powerful detection, classification, modeling, monitoring,
and control applications in medicine. Increased adoption and deployment of Al in medi-
cine necessitates advances in reducing bias, reconciling missing values and outliers to
make accurate and precise analysis of data, and building trustworthy and responsible Al-
based systems for medical applications. The advancements in trustworthy, responsible,
robust, and reliable Al techniques for the treatment of diabetes illustrate the transforma-
tive effects of Al in medicine to enhance treatment and improve quality of life.
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